Cinemagraphs are a compelling way to convey dynamic aspects of a scene. In
these media, dynamic and still elements are juxtaposed to create an artistic
and narrative experience. Creating a high-quality, aesthetically pleasing
cinemagraph requires isolating objects in a semantically meaningful way and
then selecting good start times and looping periods for those objects to
minimize visual artifacts (such a tearing). To achieve this, we present a new
technique that uses object recognition and semantic segmentation as part of an
optimization method to automatically create cinemagraphs from videos that are
both visually appealing and semantically meaningful. Given a scene with
multiple objects, there are many cinemagraphs one could create. Our method
evaluates these multiple candidates and presents the best one, as determined by
a model trained to predict human preferences in a collaborative way. We
demonstrate the effectiveness of our approach with multiple results and a user
study.Comment: To appear in ICCV 2017. Total 17 pages including the supplementary
materia