3,482 research outputs found

    Space-Time Transfinite Interpolation of Volumetric Material Properties

    Get PDF
    The paper presents a novel technique based on extension of a general mathematical method of transfinite interpolation to solve an actual problem in the context of a heterogeneous volume modelling area. It deals with time-dependent changes to the volumetric material properties (material density, colour and others) as a transformation of the volumetric material distributions in space-time accompanying geometric shape transformations such as metamorphosis. The main idea is to represent the geometry of both objects by scalar fields with distance properties, to establish in a higher-dimensional space a time gap during which the geometric transformation takes place, and to use these scalar fields to apply the new space-time transfinite interpolation to volumetric material attributes within this time gap. The proposed solution is analytical in its nature, does not require heavy numerical computations and can be used in real-time applications. Applications of this technique also include texturing and displacement mapping of time-variant surfaces, and parametric design of volumetric microstructures

    A Survey of Ocean Simulation and Rendering Techniques in Computer Graphics

    Get PDF
    This paper presents a survey of ocean simulation and rendering methods in computer graphics. To model and animate the ocean's surface, these methods mainly rely on two main approaches: on the one hand, those which approximate ocean dynamics with parametric, spectral or hybrid models and use empirical laws from oceanographic research. We will see that this type of methods essentially allows the simulation of ocean scenes in the deep water domain, without breaking waves. On the other hand, physically-based methods use Navier-Stokes Equations (NSE) to represent breaking waves and more generally ocean surface near the shore. We also describe ocean rendering methods in computer graphics, with a special interest in the simulation of phenomena such as foam and spray, and light's interaction with the ocean surface

    Personalized Cinemagraphs using Semantic Understanding and Collaborative Learning

    Full text link
    Cinemagraphs are a compelling way to convey dynamic aspects of a scene. In these media, dynamic and still elements are juxtaposed to create an artistic and narrative experience. Creating a high-quality, aesthetically pleasing cinemagraph requires isolating objects in a semantically meaningful way and then selecting good start times and looping periods for those objects to minimize visual artifacts (such a tearing). To achieve this, we present a new technique that uses object recognition and semantic segmentation as part of an optimization method to automatically create cinemagraphs from videos that are both visually appealing and semantically meaningful. Given a scene with multiple objects, there are many cinemagraphs one could create. Our method evaluates these multiple candidates and presents the best one, as determined by a model trained to predict human preferences in a collaborative way. We demonstrate the effectiveness of our approach with multiple results and a user study.Comment: To appear in ICCV 2017. Total 17 pages including the supplementary materia

    Development of a novel 3D simulation modelling system for distributed manufacturing

    Get PDF
    This paper describes a novel 3D simulation modelling system for supporting our distributed machine design and control paradigm with respect to simulating and emulating machine behaviour on the Internet. The system has been designed and implemented using Java2D and Java3D. An easy assembly concept of drag-and-drop assembly has been realised and implemented by the introduction of new connection features (unified interface assembly features) between two assembly components (modules). The system comprises a hierarchical geometric modeller, a behavioural editor, and two assemblers. During modelling, designers can combine basic modelling primitives with general extrusions and integrate CAD geometric models into simulation models. Each simulation component (module) model can be visualised and animated in VRML browsers. It is reusable. This makes machine design re-configurable and flexible. A case study example is given to support our conclusions

    Doctor of Philosophy

    Get PDF
    dissertationReal-time global illumination is the next frontier in real-time rendering. In an attempt to generate realistic images, games have followed the film industry into physically based shading and will soon begin integrating global illumination techniques. Traditional methods require too much memory and too much time to compute for real-time use. With Modular and Delta Radiance Transfer we precompute a scene-independent, low-frequency basis that allows us to calculate complex indirect lighting calculations in a much lower dimensional subspace with a reduced memory footprint and real-time execution. The results are then applied as a light map on many different scenes. To improve the low frequency results, we also introduce a novel screen space ambient occlusion technique that allows us to generate a smoother result with fewer samples. These three techniques, low and high frequency used together, provide a viable indirect lighting solution that can be run in milliseconds on today's hardware, providing a useful new technique for indirect lighting in real-time graphics

