383 research outputs found

    An economic insight into additive manufacturing system implementation

    Get PDF
    With an ever growing diffusion of Additive Manufacturing (AM) system in industrial and commercial level, as well as the direct and indirect dynamics which are being introduced resulting from its inclusion as a possible production technology on companies’ portfolio, the need to reconfigure production system and adapt the production strategy becomes even more relevant than before. There are several studies which have emphasized on the importance of a paradigm shift in order to exploit advantages of AM, not only considering changes within design and functionality of the product, but also concerning AM’s impact on the entire value chain (re)configuration. Thus, it is of crucial importance to take into consideration that for this shift to be feasible and manageable, there is a need to include both technical and managerial aspects of manufacturing. This work proposes an economic insight in order to provide a guideline for the proper evaluation of AM system implementation. © IFIP International Federation for Information Processing 2015

    Metabolomic analysis revealed differences between bovine cloned embryos with contrasting development abilities

    Get PDF
    Metabolomic analysis revealed differences between bovine cloned embryos with contrasting development abilities. 31. Colloque Scientifique de l'AET

    Recognition of vitamin B metabolites by mucosal-associated invariant T cells

    Get PDF
    The mucosal-associated invariant T-cell antigen receptor (MAIT TCR) recognizes MR1 presenting vitamin B metabolites. Here we describe the structures of a human MAIT TCR in complex with human MR1 presenting a non-stimulatory ligand derived from folic acid and an agonist ligand derived from a riboflavin metabolite. For both vitamin B antigens, the MAIT TCR docks in a conserved manner above MR1, thus acting as an innate-like pattern recognition receptor. The invariant MAIT TCR a-chain usage is attributable to MR1-mediated interactions that prise open the MR1 cleft to allow contact with the vitamin B metabolite. Although the non-stimulatory antigen does not contact the MAIT TCR, the stimulatory antigen does. This results in a higher affinity of the MAIT TCR for a stimulatory antigen in comparison with a non-stimulatory antigen. We formally demonstrate a structural basis for MAIT TCR recognition of vitamin B metabolites, while illuminating how TCRs recognize microbial metabolic signatures

    Measurement of the Isolated Photon Cross Section in p-pbar Collisions at sqrt{s}=1.96 TeV

    Get PDF
    The cross section for the inclusive production of isolated photons has been measured in p anti-p collisions at sqrt{s}=1.96 TeV with the D0 detector at the Fermilab Tevatron Collider. The photons span transverse momenta 23 to 300 GeV and have pseudorapidity |eta|<0.9. The cross section is compared with the results from two next-to-leading order perturbative QCD calculations. The theoretical predictions agree with the measurement within uncertainties.Comment: 7 pages, 5 figures, submitted to Phys.Lett.

    Measurement of isolated photon production in pp and PbPb collisions at sqrt(sNN) = 2.76 TeV

    Get PDF
    Isolated photon production is measured in proton-proton and lead-lead collisions at nucleon-nucleon centre-of-mass energies of 2.76 TeV in the pseudorapidity range |eta|<1.44 and transverse energies ET between 20 and 80 GeV with the CMS detector at the LHC. The measured ET spectra are found to be in good agreement with next-to-leading-order perturbative QCD predictions. The ratio of PbPb to pp isolated photon ET-differential yields, scaled by the number of incoherent nucleon-nucleon collisions, is consistent with unity for all PbPb reaction centralities.Comment: Submitted to Physics Letters

    A stable explant culture of HER2/neu invasive carcinoma supported by alpha-Smooth Muscle Actin expressing stromal cells to evaluate therapeutic agents

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To gain a better understanding of the effects of therapeutic agents on the tumor microenvironment in invasive cancers, we developed a co-culture model from an invasive lobular carcinoma. Tumor cells expressing HER2/neu organize in nests surrounded by alpha-Smooth Muscle Actin (α-SMA) expressing tumor stroma to resemble the morphology of an invading tumor. This co-culture, Mammary Adenocarcinoma Model (MAM-1) maintains a 1:1 ratio of HER2/neu positive tumor cells to α-SMA-reactive stromal cells and renews this configuration for over 20 passages in vitro.</p> <p>Methods</p> <p>We characterized the cellular elements of the MAM-1 model by microarray analysis, and immunocytochemistry. We developed flow cytometric assays to evaluate the relative responses of the tumor and stroma to the tyrosine kinase inhibitor, Iressa.</p> <p>Results</p> <p>The MAM-1 gene expression profile contains clusters that represent the ErbB-2 breast cancer signature and stroma-specific clusters associated with invasive breast cancers. The stability of this model and the ability to antigenically label the tumor and stromal fractions allowed us to determine the specificity of Iressa, a receptor tyrosine kinase inhibitor, for targeting the tumor cell population. Treatment resulted in a selective dose-dependent reduction in phospho-pMEK1/2 and pp44/42MAPK in tumor cells. Within 24 h the tumor cell fraction was reduced 1.9-fold while the stromal cell fraction increased >3-fold, consistent with specific reductions in phospho-pp44/42 MAPK, MEK1/2 and PCNA in tumor cells and reciprocal increases in the stromal cells. Erosion of the tumor cell nests and augmented growth of the stromal cells resembled a fibrotic response.</p> <p>Conclusion</p> <p>This model demonstrates the specificity of Iressa for HER2/neu expressing tumor cells versus the tumor associated myofibroblasts and is appropriate for delineating effects of therapy on signal transduction in the breast tumor microenvironment and improving strategies that can dually or differentially target the tumor and stromal elements in the microenvironment.</p

