77 research outputs found

    Joint resummation for slepton pair production at hadron colliders

    Full text link
    We present a precision calculation of the transverse-momentum and invariant-mass distributions for supersymmetric particle pair production at hadron colliders, focusing on Drell-Yan like slepton pair and slepton-sneutrino associated production at the CERN Large Hadron Collider. We implement the joint resummation formalism at the next-to-leading logarithmic accuracy with a process-independent Sudakov form factor, thus ensuring a universal description of soft-gluon emission, and consistently match the obtained result with the pure perturbative result at the first order in the strong coupling constant, i.e. at O(alpha_s). We also implement three different recent parameterizations of non-perturbative effects. Numerically, we give predictions for ~e_R ~e_R^* production and compare the resummed cross section with the perturbative result. The dependence on unphysical scales is found to be reduced, and non-perturbative contributions remain small.Comment: 12 pages, 4 figure

    Threshold Resummation for Slepton-Pair Production at Hadron Colliders

    Get PDF
    We present a first and extensive study of threshold resummation effects for supersymmetric (SUSY) particle production at hadron colliders, focusing on Drell-Yan like slepton-pair and slepton-sneutrino associated production. After confirming the known next-to-leading order (NLO) QCD corrections and generalizing the NLO SUSY-QCD corrections to the case of mixing squarks in the virtual loop contributions, we employ the usual Mellin N-space resummation formalism with the minimal prescription for the inverse Mellin-transform and improve it by resumming 1/N-suppressed and a class of N-independent universal contributions. Numerically, our results increase the theoretical cross sections by 5 to 15% with respect to the NLO predictions and stabilize them by reducing the scale dependence from up to 20% at NLO to less than 10% with threshold resummation.Comment: 20 pages, 11 figures. Wording of several paragraphs improved, some typos corrected, version accepted by Nucl. Phys.

    Joint Resummation for Gaugino Pair Production at Hadron Colliders

    Full text link
    We calculate direct gaugino pair production at hadron colliders at next-to-leading order of perturbative QCD, resumming simultaneously large logarithms in the small transverse-momentum and threshold regions to next-to-leading logarithmic accuracy. Numerical predictions are presented for transverse momentum and invariant mass spectra as well as for total cross sections and compared to results obtained at fixed order and with pure transverse-momentum and threshold resummation. We find that our new results are in general in good agreement with the previous ones, but often even more precise.Comment: 21 pages, 5 figures, 1 tabl

    Threshold resummation for gaugino pair production at hadron colliders

    Full text link
    We present a complete analysis of threshold resummation effects on direct light and heavy gaugino pair production at the Tevatron and the LHC. Based on a new perturbative calculation at next-to-leading order of SUSY-QCD, which includes also squark mixing effects, we resum soft gluon radiation in the threshold region at leading and next-to-leading logarithmic accuracy, retaining at the same time the full SUSY-QCD corrections in the finite coefficient function. This allows us to correctly match the resummed to the perturbative cross section. Universal subleading logarithms are resummed in full matrix form. We find that threshold resummation slightly increases and considerably stabilizes the invariant mass spectra and total cross sections with respect to the next-to-leading order calculation. For future reference, we present total cross sections and their theoretical errors in tabular form for several commonly used SUSY benchmark points, gaugino pairs, and hadron collider energies.Comment: 28 pages, 5 tables, 17 figure

    Gaugino production in proton-proton collisions at a center-of-mass energy of 8 TeV

    Get PDF
    Motivated by hints for a light Standard Model-like Higgs boson and a shift in experimental attention towards electroweak supersymmetry particle production at the CERN LHC, we update in this paper our precision predictions at next-to-leading order of perturbative QCD matched to resummation at the next-to-leading logarithmic accuracy for direct gaugino pair production in proton-proton collisions with a center-of-mass energy of 8 TeV. Tables of total cross sections are presented together with the corresponding scale and parton density uncertainties for benchmark points adopted recently by the experimental collaborations, and figures are presented for up-to-date model lines attached to them. Since the experimental analyses are currently obtained with parton showers matched to multi-parton matrix elements, we also analyze the precision of this procedure by comparing invariant-mass and transverse-momentum distributions obtained in this way to those obtained with threshold and transverse-momentum resummation.Comment: 28 pages, 7 figures, 9 tables; version to appear in JHE

    Chitinase-3-like 1 protein (CHI3L1) locus influences cerebrospinal fluid levels of YKL-40

    Get PDF
    BACKGROUND: Alzheimer’s disease (AD) pathology appears several years before clinical symptoms, so identifying ways to detect individuals in the preclinical stage is imperative. The cerebrospinal fluid (CSF) Tau/Aβ(42) ratio is currently the best known predictor of AD status and cognitive decline, and the ratio of CSF levels of chitinase-3-like 1 protein (CHI3L1, YKL-40) and amyloid beta (Aβ(42)) were reported as predictive, but individual variability and group overlap inhibits their utility for individual diagnosis making it necessary to find ways to improve sensitivity of these biomarkers. METHODS: We used linear regression to identify genetic loci associated with CSF YKL-40 levels in 379 individuals (80 cognitively impaired and 299 cognitively normal) from the Charles F and Joanne Knight Alzheimer’s Disease Research Center. We tested correlations between YKL-40 and CSF Tau/Aβ(42) ratio, Aβ(42), tau, and phosphorylated tau (ptau(181)). We used studentized residuals from a linear regression model of the log-transformed, standardized protein levels and the additive reference allele counts from the most significant locus to adjust YKL-40 values and tested the differences in correlations with CSF Tau/Aβ(42) ratio, Aβ(42), tau, and ptau(181). RESULTS: We found that genetic variants on the CH13L1 locus were significantly associated with CSF YKL-40 levels, but not AD risk, age at onset, or disease progression. The most significant variant is a reported expression quantitative trait locus for CHI3L1, the gene which encodes YKL-40, and explained 12.74 % of the variance in CSF YKL-40 in our study. YKL-40 was positively correlated with ptau(181) (r = 0.521) and the strength of the correlation significantly increased with the addition of genetic information (r = 0.573, p = 0.006). CONCLUSIONS: CSF YKL-40 levels are likely a biomarker for AD, but we found no evidence that they are an AD endophenotype. YKL-40 levels are highly regulated by genetic variation, and by including genetic information the strength of the correlation between YKL-40 and ptau(181) levels is significantly improved. Our results suggest that studies of potential biomarkers may benefit from including genetic information. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12883-016-0742-9) contains supplementary material, which is available to authorized users

