12 research outputs found

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Cardiac Diastolic Function Is Impaired at Rest and Worsens With Exercise in Otherwise Healthy Individuals With Insulin Resistance

    No full text
    WOS: 000358558400018PubMed ID: 25902882Insulin resistance (IR) is a pathophysiological condition and is associated with cardiovascular risk factors including heart failure. However, studies demonstrating myocardial abnormalities in the early phases of IR are limited. The aim of this study was to investigate myocardial function in otherwise healthy individuals with IR. Individuals with IR who were free of cardiovascular risk factors and healthy controls were included. Stress echocardiography with tissue Doppler imaging (TDI) was performed. Systolic and diastolic TDI waves were compared in both groups. A total of 77 individuals (51 with IR and 26 controls) were included in our study. The tissue early flow (e')/atrial contraction (a') ratio at rest was significantly lower in the IR group (P = 0.003). The annular early flow (E)/e' ratio, a predictor of left ventricular filling pressure, was similar in both groups at rest (P = 0.522). After exercise, e'/a' impairment became more prominent in the IR group (P < 0.001); whereas the E/e' ratio was also significantly lower (7.6 +/- 1.8 versus 6.7 +/- 0.9; P = 0.007) in the IR group. Myocardial involvement seems to occur in patients with IR, before the appearance of other cardiovascular risk factors. Exercise induced diastolic worsening may be a predictor of reduced compliance and increased ventricular stiffness. More detailed prospective studies are required for more precise results

    Predictors of the paroxysmal atrial fibrillation recurrence following cryoballoon-based pulmonary vein isolation: Assessment of left atrial volume, left atrial volume index, galectin-3 level and neutrophil-to-lymphocyte ratio

    No full text
    Background: Cryoballoon-based pulmonary vein isolation (PVI) is a treatment option for atrial fibrillation (AF). Left atrial volume (LAV) and left atrial volume index (LAVi) are important parameters for long term success of PVI. Galectin-3 (Gal-3) and neutrophil to lymphocyte ratio (N/L ratio) are biomarkers to demonstrate the cardiac fibrosis and remodelling. Methods: 50 patients with symptomatic PAF despite ≥1 antiarrhythmic drug(s), who underwent PVI were enrolled. LAV, LAVi, Gal-3 and N/L ratio were calculated before ablation and after ablation at 6 and 12 months. According to AF recurrence patients were divided into two groups, recurrent AF (n = 14) and non-recurrent AF (n = 36). Results: In both groups (recurrent and non-recurrent), initial and 12 months follow-up LAV values were 41.39 ± 18.13 ml and 53.24 ± 22.11 ml vs 48.85 ± 12.89 ml and 42.08 ± 13.85 (p = 0.037). LAVi were 20.9 ± 8.91 ml/m2 and 26.85 ± 11.28 ml/m2 vs 25.36 ± 6.21 and 21.87 ± 6.66 (p = 0.05) for recurrent and non-recurrent AF groups, respectively. In both groups PVI had no significant effect on serum Gal-3 levels and N/L ratio during 12 months follow-up. The comparison between two groups at the end of 12th month showed Gal-3 values of 6.66 ± 4.09 ng/ml and 6.02 ± 2.95 ng/ml (p = 0.516), N/L ratio values of 2.28 ± 1.07 103/μl and 1.98 ± 0.66 103/μl (p = 0.674). Conclusion: LAV and LAVi are useful to predict the remodelling of the left atrium and AF recurrence after cryoballoon-based PVI. However, biomarkers such as Gal-3 and N/L ratio are not associated with AF recurrence. Keywords: Cryoballoon-based pulmonary vein isolation, Left atrial volume, Galectin-3, Left atrial remodellin

    Searches for the ZγZ\gamma decay mode of the Higgs boson and for new high-mass resonances in pppp collisions at s=13\sqrt{s} = 13 TeV with the ATLAS detector

    No full text
    International audienceThis article presents searches for the Zγ decay of the Higgs boson and for narrow high-mass resonances decaying to Zγ, exploiting Z boson decays to pairs of electrons or muons. The data analysis uses 36.1 fb1^{−1} of pp collisions at s=13 \sqrt{s}=13 recorded by the ATLAS detector at the CERN Large Hadron Collider. The data are found to be consistent with the expected Standard Model background. The observed (expected — assuming Standard Model pp → H → Zγ production and decay) upper limit on the production cross section times the branching ratio for pp → H → Zγ is 6.6. (5.2) times the Standard Model prediction at the 95% confidence level for a Higgs boson mass of 125.09 GeV. In addition, upper limits are set on the production cross section times the branching ratio as a function of the mass of a narrow resonance between 250 GeV and 2.4 TeV, assuming spin-0 resonances produced via gluon-gluon fusion, and spin-2 resonances produced via gluon-gluon or quark-antiquark initial states. For high-mass spin-0 resonances, the observed (expected) limits vary between 88 fb (61 fb) and 2.8 fb (2.7 fb) for the mass range from 250 GeV to 2.4 TeV at the 95% confidence level

    Search for direct top squark pair production in final states with two leptons in s=13\sqrt{s} = 13 TeV pppp collisions with the ATLAS detector

