
Implicit Decals: Interactive Editing of Repetitive

Patterns on Surfaces

Erwin De Groot, Brian Wyvill, Löıc Barthe, Ahmad Nasri, Paul Lalonde

To cite this version:

Erwin De Groot, Brian Wyvill, Löıc Barthe, Ahmad Nasri, Paul Lalonde. Implicit Decals:
Interactive Editing of Repetitive Patterns on Surfaces. Computer Graphics Forum, Wiley,
2014. <hal-00876004>

HAL Id: hal-00876004

https://hal.archives-ouvertes.fr/hal-00876004

Submitted on 23 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00876004


Volume 0 (1981), Number 0 pp. 1–11 COMPUTER GRAPHICS forum

Implicit Decals: Interactive Editing of Repetitive Patterns on

Surfaces

Erwin de Groot1,2, Brian Wyvill3,4, Loïc Barthe5, Ahmad Nasri6, Paul Lalonde7

1University of Calgary (Canada), 2 ASML, 3University of Victoria (Canada), 4University of Bath (UK),
5IRIT, Université de Toulouse (France), 6American University of Beirut (Lebanon), 7Microsoft Canada

Abstract

Texture mapping is an essential component for creating 3D models and is widely used in both the game and the

movie industries. Creating texture maps has always been a complex task and existing methods carefully balance

flexibility with ease of use. One difficulty in using texturing is the repeated placement of individual textures over

larger areas. In this paper we propose a method which uses decals to place images onto a model. Our method

allows the decals to compete for space and to deform as they are being pushed by other decals. A spherical

field function is used to determine the position and the size of each decal and the deformation applied to fit the

decals. The decals may span multiple objects with heterogeneous representations. Our method does not require

an explicit parameterization of the model. As such, varieties of patterns including repeated patterns like rocks,

tiles, and scales can be mapped. We have implemented the method using the GPU where placement, size, and

orientation of thousands of decals are manipulated in real time.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Computer Graphics—
Three-Dimensional Graphics and Realism. Color, shading, shadowing, and texture

1. Introduction

For many computer graphics applications, such as interac-
tive computer games and animation, 3D objects appearance
is defined by 2D textures [BN76, HH90, YKH10]. Most tex-
turing tools require the determination of an appropriate pa-

rameterization and atlas for polygonal or implicit surfaces
where no natural parameterization exists [Lév01, ZPKG02,
KSG03, ZWT∗05]. Creating such a parameterization by
hand is very time consuming and automatic creation suffers
restrictions or compromises the quality of the result, espe-

c© 2013 The Author(s)
Computer Graphics Forum c© 2013 The Eurographics Association and Blackwell Publish-
ing Ltd. Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ,
UK and 350 Main Street, Malden, MA 02148, USA.



E. de Groot et al. / Implicit Decals

cially in the presence of large distortions. As a consequence,
the editing and the placement of textures on arbitrary sur-
faces remains a tedious task requiring artists to spend much
time to achieve a desired result.

While it is difficult to limit distortions in the parametrization
for large textures, it becomes easier when they are composed
of repetitive patterns such as dragon scales or giraffe freckles
(see Teaser). Large textures are then decomposed in a set of
small tiles, often called decals [Ped95], that are individually
positioned and mapped with a local parametrization on the
surface. These small surface elements can be parametrized
with very low distortions using exponential maps [SGW06].

However, to be practical for the user, a very large number of
decals must be positioned and displaced interactively, which
is not feasible with current techniques. A second useful func-
tionality would be the ability to define textures across mul-
tiple objects which may in addition use different represen-
tations (such as meshes, point-set-surfaces and implicit sur-
faces).

To this end, we propose the use of a decaling interface whose
models are free of global parametrization, as suggested by
Schmidt et al. [SGW06]. Our method for defining a local pa-
rameterization is not bound to the underlying geometry, typi-
cally meshes or parametric representations. We use a particle
system to automatically place cellular pattern elements (de-
cals) over the surface of one or more objects. Subsequently,
real-time interaction is possible to fine tune each element’s
deformation and placement. Fast local parametrization is ob-
tained under the assumption that for small decals, fine dis-
tortion control is not required. The use of the Euclidean dis-
tance between a surface point and the associated decal cen-
tre (i.e. the particle) is then sufficient, thus avoiding the far
more expensive computation of the geodesic distance along
the surface. This statement is validated by several examples
illustrated in the Teaser and in Figures 13 and 9. Very fast
parametrization computation is then performed via the use
of spherical field functions, centred on particles. This has
also the advantage of enabling the application of field defor-
mations and implicit composition operators in order to con-
trol the shape of decals and the way they cover the surface
area. These field deformations allow the automatic adjust-
ment of the textures when decals overlap such as the eyes
of the dragon and the giraffe in the teaser, or when they
compete for space as is the case for the dragon scales and
the giraffe freckles. This is especially important in real-time
interactive graphics applications, where decals representing
pattern elements are mostly required to be similar but not
identical, as shown in our examples.

The main contributions of our method are:

• The very fast computation of local parameterizations
based on the Euclidean distance over a model. This local
parametrization can be computed at arbitrary resolution

and is independent of the underlying geometric represen-
tation.

• The technique is simple enough to implement in a pixel
shader, without modifying the graphics pipeline nor lim-
iting the use of other shaders, and it allows thousands of
decals to be placed and edited interactively.

• Our decals can compete for space and deform when they
interact with nearby decals.

• Surface connectivity is not required thus a decal can be
placed across multiple objects or across gaps in an object
without changing the object representation.

This paper is organized as follows. After presenting the
related works on texturing with decals (section 2), we
explain how decals can be distributed over surfaces and
their position edited (section 3). We then present our local
parametrization system with its deformations when it popu-
lates a surface (section 4), before detailing implementation
(section 5) and discussing our results (sections 7 and 8).

