1,062 research outputs found
High throughput <i>in situ</i> EXAFS instrumentation for the automatic characterization of materials and catalysts
An XAS data acquisition and control system for the in situ analysis of dynamic materials libraries under control of temperature and gaseous environment has been developed. It was integrated at the SRS in Daresbury, UK, beamline 9.3, using a Si (220) monochromator and a 13 element solid state Ge fluorescence detector. The core of the system is an intelligent X, Y, Z, θ positioning system coupled to multi-stream quadrupole mass spectrometry analysis (QMS). The system is modular and can be adapted to other synchrotron radiation beamlines. The entire software control was implemented using Labview and allows the scan of a variety of library sizes, in several positions, angles, gas compositions and temperatures with minimal operator intervention. The system was used for the automated characterization of a library of 91 catalyst precursors containing ternary combinations of Cu, Pt, and Au on γ-Al2O3, and for the evaluation and structural characterization of eight Au catalysts supported on A12O3 and TiO2. Mass spectrometer traces reveal conversion rate oscillations in 6wt % Au/γAl2O3 catalysts. The use of HT experimentation for in situ EXAFS studies demonstrates the feasibility and potential of HT in situ XAFS for synchrotron radiation studies
Despite NAIS concerns electronic identification use by cow-calf producers is increasing
The proposed U.S. National Animal Identification System has generated concerns
among producers relative to implementation
of the system. Many of these concerns stem
from the USDA’s Bovine Identification Working
Group’s recommendations to use electronic
Identification Plan Bovine Working Group has recommended radio frequency identification as the technology to individually identify cattle. Understanding and implementing an electronic identification system for cow-calf producers
is believed to be one of the greatest
challenges of implementing the National
Animal Identification System
Immobilisation of chromium in magnesium carbonate minerals
Hexavalent chromium (Cr6+) is a toxic carcinogenic pollutant that might be released by the mining and processing of ultramafic rocks and nickel laterites and which requires permanent removal from the contaminated biosphere. Ultramafic material can also serve as a feedstock for the sequestration of CO2 resulting from the growth of new minerals, raising the intriguing proposition of integrated sequestration of both pollutants, CO2 and chromium, into magnesium carbonates. Such a synergistic process downstream of ore recovery and mineral processing could be an elegant proposition for more sustainable utilisation and management of the Earth's resources. We have therefore carried out an experimental and microanalytical study to investigate potentially suitable carbonate minerals. Uptake of chromium in carbonate phases was determined, followed by identification of the crystalline phases and characterisation of the local structural environment around the incorporated chromium centres. The results suggest that neither nesquehonite nor hydromagnesite have the structural capacity to incorporate Cr6+ or Cr3+ significantly at room temperature. We therefore propose that further research into this technology should focus on laboratory assessments of other phases, such as layered double hyroxides, that have a natural structural capacity to uptake both chromium and CO2
The BIG protein distinguishes the process of CO2 -induced stomatal closure from the inhibition of stomatal opening by CO2
We conducted an infrared thermal imaging-based genetic screen to identify Arabidopsis mutants displaying aberrant stomatal behavior in response to elevated concentrations of CO2 . This approach resulted in the isolation of a novel allele of the Arabidopsis BIG locus (At3g02260) that we have called CO2 insensitive 1 (cis1). BIG mutants are compromised in elevated CO2 -induced stomatal closure and bicarbonate activation of S-type anion channel currents. In contrast with the wild-type, they fail to exhibit reductions in stomatal density and index when grown in elevated CO2 . However, like the wild-type, BIG mutants display inhibition of stomatal opening when exposed to elevated CO2 . BIG mutants also display wild-type stomatal aperture responses to the closure-inducing stimulus abscisic acid (ABA). Our results indicate that BIG is a signaling component involved in the elevated CO2 -mediated control of stomatal development. In the control of stomatal aperture by CO2 , BIG is only required in elevated CO2 -induced closure and not in the inhibition of stomatal opening by this environmental signal. These data show that, at the molecular level, the CO2 -mediated inhibition of opening and promotion of stomatal closure signaling pathways are separable and BIG represents a distinguishing element in these two CO2 -mediated responses
On the SigmaN cusp in the pp -> pK+Lambda reaction
Measurements of the reaction at = 2.28 GeV have
been carried out at COSY-TOF. In addition to the FSI and
resonance excitation effects a pronounced narrow structure is observed in the
Dalitz plot and in its projection on the -invariant mass. The
structure appears at the N threshold and is interpreted as
N cusp effect. The observed width of 20 MeV/ is substantially
broader than anticipated from previous inclusive measurements. Angular
distributions of this cusp structure are shown to be dissimilar to those in the
residual channel, but similar to those observed in the
channel
On the Production of Pairs in pp Collisions at 0.8 GeV
Data accumulated recently for the exclusive measurement of the reaction at a beam energy of 0.793 GeV using the COSY-TOF
spectrometer have been analyzed with respect to possible events from the reaction channel. The latter is expected to be the only
production channel, which contains no major contributions from
resonance excitation close to threshold and hence should be a good testing
ground for chiral dynamics in the production process. No single event
has been found, which meets all conditions for being a candidate for the reaction. This gives an upper limit for the cross section of
0.16 b (90% C.L.), which is more than an order of magnitude smaller than
the cross sections of the other two-pion production channels at the same
incident energy
A new measurement of the Collins and Sivers asymmetries on a transversely polarised deuteron target
New high precision measurements of the Collins and Sivers asymmetries of
charged hadrons produced in deep-inelastic scattering of muons on a
transversely polarised 6LiD target are presented. The data were taken in 2003
and 2004 with the COMPASS spectrometer using the muon beam of the CERN SPS at
160 GeV/c. Both the Collins and Sivers asymmetries turn out to be compatible
with zero, within the present statistical errors, which are more than a factor
of 2 smaller than those of the published COMPASS results from the 2002 data.