    No full text
    International audienceThe results of a search for direct pair production of top squarks in events with two opposite-charge leptons (electrons or muons) are reported, using 36.1 fb136.1~\hbox {fb}^{-1} of integrated luminosity from proton–proton collisions at s=13\sqrt{s}=13 TeV collected by the ATLAS detector at the Large Hadron Collider. To cover a range of mass differences between the top squark t~\tilde{t} and lighter supersymmetric particles, four possible decay modes of the top squark are targeted with dedicated selections: the decay t~bχ~1±\tilde{t} \rightarrow b \tilde{\chi }_{1}^{\pm } into a b-quark and the lightest chargino with χ~1±Wχ~10\tilde{\chi }_{1}^{\pm } \rightarrow W \tilde{\chi }_{1}^{0} , the decay t~tχ~10\tilde{t} \rightarrow t \tilde{\chi }_{1}^{0} into an on-shell top quark and the lightest neutralino, the three-body decay t~bWχ~10\tilde{t} \rightarrow b W \tilde{\chi }_{1}^{0} and the four-body decay t~bνχ~10\tilde{t} \rightarrow b \ell \nu \tilde{\chi }_{1}^{0} . No significant excess of events is observed above the Standard Model background for any selection, and limits on top squarks are set as a function of the t~\tilde{t} and χ~10\tilde{\chi }_{1}^{0} masses. The results exclude at 95% confidence level t~\tilde{t} masses up to about 720 GeV, extending the exclusion region of supersymmetric parameter space covered by previous searches

    Searches for the ZγZ\gamma decay mode of the Higgs boson and for new high-mass resonances in pppp collisions at s=13\sqrt{s} = 13 TeV with the ATLAS detector

    No full text
    International audienceThis article presents searches for the Zγ decay of the Higgs boson and for narrow high-mass resonances decaying to Zγ, exploiting Z boson decays to pairs of electrons or muons. The data analysis uses 36.1 fb1^{−1} of pp collisions at s=13 \sqrt{s}=13 recorded by the ATLAS detector at the CERN Large Hadron Collider. The data are found to be consistent with the expected Standard Model background. The observed (expected — assuming Standard Model pp → H → Zγ production and decay) upper limit on the production cross section times the branching ratio for pp → H → Zγ is 6.6. (5.2) times the Standard Model prediction at the 95% confidence level for a Higgs boson mass of 125.09 GeV. In addition, upper limits are set on the production cross section times the branching ratio as a function of the mass of a narrow resonance between 250 GeV and 2.4 TeV, assuming spin-0 resonances produced via gluon-gluon fusion, and spin-2 resonances produced via gluon-gluon or quark-antiquark initial states. For high-mass spin-0 resonances, the observed (expected) limits vary between 88 fb (61 fb) and 2.8 fb (2.7 fb) for the mass range from 250 GeV to 2.4 TeV at the 95% confidence level

    Measurements of ttˉt\bar{t} differential cross-sections of highly boosted top quarks decaying to all-hadronic final states in pppp collisions at s=13\sqrt{s}=13\, TeV using the ATLAS detector

    No full text
    Measurements are made of differential cross-sections of highly boosted pair-produced top quarks as a function of top-quark and ttˉt\bar{t} system kinematic observables using proton--proton collisions at a center-of-mass energy of s=13\sqrt{s} = 13 TeV. The data set corresponds to an integrated luminosity of 36.136.1 fb1^{-1}, recorded in 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. Events with two large-radius jets in the final state, one with transverse momentum pT>500p_{\rm T} > 500 GeV and a second with pT>350p_{\rm T}>350 GeV, are used for the measurement. The top-quark candidates are separated from the multijet background using jet substructure information and association with a bb-tagged jet. The measured spectra are corrected for detector effects to a particle-level fiducial phase space and a parton-level limited phase space, and are compared to several Monte Carlo simulations by means of calculated χ2\chi^2 values. The cross-section for ttˉt\bar{t} production in the fiducial phase-space region is 292±7 (stat)±76(syst)292 \pm 7 \ \rm{(stat)} \pm 76 \rm{(syst)} fb, to be compared to the theoretical prediction of 384±36384 \pm 36 fb

    Study of the material of the ATLAS inner detector for Run 2 of the LHC

    No full text
    International audienceThe ATLAS inner detector comprises three different sub-detectors: the pixel detector, the silicon strip tracker, and the transition-radiation drift-tube tracker. The Insertable B-Layer, a new innermost pixel layer, was installed during the shutdown period in 2014, together with modifications to the layout of the cables and support structures of the existing pixel detector. The material in the inner detector is studied with several methods, using a low-luminosity √s=13 TeV pp collision sample corresponding to around 2.0 nb−1 collected in 2015 with the ATLAS experiment at the LHC. In this paper, the material within the innermost barrel region is studied using reconstructed hadronic interaction and photon conversion vertices. For the forward rapidity region, the material is probed by a measurement of the efficiency with which single tracks reconstructed from pixel detector hits alone can be extended with hits on the track in the strip layers. The results of these studies have been taken into account in an improved description of the material in the ATLAS inner detector simulation, resulting in a reduction in the uncertainties associated with the charged-particle reconstruction efficiency determined from simulation
    corecore