    Logical Development of the Cell Ontology

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Cell Ontology (CL) is an ontology for the representation of <it>in vivo </it>cell types. As biological ontologies such as the CL grow in complexity, they become increasingly difficult to use and maintain. By making the information in the ontology computable, we can use automated reasoners to detect errors and assist with classification. Here we report on the generation of computable definitions for the hematopoietic cell types in the CL.</p> <p>Results</p> <p>Computable definitions for over 340 CL classes have been created using a genus-differentia approach. These define cell types according to multiple axes of classification such as the protein complexes found on the surface of a cell type, the biological processes participated in by a cell type, or the phenotypic characteristics associated with a cell type. We employed automated reasoners to verify the ontology and to reveal mistakes in manual curation. The implementation of this process exposed areas in the ontology where new cell type classes were needed to accommodate species-specific expression of cellular markers. Our use of reasoners also inferred new relationships within the CL, and between the CL and the contributing ontologies. This restructured ontology can be used to identify immune cells by flow cytometry, supports sophisticated biological queries involving cells, and helps generate new hypotheses about cell function based on similarities to other cell types.</p> <p>Conclusion</p> <p>Use of computable definitions enhances the development of the CL and supports the interoperability of OBO ontologies.</p

    Benign mammary epithelial cells enhance the transformed phenotype of human breast cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent research has yielded a wealth of data underscoring the key role of the cancer microenvironment, especially immune and stromal cells, in the progression of cancer and the development of metastases. However, the role of adjacent benign epithelial cells, which provide initial cell-cell contacts with cancer cells, in tumor progression has not been thoroughly examined. In this report we addressed the question whether benign MECs alter the transformed phenotype of human breast cancer cells.</p> <p>Methods</p> <p>We used both <it>in vitro </it>and <it>in vivo </it>co-cultivation approaches, whereby we mixed GFP-tagged MCF-10A cells (G2B-10A), as a model of benign mammary epithelial cells (MECs), and RFP-tagged MDA-MB-231-TIAS cells (R2-T1AS), as a model of breast cancer cells.</p> <p>Results</p> <p>The <it>in vitro </it>studies showed that G2B-10A cells increase the colony formation of R2-T1AS cells in both soft agar and clonogenicity assays. Conditioned media derived from G2B-10A cells enhanced colony formation of R2-T1AS cells, whereas prior paraformaldehyde (PFA) fixation of G2B-10A cells abrogated this enhancement effect. Moreover, two other models of benign MECs, MCF-12A and HuMECs, also enhanced R2-T1AS colony growth in soft agar and clonogenicity assays. These data reveal that factors secreted by benign MECs are responsible for the observed enhancement of the R2-T1AS transformed phenotype. To determine whether G2B-10A cells enhance the tumorigenic growth of co-injected R2-T1AS cells <it>in vivo</it>, we used the nude mouse xenograft assay. Co-injecting R2-T1AS cells with G2B-10A cells ± PFA-fixation, revealed that G2B-10A cells promoted a ~3-fold increase in tumor growth, irrespective of PFA pre-treatment. These results indicate that soluble factors secreted by G2B-10A cells play a less important role in promoting R2-T1AS tumorigenesis <it>in vivo</it>, and that additional components are operative in the nude mouse xenograft assay. Finally, using array analysis, we found that both live and PFA-fixed G2B-10A cells induced R2-T1AS cells to secrete specific cytokines (IL-6 and GM-CSF), suggesting that cell-cell contact activates R2-T1AS cells.</p> <p>Conclusions</p> <p>Taken together, these data shift our understanding of adjacent benign epithelial cells in the cancer process, from passive, noncontributory cells to an active and tumor-promoting vicinal cell population that may have significant effects early, when benign cells outnumber malignant cells.</p

    Endosomal MR1 Trafficking Plays a Key Role in Presentation of Mycobacterium tuberculosis Ligands to MAIT Cells

    Get PDF
    Mucosal-Associated Invariant T (MAIT) cells, present in high frequency in airway and other mucosal tissues, have Th1 effector capacity positioning them to play a critical role in the early immune response to intracellular pathogens, including Mycobacterium tuberculosis (Mtb). MR1 is a highly conserved Class I-like molecule that presents vitamin B metabolites to MAIT cells. The mechanisms for loading these ubiquitous small molecules are likely to be tightly regulated to prevent inappropriate MAIT cell activation. To define the intracellular localization of MR1, we analyzed the distribution of an MR1-GFP fusion protein in antigen presenting cells. We found that MR1 localized to endosomes and was translocated to the cell surface upon addition of 6-formyl pterin (6-FP). To understand the mechanisms by which MR1 antigens are presented, we used a lentiviral shRNA screen to identify trafficking molecules that are required for the presentation of Mtb antigen to HLA-diverse T cells. We identified Stx18, VAMP4, and Rab6 as trafficking molecules regulating MR1-dependent MAIT cell recognition of Mtb-infected cells. Stx18 but not VAMP4 or Rab6 knockdown also resulted in decreased 6-FP-dependent surface translocation of MR1 suggesting distinct pathways for loading of exogenous ligands and intracellular mycobacterially-derived ligands. We postulate that endosome-mediated trafficking of MR1 allows for selective sampling of the intracellular environment.Career Development Award: (#IK2 CX000538); U.S. Department of Veterans Affairs Clinical Sciences Research and Development Program (MJH); U.S.Department of Veterans Affairs Biomedical Laboratory Research and Development Program (DML) Merit Award: (#I01 BX000533); American Lung Association: (RT-350058)
    corecore