2. Previous work

A standard way of defining object appearance, or material
information, is the creation of a single texture or a set of
large textures. Textures are in general 2D or 3D. When 3D
textures are used, the material is defined for all points in the
3D space in which the object is embedded. Each point of a
surface is directly parametrized by its coordinates and while
textures can be defined by repeated features, as done by Du
et al. [DHM13], the direct control of the texture appearance
on the surface remains very difficult. We rather focus on 2D
textures that are directly defined over the surface.

There are several approaches to texture design but interactive
painting tools [HH90, YKH10] have steered texture design
interfaces. In these approaches the parameter space is either
already explicit in the object representation, or is piece-wise
approximated as necessary to maintain detail in the image as
it is painted incrementally.

Solid procedural textures [Per85, Pea85, Wor96] are gener-
ated using noise functions or other texture basis functions.
They can create many patterns, but it can be time consuming
to find the right parameters and it is not possible to manipu-
late local features.

Another type of texture mapping interface is constrained pa-
rameterization [Lév01], [KSG03]. Here a set of constraints
are manually specified between the desired texture image
and the surface. Global optimization algorithms are then ap-
plied to map the image onto the surface such as to satisfy the
constraints and minimize a given distortion metric [GY03].
Recent advances support point sets [ZPKG02], and atlas
generation from multiple images [ZWT∗05]. These systems
do not address the general problem of texture design, as the
desired 2D images are assumed to already exist.

A visually related area of work, though very different in

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.



E. de Groot et al. / Implicit Decals

implementation, is the field of texture synthesis. Wei and
Levoy’s work exemplifies this approach [WL01]. Starting
from examplar textures, they synthesize a new texture over
a given object by searching for the best-pixel fit in lo-
cal neighbourhoods. Similar techniques are presented by
Turk [Tur01], Efros and Freeman [EF01] and Lefebvre and
Hoppe [LH06]. These techniques must all maintain a lo-
cal or global parameterization for the object as well as the
full-size generated texture, making the techniques applicable
to pre-processing more than interactive editing. In fairness,
these methods are expected to be used when a regular tiling
of decals is inadequate to capture the desired variation in
the semi-tiled textures. Turk [Tur91] proposes a technique
synthesizing a texture with repeated patterns from points
regularly sampled over the surface and a reaction-diffusion
mechanism. Even though no parametrization is required, this
approach does not support interactive editing and it is limited
in the variety of patterns it can produce.

The direct manipulation over the surface we are looking for
is efficiently done using a texturing interface introduced by
Pedersen [Ped95], called a ‘decaling interface’, which com-
bines aspects of both painting and constraint tools. In this
approach the metaphor is that of 2D images affixed to the
surface. Pedersen dubs these ‘patchinos’, but they are now
more usually called decals. Decals are treated as independent
scene elements which are constrained to lie on a surface, but
may otherwise be interactively manipulated. Because a sim-
ple mapping exists between the image and the surface, 2D
image processing tools can be trivially implemented. Decals
are composited in real-time, mimicking 2D image composit-
ing [PD84] and vector graphics interfaces. This approach al-
lows artists to interact with surface texture directly, using fa-
miliar 2D methods and tools. One of the biggest benefits of
decaling is that it allows for easy re-use of 2D images in tex-
ture design. When combined with a digital camera or image
database, realistic textures can be created very quickly. Con-
strained parameterization can also be used to apply decals,
however the human interface of [Ped95] is difficult to imple-
ment because of the problem of simultaneously moving all
of the constraints across the surface.

An interactive decaling system based on hardware-
accelerated octree textures is described in [LHN05]. Ba-
sic interactive positioning and blending composition is sup-
ported. Like 3D painting, decals are applied using planar
projection. In this method image sprites can be combined
to produce blended sprites (decals). In our work we use the
implicit field to apply more complex operations such as de-
forming decals so that, for example, a snake’s scales are not
uniform but compete for space. Similarly, Autodesk Alias
products also supports application of decals using planar
projection, as well as conformal decals that rely on the sur-
face geometry [SGW06].

Schmidt et al. [SGW06] build on the decaling idea and ad-
dress many of the problems of Pedersen’s interface. In this

work a local exponential map parameterization is generated
from a single point and geodesic radius, that serves to sim-
plify the user interface and support automatic creation of de-
cals. The system can be applied to any point set, and pro-
vides a nice tool for texturing animated implicit surfaces.
It can preserve texturing even in the presence of topologi-
cal changes. Our ‘implicit decal’ approach described here is
similar in spirit but instead of deriving the local parameteri-
zation from an exponential map that is based on the geome-
try of the surface, we introduce an implicit support surface.
This gives us most of the properties of Schmidt’s system plus
the advantages listed above.

Tiletrees [LD07] solve the problem of texturing onto arbi-
trary surfaces but the octree must be regenerated if there is a
small change in the model. In our system if a small change
is made to the model, decals can be projected back onto the
surface and may change position but the general appearance
of the decal will not change.

3. Decal placement

Decal placement consists of positioning particles over the
surface whose centre point will serve as centre for the field
functions fi : R3 → [0,1] from which a local parametriza-
tion is derived for the decal. Two strategies can be used:
manual or automatic placement. Manual placement of par-
ticles is done by selecting positions on the surface of the
model (see left image of Figure 1). Even though this an
easy task, it takes a long time to texture complex surfaces
or surfaces that require a large number of decals. A tool to
automatically texture the whole surface greatly reduces the
modelling time. With our texturing method such tools are
easily created. All our method needs for input is a list of
particles (position, size and orientation). In our system this
input is generated by scattering particles [WH94] onto the
surface of the model and have them repel each other. The ra-
dius si of each particle is calculated by taking the maximum
distance to neighbouring particles in the local Delaunay tri-
angulation. These local triangulations can be simply com-
puted from the local Voronoi regions surrounding the par-
ticle centres [Ben75, Tur91]. The orientation, i.e. local 2D
frame (ui,vi) ∈ [0,1]2 tangent to the surface and of origin
the particle centre pi, is either random or aligned to some
surface field such as minimum or maximum curvature direc-
tion fields [ACSD∗03,FJW∗05] or as done by Turk [Tur01].

