164 research outputs found

    Optical properties of polystyrene-ZnO nanocomposite scattering layer to improve light extraction in organic light-emitting diode

    Get PDF
    In this work, experimental measurements on polystyrene-ZnO nanocomposite scattering films and on organic light-emitting device with and without the scattering layers are presented. The results are also compared with Henyey-Greenstein radiative-transfer model to narrow down the parameters that can be important in the identification of more suitable scattering layers. As a result, an increase of efficiency of about 30% has been obtained that it can be translated in 60% of outcoupled light in respect to the total generated amount

    Photonic crystal electrode to be used in organic LED structures

    Get PDF
    In this work we report the possibility to obtain a high refractive index grid anode directly on the substrate surface by fabricating a relatively large-area photonic crystal (PC) structure using the combinations of electron beam lithography (EBL) and focused ion beam (FIB) techniques. The performance of the realized photonic crystal (PC) structure were enhanced by milling the ITO layer until the glass substrate and by removing the further refractive index jump between the PC and the substrate. The good properties of highly conductive poly(3,4 ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), ensured a continuous path for the current and a high refractive index jump for the PC structure by filling the holes in the PC structure

    A novel thermal plasma-based technology for submicronic silicon carbide production at pilot scale

    Get PDF
    Abstract Submicronic powder of silicon carbide was synthesized in a pilot novel radiofrequency plasma torch reactor. The precursors were pyrolysis char and silica powders both with micrometric size. The mass rate of the precursor powder varied in the range 600-2500 g/h. The maximum test time was approximately 3 h. With the goal to increase the process yield, several technical measures were implemented. Silicon carbide yield was above 70 wt% when the plasma flame was confined by a tube that prolonged the residence time of the reactants at the useful temperature for the advancement of reaction. The silicon carbide was characterized by XRD, SEM, and DLS. Both α and β-crystalline phases were detected

    Photonic crystal electrode to be used in organic LED structures

    Get PDF
    In this work we report the possibility to obtain a high refractive index grid anode directly on the substrate surface by fabricating a relatively large-area photonic crystal (PC) structure using the combinations of electron beam lithography (EBL) and focused ion beam (FIB) techniques. The performance of the realized photonic crystal (PC) structure were enhanced by milling the ITO layer until the glass substrate and by removing the further refractive index jump between the PC and the substrate. The good properties of highly conductive poly(3,4 ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), ensured a continuous path for the current and a high refractive index jump for the PC structure by filling the holes in the PC structure

    The effect of droplet ejection frequency on the dimensions of inkjet-etched micro-via holes in poly4(-vinyl phenol) thin films

    Get PDF
    This article was published in the Journal of Physics D: Applied Physics [© IOP Publishing Ltd] and the definitive version is available at: http://dx.doi.org/10.1088/0022-3727/45/12/125303The relationship between the size of inkjet-etched via-holes produced in poly4(-vinyl phenol) thin films and the number of ethanol drops dispensed was established for a range of droplet ejection frequencies. The physical mechanism underlying this relationship is proposed and the dependence of the development of via-hole dimensions on the droplet ejection frequency is believed to be attributable to the extent of evaporation of the solvent between two consecutive drop dispenses. The results indicate complete penetration of the via-holes through the polymer layer when produced at low droplet ejection frequencies. Electroplating was used to deposit Cu into the created holes to further confirm the absence of polymer residue at low frequencies. A threshold frequency, under which no via-hole enlargement occurs, has been found. The study systematically focuses on the influence of droplet ejection frequency on the size of the inkjet-etched via-holes versus the number of droplets used in poly4(-vinyl phenol) dielectric thin films for printed electronics application

    Standalone vertex finding in the ATLAS muon spectrometer

    Get PDF
    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at √s = 7 TeV collected with the ATLAS detector at the LHC during 2011

    Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC

    Get PDF
    Measurements are presented of production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs, H →γ γ, H → Z Z∗ →4l and H →W W∗ →lνlν. The results are based on the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV, corresponding to an integrated luminosity of about 25 fb−1. Evidence for Higgs boson production through vector-boson fusion is reported. Results of combined fits probing Higgs boson couplings to fermions and bosons, as well as anomalous contributions to loop-induced production and decay modes, are presented. All measurements are consistent with expectations for the Standard Model Higgs boson

    Measurement of the top quark pair cross section with ATLAS in pp collisions at √s=7 TeV using final states with an electron or a muon and a hadronically decaying τ lepton

    Get PDF
    A measurement of the cross section of top quark pair production in proton-proton collisions recorded with the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of 7 TeV is reported. The data sample used corresponds to an integrated luminosity of 2.05 fb -1. Events with an isolated electron or muon and a τ lepton decaying hadronically are used. In addition, a large missing transverse momentum and two or more energetic jets are required. At least one of the jets must be identified as originating from a b quark. The measured cross section, σtt-=186±13(stat.)±20(syst.)±7(lumi.) pb, is in good agreement with the Standard Model prediction

    Measurement of the top quark-pair production cross section with ATLAS in pp collisions at \sqrt{s}=7\TeV

    Get PDF
    A measurement of the production cross-section for top quark pairs(\ttbar) in pppp collisions at \sqrt{s}=7 \TeV is presented using data recorded with the ATLAS detector at the Large Hadron Collider. Events are selected in two different topologies: single lepton (electron ee or muon μ\mu) with large missing transverse energy and at least four jets, and dilepton (eeee, μμ\mu\mu or eμe\mu) with large missing transverse energy and at least two jets. In a data sample of 2.9 pb-1, 37 candidate events are observed in the single-lepton topology and 9 events in the dilepton topology. The corresponding expected backgrounds from non-\ttbar Standard Model processes are estimated using data-driven methods and determined to be 12.2±3.912.2 \pm 3.9 events and 2.5±0.62.5 \pm 0.6 events, respectively. The kinematic properties of the selected events are consistent with SM \ttbar production. The inclusive top quark pair production cross-section is measured to be \sigmattbar=145 \pm 31 ^{+42}_{-27} pb where the first uncertainty is statistical and the second systematic. The measurement agrees with perturbative QCD calculations.Comment: 30 pages plus author list (50 pages total), 9 figures, 11 tables, CERN-PH number and final journal adde

    Hunt for new phenomena using large jet multiplicities and missing transverse momentum with ATLAS in 4.7 fb−1 of √s=7 TeV proton-proton collisions

    Get PDF
    Results are presented of a search for new particles decaying to large numbers of jets in association with missing transverse momentum, using 4.7 fb−1 of pp collision data at s√=7TeV collected by the ATLAS experiment at the Large Hadron Collider in 2011. The event selection requires missing transverse momentum, no isolated electrons or muons, and from ≥6 to ≥9 jets. No evidence is found for physics beyond the Standard Model. The results are interpreted in the context of a MSUGRA/CMSSM supersymmetric model, where, for large universal scalar mass m 0, gluino masses smaller than 840 GeV are excluded at the 95% confidence level, extending previously published limits. Within a simplified model containing only a gluino octet and a neutralino, gluino masses smaller than 870 GeV are similarly excluded for neutralino masses below 100 GeV
    corecore