The final results from the 2002, 2003 and 2004 runs are compared with naive
expectations and with existing model calculations.Comment: 40 pages, 28 figure
The Deuteron Spin-dependent Structure Function g1d and its First Moment
We present a measurement of the deuteron spin-dependent structure function
g1d based on the data collected by the COMPASS experiment at CERN during the
years 2002-2004. The data provide an accurate evaluation for Gamma_1^d, the
first moment of g1d(x), and for the matrix element of the singlet axial
current, a0. The results of QCD fits in the next to leading order (NLO) on all
g1 deep inelastic scattering data are also presented. They provide two
solutions with the gluon spin distribution function Delta G positive or
negative, which describe the data equally well. In both cases, at Q^2 = 3
(GeV/c)^2 the first moment of Delta G is found to be of the order of 0.2 - 0.3
in absolute value.Comment: fits redone using MRST2004 instead of MRSV1998 for G(x), correlation
matrix adde
The COMPASS Experiment at CERN
The COMPASS experiment makes use of the CERN SPS high-intensitymuon and
hadron beams for the investigation of the nucleon spin structure and the
spectroscopy of hadrons. One or more outgoing particles are detected in
coincidence with the incoming muon or hadron. A large polarized target inside a
superconducting solenoid is used for the measurements with the muon beam.
Outgoing particles are detected by a two-stage, large angle and large momentum
range spectrometer. The setup is built using several types of tracking
detectors, according to the expected incident rate, required space resolution
and the solid angle to be covered. Particle identification is achieved using a
RICH counter and both hadron and electromagnetic calorimeters. The setup has
been successfully operated from 2002 onwards using a muon beam. Data with a
hadron beam were also collected in 2004. This article describes the main
features and performances of the spectrometer in 2004; a short summary of the
2006 upgrade is also given.Comment: 84 papes, 74 figure
Time-integrated luminosity recorded by the BABAR detector at the PEP-II e+e- collider
This article is the Preprint version of the final published artcile which can be accessed at the link below.We describe a measurement of the time-integrated luminosity of the data collected by the BABAR experiment at the PEP-II asymmetric-energy e+e- collider at the ϒ(4S), ϒ(3S), and ϒ(2S) resonances and in a continuum region below each resonance. We measure the time-integrated luminosity by counting e+e-→e+e- and (for the ϒ(4S) only) e+e-→μ+μ- candidate events, allowing additional photons in the final state. We use data-corrected simulation to determine the cross-sections and reconstruction efficiencies for these processes, as well as the major backgrounds. Due to the large cross-sections of e+e-→e+e- and e+e-→μ+μ-, the statistical uncertainties of the measurement are substantially smaller than the systematic uncertainties. The dominant systematic uncertainties are due to observed differences between data and simulation, as well as uncertainties on the cross-sections. For data collected on the ϒ(3S) and ϒ(2S) resonances, an additional uncertainty arises due to ϒ→e+e-X background. For data collected off the ϒ resonances, we estimate an additional uncertainty due to time dependent efficiency variations, which can affect the short off-resonance runs. The relative uncertainties on the luminosities of the on-resonance (off-resonance) samples are 0.43% (0.43%) for the ϒ(4S), 0.58% (0.72%) for the ϒ(3S), and 0.68% (0.88%) for the ϒ(2S).This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat à l’Energie Atomique and Institut National de Physique Nucléaire et de Physiquedes Particules (France), the Bundesministerium für Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Ciencia e Innovación (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union) and the A.P. Sloan Foundation (USA)
- …