Fleischer et al.’s Cellular Texture Generation
work [FLCB95] offers a method to generate seed lo-
cations for our particles, evolving a system of partial
differential equations to generate seed points and surface-
based field values on object surfaces. We implemented a
simplified version of this work, and instead of placing a
geometric primitive at each particle, we place one of our
decals.

The right image of Figure 1 shows 1000 decals distributed

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.



E. de Groot et al. / Implicit Decals

Figure 1: Left:50 decals positioned manually in under a

minute. Right:1000 decals positioned using a particle sys-

tem.

over the surface of a model using a particle system. It should
be noted that the user can interactively edit the decals after
the initial placement.

We use a particle system because it has the double advantage
of being both easy to implement and flexible for integrating
decal editing operations. For example, after automatically
positioning decals on a model, the user can interactively edit
a group of decals while the particle system repositions sur-
rounding decals. For instance, particle position, orientation
and radius can be directly modified and the system automat-
ically and interactively adjusts the position of surrounding
particles. That way, textures can be translated over the sur-
face, rotated and scaled. Instead of a particle system, remesh-
ing algorithms [BPR∗06] could be used to generate a coarse
mesh. The positions of the vertices of this mesh would be
the positions of the particles.

Once particles cover the surface, they are likely to overlap
and in that case, a strategy has to be chosen in order to de-
fine how the textures coming from each overlapping decal
are combined. Different solutions can be adopted. One de-
cal can be dominant and only its texture is applied, resulting
in an overlapping feature (as the eye of the dragon in the
teaser). Textures can be blended (blurred) as presented by
Schmidt et al. [SGW06]. A new behavior, presented in the
following sections, is deformation in contact, which replaces
overlapping texture by texture deformations so that they are
in contact but do not overlap. This generates useful results
as those illustrated in the teaser and in Figure 9.

4. Local parametrization

Once particles are distributed over the surface, we have as
input their centre pi, radius si and local frame (ui,vi) illus-
trated in Figure 2 and computed as explained in Section 3.
Particles centre pi and radius si are used to compute an
isotropic spherical field functions fi : R3 → [0,1] which to-
gether with the local frame (ui,vi) allows us to derive the lo-
cal parametrization (section 4.1). Deformations produced by
contact between neighbouring decals are presented in sec-
tion 4.2 and the way field functions can be modified to pro-
duce parametrization adapted to decals of different shapes is
explained in section 4.3.

p
i

vi

ui

si

Figure 2: Spherical field function fi placed on the surface

of a model. pi is its centre, si its radius, and ui and vi are the

tangent vectors defining its orientation.

4.1. Isotropic parametrization

We define isotropic spherical field functions fi, of minimal
value 0 at radius distance si, and maximal value 1 at their
centre pi, as illustrated in Figure 2. Field functions fi eval-
uated at a point q ∈ R

3 are mapped to [0,1] by scaling the
Euclidean distance between q and pi and then composing
this scaled distance by a so called Filter Fall off Function
(FFF) [SMA∗09] g : R → R whose graph is given in Fig-
ure 3:

fi(q) = g

(

‖q− pi‖

si

)

, (1)

with

g(d) =

{

(1−d2)3 if d ≤ 1
0 if d > 1

. (2)

d

g(d)

0

½

1

1

Figure 3: The filter fall off function g

As our particle system tends to organize particle centres over
the surface in a close to triangularly regular manner (i.e. each
particle tends to have six regularly distributed neighbours),
only the part of the field with values equal or higher than
1
2 (orange area in Figure 2) generates texture coordinates,
as the outer area (blue area in Figure 2) overlaps with other
spherical field functions in this initial setting. The dashed
line in Figure 2 indicates the boundary of the field around the
particle centre and this part will only be used to calculate the
amount of deformation of nearby decals (see section 4.2).
Note that different FFF g function (possibly with a differ-
ent parametrization boundaries) could be used to achieve
slightly different deformation effects, but we use the FFF

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.



E. de Groot et al. / Implicit Decals

from equation 1 for its high smoothness and its suitability
for contact deformations (see section 4.2).

From field function fi and the local frame (ui,vi) we derive
the local texture coordinates as a polar 2D coordinate system
(r(q),θ(q)) as follows. To calculate the radius r(q) at a sur-
face point q, we first evaluate the field value fi(q) to which
we apply the inverse of g. We then scale it by g−1(1/2) to
get the radius r(q) ∈ [0,1]:

r(q) =
g−1 (F(q))

g−1
(

1
2

) , (3)

where F = fi if only a single field function covers the point
q. We use equation 3 instead of the simpler scaled distance

r(q) =
‖q−pi‖

si
in order to support the different definition of

F presented in Section 4.2 where decals are deformed when
they are in contact as illustrated in Figure 5.

Figure 4: Illustration of the local parametrization (left) on

a plane and (right) on a sphere.

