48 research outputs found

    Particle-based simulation of fluids

    Get PDF
    Journal ArticleDue to our familiarity with how fluids move and interact, as well as their complexity, plausible animation of fluids remains a challenging problem. We present a particle interaction method for simulating fluids. The underlying equations of fluid motion are discretized using moving particles and their interactions. The method allows simulation and modeling of mixing fluids with different physical properties, fluid interactions with stationary objects, and fluids that exhibit significant interface breakup and fragmentation. The gridless computational method is suited for medium scale problems since computational elements exist only where needed. The method fits well into the current user interaction paradigm and allows easy user control over the desired fluid motion

    Closed-form approximations to the volume rendering integral with Gaussian transfer functions

    Get PDF
    technical reportIn direct volume rendering, transfer functions map data points to optical properties such as color and opacity. We have found transfer functions based on the Gaussian primitive to be particularly useful for multivariate volumes, because they are simple and rely on a limited number of free parameters. We show how this class of transfer function primitives can be analytically integrated over a line segment under the assumption that data values vary linearly between two sampled points. Analytically integrated segment can then be composited using standard techniques

    Approximate Ambient Occlusion For Trees

    Get PDF
    International audienceNatural scenes contain large amounts of geometry, such as hundreds of thousands or even millions of tree leaves and grass blades. Subtle lighting effects present in such environments usually include a significant amount of occlusion effects and lighting variation. These effects are important for realistic renderings of such natural environments; however, plausible lighting and full global illumination computation come at prohibitive costs especially for interactive viewing. As a solution to this problem, we present a simple approximation to integrated visibility over a hemisphere (ambient occlusion) that allows interactive rendering of complex and dynamic scenes. Based on a set of simple assumptions, we show that our method allows the rendering of plausible variation in lighting at modest additional computation and little or no precomputation, for complex and dynamic scenes

    A Survey of Ocean Simulation and Rendering Techniques in Computer Graphics

    Get PDF
    This paper presents a survey of ocean simulation and rendering methods in computer graphics. To model and animate the ocean's surface, these methods mainly rely on two main approaches: on the one hand, those which approximate ocean dynamics with parametric, spectral or hybrid models and use empirical laws from oceanographic research. We will see that this type of methods essentially allows the simulation of ocean scenes in the deep water domain, without breaking waves. On the other hand, physically-based methods use Navier-Stokes Equations (NSE) to represent breaking waves and more generally ocean surface near the shore. We also describe ocean rendering methods in computer graphics, with a special interest in the simulation of phenomena such as foam and spray, and light's interaction with the ocean surface

    A Frustum-Based Ocean Rendering Algorithm

    No full text
    corecore