    Sparse Volumetric Deformation

    Get PDF
    Volume rendering is becoming increasingly popular as applications require realistic solid shape representations with seamless texture mapping and accurate filtering. However rendering sparse volumetric data is difficult because of the limited memory and processing capabilities of current hardware. To address these limitations, the volumetric information can be stored at progressive resolutions in the hierarchical branches of a tree structure, and sampled according to the region of interest. This means that only a partial region of the full dataset is processed, and therefore massive volumetric scenes can be rendered efficiently. The problem with this approach is that it currently only supports static scenes. This is because it is difficult to accurately deform massive amounts of volume elements and reconstruct the scene hierarchy in real-time. Another problem is that deformation operations distort the shape where more than one volume element tries to occupy the same location, and similarly gaps occur where deformation stretches the elements further than one discrete location. It is also challenging to efficiently support sophisticated deformations at hierarchical resolutions, such as character skinning or physically based animation. These types of deformation are expensive and require a control structure (for example a cage or skeleton) that maps to a set of features to accelerate the deformation process. The problems with this technique are that the varying volume hierarchy reflects different feature sizes, and manipulating the features at the original resolution is too expensive; therefore the control structure must also hierarchically capture features according to the varying volumetric resolution. This thesis investigates the area of deforming and rendering massive amounts of dynamic volumetric content. The proposed approach efficiently deforms hierarchical volume elements without introducing artifacts and supports both ray casting and rasterization renderers. This enables light transport to be modeled both accurately and efficiently with applications in the fields of real-time rendering and computer animation. Sophisticated volumetric deformation, including character animation, is also supported in real-time. This is achieved by automatically generating a control skeleton which is mapped to the varying feature resolution of the volume hierarchy. The output deformations are demonstrated in massive dynamic volumetric scenes

    Implicit Decals: Interactive Editing of Repetitive Patterns on Surfaces

    Get PDF
    11 pagesInternational audienceTexture mapping is an essential component for creating 3D models and is widely used in both the game and the movie industries. Creating texture maps has always been a complex task and existing methods carefully balance flexibility with ease of use. One difficulty in using texturing is the repeated placement of individual textures over larger areas. In this paper we propose a method which uses decals to place images onto a model. Our method allows the decals to compete for space and to deform as they are being pushed by other decals. A spherical field function is used to determine the position and the size of each decal and the deformation applied to fit the decals. The decals may span multiple objects with heterogeneous representations. Our method does not require an explicit parameterization of the model. As such, varieties of patterns including repeated patterns like rocks, tiles, and scales can be mapped. We have implemented the method using the GPU where placement, size, and orientation of thousands of decals are manipulated in real time

    Management and display of four-dimensional environmental data sets using McIDAS

    Get PDF
    Over the past four years, great strides have been made in the areas of data management and display of 4-D meteorological data sets. A survey was conducted of available and planned 4-D meteorological data sources. The data types were evaluated for their impact on the data management and display system. The requirements were analyzed for data base management generated by the 4-D data display system. The suitability of the existing data base management procedures and file structure were evaluated in light of the new requirements. Where needed, new data base management tools and file procedures were designed and implemented. The quality of the basic 4-D data sets was assured. The interpolation and extrapolation techniques of the 4-D data were investigated. The 4-D data from various sources were combined to make a uniform and consistent data set for display purposes. Data display software was designed to create abstract line graphic 3-D displays. Realistic shaded 3-D displays were created. Animation routines for these displays were developed in order to produce a dynamic 4-D presentation. A prototype dynamic color stereo workstation was implemented. A computer functional design specification was produced based on interactive studies and user feedback

    Implicit Brushes for Stylized Line-based Rendering

    Get PDF
    International audienceWe introduce a new technique called Implicit Brushes to render animated 3D scenes with stylized lines in real-time with temporal coherence. An Implicit Brush is defined at a given pixel by the convolution of a brush footprint along a feature skeleton; the skeleton itself is obtained by locating surface features in the pixel neighborhood. Features are identified via image-space ïŹtting techniques that not only extract their location, but also their proïŹle, which permits to distinguish between sharp and smooth features. ProïŹle parameters are then mapped to stylistic parameters such as brush orientation, size or opacity to give rise to a wide range of line-based styles
    • 

    corecore