The computation of the second texture coordinate θ(q) is
performed using the two perpendicular vectors ui and vi of
our local frame. If q∗ is the projection of q onto the plane
formed by ui and vi, the value of θ(q) is the angle between
ui and the vector (q∗− pi):

θ(q) = arctan

(

vi · (q− pi)

ui · (q− pi)

)

. (4)

Figure 4 shows an example of a our local parametrization on
a plane and on a sphere. The vectors ui and vi are calculated
from the surface normal at pi (using cross product) and a
user defined orientation angle.

4.2. Contact deformations

When decals are in collision, overlapping is avoided and
contact decal deformations are performed as illustrated in
Figure 5. As our local parametrization is directly derived
from field functions fi : R3 → [0,1], they support the set op-
erators produced for combining implicit surfaces defined by
compactly supported field functions [Blo97].

We need a deformation modelling contact between n field
functions, avoiding gaps and discontinuities while maintain-
ing r in [0,1] with r(q) = 1 for all surface point q in the de-
formed field function boundary (see Figure 5). Following the

Figure 5: A decal (left) placed on a sphere once, twice and

three times

procedure suggested by Cani [Can93], we compute a field
function F as a deformation of the function fk having the
highest field value at a point q:

F(q) =
1
2
+

(

fk(q)−
1
2

)

∏
j 6=k

h
(

f j(q), fk(q)
)

, (5)

where

h(s, t) =







1−
(

s+t−1
2s−1

)
1

1−t
if s+ t ≥ 1

1 if s+ t < 1
.

In this formulation, when a point q only lies in the field of
one field function, the product part of equation 5 yields 1
and the whole equation equals fi. When other field func-
tions overlap in q, equation 5 adapts fi(q) to make the decal
touch but not overlap the nearby decals. This behavior is ob-
tained when function F reproduces the graph presented in
Figure 7, illustrating the combination of two field functions
(including contact). This graph has been constructed follow-
ing the properties and the procedures presented by Barthe et
al. [BWdG04], Bernhardt et al. [BBCW10] and Gourmel et
al. [GBC∗13]. Even though several equations matching this
graph could be proposed, our formulation has the advantage
of being both n-ary, i.e. it is able to combine any number of
decals at once, and efficient to compute.

A B C D

I

I

III

IVII II

I

Figure 6: 4 possible situations when using only 2 decals

Equation 5 can be understood by looking at the interactions
between two field functions, f0 and f1, illustrated in Fig-
ure 6. Four situations are to be considered. In situation A,

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.



E. de Groot et al. / Implicit Decals

the fields are not overlapping each other and no deformation
is needed. In situation B and C, the fields are overlapping
but the parametrized areas are not, so again, no deformation
is needed. Only in situation D where the parametrized areas
overlap, is deformation required.

0

½

1

1½

f (q)0

f (q)1

I

III IV

II

Figure 7: Graph of our function F when two field functions

are involved. Field functions f1 and f0 give the values for

respectively the abscissa and the ordinate.

The different areas numbered from I to IV in which the final
function F is computed with a specific expected result are
illustrated in Figure 7. In this figure, the values of function
f1 are taken as abscissa and those of function f0 as ordi-
nate. On the upper-left part of the diagonal line f0 = f1, the
field function with the highest value is f0 and F is the re-
sult of the deformation of f0 while in the lower-right part of
this line, the highest value is the one of f1 and F is the re-
sult of its deformation. As we expect the same deformation
behavior on both decals, the one parametrized from f0 and
the one parametrized from f1, these two parts are symmet-
ric and we propose to only focus on the upper-left part. The
black lines in Figure 7 are the iso-lines of the resulting decal
for F = 1

10 , F = 2
10 , etc. Where these iso-lines are horizon-

tal, it means that they reproduce the values of f0, F = f0
and no deformation is performed. Otherwise, they represent
the way the iso-values of f0 are deformed by F , i.e. the way
the decal is deformed. The contact is where f0 = f1 and we
see in red area of Figure 7 how the function F deforms the
iso-curves at its vicinity. We refer to the implicit extrusion
fields [BGC01] for a detailed explanation of how to link the
graph of the composition operator (here function F) with the
deformed objects (here the decals).

In other words, no deformation is to be performed in situa-
tions A, B and C (Figure 6), which is guaranteed as in areas
I and II, F = f0. In fact, deformation must hold in areas that
only exist in situation D, which correspond to areas III and
IV. These areas are where contact and field deformations are
thus to be performed. Formally, they correspond to field val-
ues where f0(q) + f1(q) > 1. In area IV, contact deforma-
tions at parametrization boundaries are performed by ensur-

ing that if f0 = f1, then F = 1
2 . The rest of area IV and area

III are used to build a function F performing smooth field
deformations between the contact at boundaries and areas I
and II where no deformation are required.

The resulting deformation in contact performed on our
parametrization when this definition of F is used in equa-
tion 3 is illustrated with two and three field functions in Fig-
ure 5.

4.3. Anisotropic parametrization

Non-circular decals are easily supported by slightly adapt-
ing the technique presented in [BS95]. In the computation
of the field function in equation 1, rather than scaling the
Euclidean distance between a point q and the particle centre
pi with a constant radius si, this distance is scaled by the dis-
tance between pi and the point bi(q) of intersection of a ray
launched from pi and the decal boundary (see Figure 8-left).
This scaling is done so that for all point q lying on the decal
boundary, fi(q) =

1
2 .

fi(q) = g

(

‖q− pi‖

bi(q)

)

g
−1

(

1
2

)

. (6)

Figure 8: Storing the field function fi in a 2D texture for the

puzzle piece decal. Left: computing bi. Right: the field values

in the texture (the yellow line marks the 1
2 contour).

In this case, function fi can be directly precomputed and
stored in a 2D texture (Figure 8-right) or computed from an
analytical function bi : R2 → R

+ giving the radial distance
between the decal centre and its boundary for all point q.