    Engineering coherent interactions in molecular nanomagnet dimers

    Get PDF
    Proposals for systems embodying condensed matter spin qubits cover a very wide range of length scales, from atomic defects in semiconductors all the way to micron-sized lithographically defined structures. Intermediate scale molecular components exhibit advantages of both limits: like atomic defects, large numbers of identical components can be fabricated; as for lithographically defined structures, each component can be tailored to optimise properties such as quantum coherence. Here we demonstrate what is perhaps the most potent advantage of molecular spin qubits, the scalability of quantum information processing structures using bottom-up chemical self-assembly. Using Cr7Ni spin qubit building blocks, we have constructed several families of two-qubit molecular structures with a range of linking strategies. For each family, long coherence times are preserved, and we demonstrate control over the inter-qubit quantum interactions that can be used to mediate two-qubit quantum gates

    Genome-wide association study identifies four novel loci associated with Alzheimer's endophenotypes and disease modifiers

    Get PDF
    More than 20 genetic loci have been associated with risk for Alzheimer's disease (AD), but reported genome-wide significant loci do not account for all the estimated heritability and provide little information about underlying biological mechanisms. Genetic studies using intermediate quantitative traits such as biomarkers, or endophenotypes, benefit from increased statistical power to identify variants that may not pass the stringent multiple test correction in case-control studies. Endophenotypes also contain additional information helpful for identifying variants and genes associated with other aspects of disease, such as rate of progression or onset, and provide context to interpret the results from genome-wide association studies (GWAS). We conducted GWAS of amyloid beta (Aβ42), tau, and phosphorylated tau (ptau181) levels in cerebrospinal fluid (CSF) from 3146 participants across nine studies to identify novel variants associated with AD. Five genome-wide significant loci (two novel) were associated with ptau181, including loci that have also been associated with AD risk or brain-related phenotypes. Two novel loci associated with Aβ42 near GLIS1 on 1p32.3 (β = -0.059, P = 2.08 × 10-8) and within SERPINB1 on 6p25 (β = -0.025, P = 1.72 × 10-8) were also associated with AD risk (GLIS1: OR = 1.105, P = 3.43 × 10-2), disease progression (GLIS1: β = 0.277, P = 1.92 × 10-2), and age at onset (SERPINB1: β = 0.043, P = 4.62 × 10-3). Bioinformatics indicate that the intronic SERPINB1 variant (rs316341) affects expression of SERPINB1 in various tissues, including the hippocampus, suggesting that SERPINB1 influences AD through an Aβ-associated mechanism. Analyses of known AD risk loci suggest CLU and FERMT2 may influence CSF Aβ42 (P = 0.001 and P = 0.009, respectively) and the INPP5D locus may affect ptau181 levels (P = 0.009); larger studies are necessary to verify these results. Together the findings from this study can be used to inform future AD studies

    A common haplotype lowers PU.1 expression in myeloid cells and delays onset of Alzheimer's disease

    Get PDF
    A genome-wide survival analysis of 14,406 Alzheimer's disease (AD) cases and 25,849 controls identified eight previously reported AD risk loci and 14 novel loci associated with age at onset. Linkage disequilibrium score regression of 220 cell types implicated the regulation of myeloid gene expression in AD risk. The minor allele of rs1057233 (G), within the previously reported CELF1 AD risk locus, showed association with delayed AD onset and lower expression of SPI1 in monocytes and macrophages. SPI1 encodes PU.1, a transcription factor critical for myeloid cell development and function. AD heritability was enriched within the PU.1 cistrome, implicating a myeloid PU.1 target gene network in AD. Finally, experimentally altered PU.1 levels affected the expression of mouse orthologs of many AD risk genes and the phagocytic activity of mouse microglial cells. Our results suggest that lower SPI1 expression reduces AD risk by regulating myeloid gene expression and cell function

    Search for pair production of heavy vector-like quarks decaying into high-pT W bosons and top quarks in the lepton-plus-jets final state in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    A search is presented for the pair production of heavy vector-like B quarks, primarily targeting B quark decays into a W boson and a top quark. The search is based on 36.1 fb −1 of pp collisions at √s = 13 TeV recorded in 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. Data are analysed in the lepton-plus-jets final state, characterised by a high-transverse-momentum isolated electron or muon, large missing transverse momentum, and multiple jets, of which at least one is b -tagged. No significant deviation from the Standard Model expectation is observed. The 95% confidence level lower limit on the B mass is 1350 GeV assuming a 100% branching ratio to Wt. In the SU(2) singlet scenario, the lower mass limit is 1170 GeV. This search is also sensitive to a heavy vector-like B quark decaying into other final states (Zb and Hb ) and thus mass limits on B production are set as a function of the decay branching ratios. The 100% branching ratio limits are found to be also applicable to heavy vector-like X production, with charge +5/3, that decay into Wt
    corecore