The puzzle piece used in Figure 8 is mapped on the bunny in
Figure 9 along with some other non-circular decals.

5. Implementation

Implicit decals require texture mapping on a per-pixel ba-
sis which can be done in pixel shaders. The definition of
decals by 3D field functions allows a computation of the
pixel colour using only its 3D coordinates as input (as for 3D
textures). The requirement for an efficient evaluation is the
fast access to decals enclosing the pixel. Once this is done,
contact deformation, overlapping or any invertible transfor-
mation can be applied to derive the texture coordinates and
compute the final material information. In our system the

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.



E. de Groot et al. / Implicit Decals

Figure 9: 3 models textured using Implicit Decals: the knot, implicit spheres, and the bunny

pixel shader of the GPU is used, because it can achieve in-
teractive frame rates. To render a number of implicit decals
on the surface of a model, the decal information (position,
size and tangent vectors) is loaded into the graphics card
memory. The pixel shader program queries the decal infor-
mation to calculate texture coordinates. To increase perfor-
mance and allow a large number of decals to be rendered,
we implemented an octree structure similar to the one de-
scribed in [LHN05]. An octree data structure as described
in [LSK∗06] could also be used.

Before the decals are loaded into the GPU memory, an octree
is constructed containing the decals. Each non empty voxel
contains either 8 references to other voxels or a maximum of
8 references to decals that intersect with the voxel. A voxel
is subdivided when it overlaps with more than 8 decals. The
list of voxels is loaded into GPU memory together with the
list of decals. Our implementation of the pixel shader con-
tains an octree lookup function which typically uses between
4 and 10 repetitions to traverse the octree and retrieve the
needed voxel from the octree. With this implementation the
pixel shader performs a maximum of 10 octree lookup rep-
etitions and includes a maximum of 8 decals in the calcula-
tion of the final texture coordinates. Without an octree, all
decals would have to be included in the calculation of the fi-
nal texture coordinates This would greatly increase compu-
tation times and at present would limit the maximum number
of decals to approximately 20 (in a single pass) due to GPU
limitations.

Decals can be removed from the octree by removing them
from the decal list in the GPU memory. Adding and moving

decals however, would normally require a new construction
of the octree. To prevent rebuilding the octree while the user
is editing a small set of decals, the pixel shader implemen-
tation allows for a small number of decals to be added in
addition to the ones in the octree. These decals will always
be included in the calculation of the final texture coordinates.
Rebuilding the octree will only be necessary when the user
starts editing (adding, removing, moving) a different set of
decals. After the rebuild (which usually is nearly instant, but
can take up to a second when thousands of decals are used),
editing operations can be performed interactively.

6. Filtering

Figure 10: Filtering at different resolutions. Top row:

standard Mipmaps and anisotropic filtering. Bottom row:

adapted Mipmaps and anisotropic filtering.

In general, existing techniques like trilinear or anisotropic

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.



E. de Groot et al. / Implicit Decals

filtering with Mipmapping can be used. However, problems
can occur on the borders of the decals. Some of these prob-
lems can be avoided by using a uniform colour for the bor-
ders of the decal texture images. This creates a smooth tran-
sition between touching decals. When the decals do not
cover the whole surface, the border colour can be chosen to
be transparent to create a smooth transition with the surface
colour. Still some problems remain as can be seen in the top
row of Figure 10:

1. When the decals cover no more than a few pixels (first
two columns of Figure 10) standard Mipmap generation
produces incorrect colours. This is caused by the use of
low resolution Mipmaps which contain colour informa-
tion from all pixels in the texture and not just the pixels
used for the decal.

2. When the decal sizes approach pixel level (first column of
Figure 10), the decal colours do not necessary converge
towards the same solid colour when different texture im-
ages are used. This can result in seemingly random pixel
colours and flickering of the pixels in animation.

3. There are artifacts in between the decals (last two
columns of Figure 10). In the situation where two filtering
samples cover different decals, the sample texture coor-
dinates are close to the edge of the circular texture image
(see Figure 11). The texture coordinates should result in
the same colour (because the edge of each decal has a
uniform colour) even though the texture coordinates are
very different. With standard graphics hardware the dif-
ference between the texture coordinates will result in the
use of a very low resolution Mipmap giving in the wrong
colour.

The first problem can simply be solved by using a filter to
create the Mipmaps which determines which pixels should
be used. To solve the second problem, the low resolution
Mipmaps need to be adjusted so that they converge towards
the same colour. To do this, for each resolution a new im-
age is constructed (the target image) which is the average
of all Mipmaps of that resolution. If some textures are used
more than others, a weighted average can be used. Next, new
Mipmaps are created which are weighted blends between the
respective old Mipmap and the target image. The lower the
resolution of the Mipmap, the more the weights will shift to-
wards the target image. At the lowest resolution (1× 1 pix-
els) all Mipmaps will contain the same colour which is the
(weighted) average of all textures.

The third problem can be solved in two steps. First, the pixel
shader detects whether two filtering samples lie in differ-
ent decals. This is be done by comparing the positions of
the decals used in each sample. Figure 11 depicts the situa-
tion when these positions are different. In texture space the
texture coordinates A of one sample and the texture coordi-
nates B of the other lie farther apart than what one would
expect looking at the positions in model space. This causes

{
{

{ {
A B

A

B

B’

A’

{{

Figure 11: Correcting sampling across decals. Left: model

space. Right: texture space.

the filtering technique to select a Mipmap with the wrong
resolution. Instead of using the distance between A and B

in texture space to determine the pixel resolution and select
the appropriate Mipmap, the distance between A and B′ is
used. As can be seen in the right image of Figure 11 B′ lies
on the other side of the decal edge from A at the same dis-
tance from the edge as B (this distance is indicated by the
blue curly bracket). The distance between A and B′ in tex-
ture space is a far better representation of the actual distance
between A and B in model space.

The combined solutions for the 3 problems above result in
the images shown in the bottom row of Figure 10.

7. Results

Figure 12 shows how our decals handle sharp edges, holes
in the geometry and bumps on the surface. Figure 13 shows
how a single implicit decal can texture more than one surface
at the same time. This can be useful in games, where stains
or gunshot holes need to be applied in real time.

Figure 12: Our decals are stable when placed on sharp

edges, holes in the geometry or bumps (and other areas of

high curvature)

The dragon model shown on the Teaser-left has been tex-
tured using our method. The green scales were automatically
placed using a particle system. The user manually added the
(non-deforming) eye decals, and gave the decals on the ball,
the tongue, and the teeth a solid colour. Some decals were
slightly moved to fit the boundaries of the coloured parts of
the model (ball, teeth and tongue). The whole texturing pro-
cess took about 15 minutes.

The left image of Figure 9 shows a closeup of the knot

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.



E. de Groot et al. / Implicit Decals

Figure 13: Each blood stain is a decal which can cover dif-

ferent models

model. This image shows that our method supports high res-
olution textures: the texture resolution of the decals in the
front is the same as the resolution of the decals in the back.

The middle image of Figure 9 shows the interaction of de-
cals with different sizes and even shows the special case of
Figure 6D where a decal is placed completely inside a larger
decal. The right image demonstrates several non-circular de-
cals.

Model Decals Voxels Octree ms/ Mem
frm

Dragon 100 697 0.02s 25 12KB
Dragon 1K 5753 0.06s 30 116KB
Dragon 10K 58905 0.78s 32 1.14MB
Knot 100 897 0.02s 25 14KB
Knot 1K 8657 0.09s 25 127KB
Knot 10K 56217 0.80s 26 1.13MB
Horse 100 48121 0.02s 25 197KB
Horse 1K 130833 1.23s 25 605KB
Horse 10K 261561 2.58s 26 1.91MB
Spheres 100 921 0.02s 25 13KB
Spheres 1K 7393 0.16s 26 123KB
Spheres 10K 69889 1.28s 26 1.18MB

Table 1: Rendering times and memory consumption of our

method. The “Voxels” column shows the number of voxels

that was needed to construct a suitable octree. The “Oc-

tree” column shows the amount of time needed to construct

the octree on the CPU. The “ms/frame” column shows the

rendering time of one frame in milliseconds and the “Mem”

column indicates the amount of video memory allocated for

storing the decals and the octree (this does not include the

texture images).

All results were obtained using a machine with an Intelr

CoreT M2 Quad CPU at 2.66GHz and a GeForce 8800 Ul-
tra graphics card. The resolution of the output window was
1600x1200 pixels. The CPU part of our implementation
(constructing the octree) only uses one thread.

The results in table 1 show that our method supports interac-
tive visualization and editing as the frame rates are between
30 and 40 frames per second even for more complex models
with thousands of decals at a high window resolution. Note
that these frame rates apply to our test cases where the model
covers a large part of the screen. In practice Implicit Decals
would only be used on some parts of the whole scene which
would result in higher frame rates. Editing large groups of
decals is still possible, but then the octree construction time
becomes the bottleneck. To reduce the octree construction
time in future implementations, a multi threaded algorithm
could be implemented.

8. Discussion

Figure 14: Left: a decal placed on the front. Middle: unde-

sired texturing produced by a decal placed on the back side

which bleeds through to the front. Right: A decal folding over

itself due to large extrusions.

Since the decal is mapped using a 3D field function, any
part of the surface intersecting this field function where it is
greater than 1

2 is textured. This is the desired effect when the
whole surface is textured as our field function contact de-
formations guarantee the local influence of each decal. This
naturally avoids the case shown in Figure 14-middle where
a decal “bleeds” through a thin part of the model. This sit-
uation can only happen if some parts of the surface are not
textured and it is thus easily avoided by using an “empty”
decal defined by transparent texture images. This user inter-
action can also be avoided by using thinner ellipsoid field
functions fi.

In general our parametrization behaves well when placed on
bumps, ripples or other high curvature features. But in ar-
eas with large distortions, some parts of the texture image
could be mapped onto the surface more than once which re-
sults in the texture folding over itself (see Figure 14-right).
This problem is actually inherent to our parametrization as
no specific treatment is done to minimize distortions. The
natural solution is to use more smaller decals in these areas
but if this is not desired, the field function fi will have to be
computed from a more sophisticated procedure taking into
account the local surface distortions.

Our technique is mainly prescribed for a lot of small decals,
that are interactively placed and manipulated over the sur-
face. When decals become large, depending on the pattern to
be repeated and on the nature of the object itself, it is more
likely that undesired distortions appear. In this case, implicit

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.



E. de Groot et al. / Implicit Decals

decals may fail to provide a satisfactory result and it would
be better to use a more elaborate technique such as the decals
proposed by Schmidt et al. [SGW06].

It is also difficult to maintain a consistent surface covering if
it is animated. Decals may change of shape and gaps may ap-
pear. The texturing of dynamic objects with implicit decals
remains an open problem.

Current graphics hardware still limits the number of de-
cals that can be edited simultaneously to approximately 20.
When small groups of decals are being edited, they will be
removed from the octree and added to the list of editable de-
cals. The octree needs to be recomputed whenever the num-
ber of decals in this list exceeds the hardware limit. When ten
thousands of decals are used, this can result in an occasional
delay of approximately one second (see table 1). Editing op-
erations that involve large groups of decals, always require
the octree to be rebuild and will be significantly slower.

9. Conclusion and Future Work

The main contribution of this research is an efficient method
for placing and editing surface decals that can interact with
one another. The surface does not require an existing param-
eterization. Since the method lends itself to implementation
on the GPU, thousands of decals can be placed and edited.
Traditional techniques would require excessively large tex-
tures to achieve a reasonable resolution, making these tech-
niques infeasible for real-time applications.

An earlier decaling method [SGW06] uses an arc length ap-
proximation (exponential map) to find a local parameteriza-
tion on the surface, whereas our method uses an implicit field
that is independent of the geometry. Our implicit technique
has several advantages demonstrated in section 7:

• Implicit decals are independent of the underlying geome-
try making them applicable to multi-resolution meshes.

• The bulk of the computations can be done in the pixel
shader making interactive editing of thousands of decals
possible.

• Contact deformation can be used to make the decals ap-
pear to compete for space.

• An implicit decal can be made to span several objects
without duplicating the decal or merging the objects.

Our method is similar to Cellular Texture Genera-
tion [FLCB95], in which a geometric primitive is placed at
each particle, whereas we place a texture primitive instead.
In this way many similar effects can be achieved, but at low-
cost in a pixel shader. As future work, we could couple our
implicit decals with a GPU-shader based displacement map
method, to allow for a large set of Fleischer et al.’s images
to be generated in hardware.

Section 4.2 shows how contact deformation can be used to
shape the decals. Future work includes investigating how
other implicit operations like blending can be used to achieve

different effects. Also, different distance metrics like man-
hattan or anisotropic distance could be used to produce a
wider variety of results.

A larger number of patterns could also be generated by creat-
ing two or more layers of decals. The final pattern is created
by combining the layers, for example by using transparency
to uncover deeper layers or some other function which com-
bines the colours of each layer. Future work can also include
designing functions to combine layers; how should layers be
positioned in relation to each other to create interesting pat-
terns.

To incorporate implicit decals more easily into existing mod-
elling systems, a conversion between an implicit decal tex-
ture and more conventional textures can be written. When an
atlas is in place, the model space positions of each texel of
the atlas can simply be evaluated to get the corresponding
colours. Future research can be done to create converters for
other texture systems and incorporate better filtering.

Other future work includes better tools for decal position-
ing and editing. If a Poisson-disk sampling method [DH06]
could be adapted to curved closed surfaces of any topology,
this would significantly reduce the computation time of an
initial decal distribution. Also, the system would greatly ben-
efit from editing tools like a decal spray paint tool and brush
tools that change the size or orientation of the decals. Au-
tomatic determination of the orientation of the decals could
be done by using the gradient field or other properties of
the model. Finally, decals with different behaviours could be
added. For example decals which deform other decals, but
do not deform themselves.

Acknowledgments

This work has been partially funded by NSERC (the Natural
Science and Engineering Research Council of Canada), the
Royal Society, Uk, Intel (Canada) and the IM&M project
(ANR-11-JS02-007). We are grateful for the support of the
American University of Beirut for Ahmad Nasri’s sabbatical
leave to the University of Calgary.

References

[ACSD∗03] ALLIEZ P., COHEN-STEINER D., DEVILLERS O.,
LÉVY B., DESBRUN M.: Anisotropic polygonal remeshing.
ACM Trans. Graph. 22, 3 (July 2003), 485–493. 3

[BBCW10] BERNHARDT A., BARTHE L., CANI M.-P.,
WYVILL B.: Implicit blending revisited. Comput. Graph. Forum

29, 2 (May 2010), 367–375. 5

[Ben75] BENTLEY J. L.: Multidimensional binary search trees
used for associative searching. Commun. ACM 18, 9 (1975), 509–
517. 3

[BGC01] BARTHE L., GAILDRAT V., CAUBET R.: Extrusion of
1D implicit profiles: Theory and first application. International

Journal of Shape Modeling 7 (2001), 179–199. 6

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.



E. de Groot et al. / Implicit Decals

[Blo97] BLOOMENTHAL J.: Introduction to Implicit Surfaces.
Morgan Kaufmann, ISBN 1-55860-233-X, 1997. 5

[BN76] BLINN J. F., NEWELL M. E.: Texture and reflection in
computer generated images. In Proceedings of SIGGRAPH ’76

(1976), pp. 266–266. 1

[BPR∗06] BOTSCH M., PAULY M., ROSSL C., BISCHOFF S.,
KOBBELT L.: Geometric modeling based on triangle meshes. In
ACM SIGGRAPH ’06 Courses (2006), p. 1. 4

[BS95] BLANC C., SCHLICK C.: Extended field functions for
soft objects. Proc. of Implicit Surfaces’95 (1995), 21–32. 6

[BWdG04] BARTHE L., WYVILL B., DE GROOT E.: Control-
lable binary CSG operators for soft objects. In International

Journal of Shape Modeling, vol. 10. december 2004, pp. 135–
154. 5

[Can93] CANI M.-P.: An implicit formulation for precise contact
modeling between flexible solids. In Proceedings of SIGGRAPH

’93 (1993), pp. 313–320. 5

[DH06] DUNBAR D., HUMPHREYS G.: A spatial data structure
for fast poisson-disk sample generation. In ACM SIGGRAPH

2006 Papers (2006), pp. 503–508. 10

[DHM13] DU S.-P., HU S.-M., MARTIN R. R.: Semiregular
solid texturing from 2d image exemplars. IEEE Transactions on

Visualization and Computer Graphics 19, 3 (2013), 460–469. 2

[EF01] EFROS A. A., FREEMAN W. T.: Image quilting for tex-
ture synthesis and transfer. In Proceedings of ACM SIGGRAPH

2001 (2001), pp. 341–348. 3

[FJW∗05] FOSTER K., JEPP P., WYVILL B., SOUSA M. C.,
GALBRAITH C., JORGE J. A.: Pen-and-ink for blobtree implicit
models. Comput. Graph. Forum 24, 3 (2005), 267–276. 3

[FLCB95] FLEISCHER K. W., LAIDLAW D. H., CURRIN B. L.,
BARR A. H.: Cellular texture generation. In Proceedings of

SIGGRAPH ’95 (1995), pp. 239–248. 3, 10

[GBC∗13] GOURMEL O., BARTHE L., CANI M.-P., WYVILL

B., BERNHARDT A., PAULIN M., GRASBERGER H.: A
gradient-based implicit blend. ACM Transactions on Graphics

32, 2 (2013). 5

[GY03] GU X., YAU S.-T.: Global conformal surface parame-
terization. In Proceedings of the 2003 Eurographics/ACM SIG-

GRAPH symposium on Geometry processing (2003), SGP ’03,
Eurographics Association, pp. 127–137. 2

[HH90] HANRAHAN P., HAEBERLI P. E.: Direct wysiwyg paint-
ing and texturing on 3d shapes. In Proceedings of SIGGRAPH

90 (1990), vol. 24, pp. 215–223. 1, 2

[KSG03] KRAEVOY V., SHEFFER A., GOTSMAN C.: Match-
maker: Constructing constrained texture maps. ACM Trans.

Graph. 22, 3 (2003), 326–333. 1, 2

[LD07] LEFEBVRE S., DACHSBACHER C.: Tiletrees. In I3D ’07:

Proceedings of the 2007 symposium on Interactive 3D graphics

and games (2007), pp. 25–31. 3

[Lév01] LÉVY B.: Constrained texture mapping for polygo-
nal meshes. In Proceedings of ACM SIGGRAPH 2001 (2001),
pp. 417–424. 1, 2

[LH06] LEFEBVRE S., HOPPE H.: Appearance-space texture
synthesis. In ACM SIGGRAPH 2006 Papers (New York, NY,
USA, 2006), SIGGRAPH ’06, ACM, pp. 541–548. 3

[LHN05] LEFEBVRE S., HORNUS S., NEYRET F.: Texture
sprites: Texture elements splatted on surfaces. In ACM-

SIGGRAPH Symposium on Interactive 3D Graphics (I3D)

(2005). 3, 7

[LSK∗06] LEFOHN A. E., SENGUPTA S., KNISS J., STRZODKA

R., OWENS J. D.: Glift: Generic, efficient, random-access gpu
data structures. ACM Trans. Graph. 25, 1 (2006), 60–99. 7

[PD84] PORTER T., DUFF T.: Compositing digital images. In
Proceedings of SIGGRAPH 84 (1984), vol. 18, pp. 253–259. 3

[Pea85] PEACHEY D. R.: Solid texturing of complex surfaces. In
SIGGRAPH ’85: Proceedings of the 12th annual conference on

Computer graphics and interactive techniques (1985), pp. 279–
286. 2

[Ped95] PEDERSEN H. K.: Decorating implicit surfaces. In Pro-

ceedings of SIGGRAPH 95 (1995), pp. 291–300. 2, 3

[Per85] PERLIN K.: An image synthesizer. In SIGGRAPH ’85:

Proceedings of the 12th annual conference on Computer graph-

ics and interactive techniques (1985), pp. 287–296. 2

[SGW06] SCHMIDT R., GRIMM C., WYVILL B.: Interactive de-
cal compositing with discrete exponential maps. ACM Trans.

Graph. 25, 3 (2006), 605–613. 2, 3, 4, 10

[SMA∗09] SHIRLEY P., MARSHNER S., ASHIKHMIN M., GLE-
ICHER M., HOFFMAN N., JOHNSON G., MUNZNER T., REIN-
HARD E., SUNG K., THOMPSON W. B., WILLEMSEN P.,
WYVILL B.: Fundamentals of Computer Graphics, 3rd edition.
AK Peters, June 2009. 4

[Tur91] TURK G.: Generating textures on arbitrary surfaces using
reaction-diffusion. SIGGRAPH Comput. Graph. 25, 4 (1991),
289–298. 3

[Tur01] TURK G.: Texture synthesis on surfaces. In Proceedings

of ACM SIGGRAPH 2001 (2001), pp. 347–354. 3

[WH94] WITKIN A. P., HECKBERT P. S.: Using particles to sam-
ple and control implicit surfaces. In Proceedings of SIGGRAPH

’94 (1994), pp. 269–277. 3

[WL01] WEI L.-Y., LEVOY M.: Texture synthesis over arbitrary
manifold surfaces. In Proceedings of ACM SIGGRAPH 2001

(2001), pp. 355–360. 3

[Wor96] WORLEY S.: A cellular texture basis function. In SIG-

GRAPH ’96: Proceedings of the 23rd annual conference on Com-

puter graphics and interactive techniques (New York, NY, USA,
1996), ACM, pp. 291–294. 2

[YKH10] YUKSEL C., KEYSER J., HOUSE D. H.: Mesh colors.
ACM Trans. Graph. 29, 2 (2010), 1–11. 1, 2

[ZPKG02] ZWICKER M., PAULY M., KNOLL O., GROSS M.:
Pointshop 3d: An interactive system for point-based surface edit-
ing. ACM Trans. Graph. 21, 3 (2002), 322–329. 1, 2

[ZWT∗05] ZHOU K., WANG X., TONG Y., DESBRUN M., GUO

B., SHUM H.-Y.: Texturemontage: Seamless texturing of arbi-
trary surfaces from multiple images. ACM Trans. Graph. 24, 3
(2005), 1148–1155. 1, 2

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.


