23 research outputs found

    Fiber Orientation Tensors and Mean Field Homogenization: Application to Sheet Molding Compound

    Get PDF
    Effective mechanical properties of fiber-reinforced composites strongly depend on the microstructure, including the fibers\u27 orientation. Studying this dependency, we identify the variety of fiber orientation tensors up to fourth-order using irreducible tensors and material symmetry. The case of planar fiber orientation tensors, relevant for sheet molding compound, is presented completely. Consequences for the reconstruction of fiber distributions and mean field homogenization are presented

    On the dependence of orientation averaging mean field homogenization on planar fourth-order fiber orientation tensors

    Get PDF
    A comprehensive study on the influence of planar fourth-order fiber orientation tensors on effective linear elastic stiffnesses predicted by orientation averaging mean field homogenization is given. Fiber orientation states of sheet molding compound (SMC) are identified to be in most cases approximately planar. In the planar case, all possible fourth-order fiber orientation tensors are given by a minimal invariant set of structurally differing planar fourth-order fiber orientation tensors. This set defines a three-dimensional body and forms the basis for a comprehensive study on the influence of a fiber orientation distribution in terms of a fourth-order tensor on homogenized stiffnesses. The methodology of this study is the main contribution of this work and can be adopted to analyze the orientation dependence of any quantity which is a function of a planar fourth-order fiber orientation tensor. At specific points inside the set of planar fiber orientation tensors, effective stiffnesses are calculated with selected mean field homogenization schemes. These schemes are based on orientation averaging of transversely isotropic elasticity tensors following Advani and Tucker (1987), which is explicitly recast as linear invariant composition in the fiber orientation tensors of second and fourth order of Kanatani third kind. A maximum entropy reconstruction of a fiber orientation distribution function based on leading fiber orientation tensors, enables a new numerical formulation of the Advani and Tucker average for the special planar case. Polar plots of Young’s modulus and generalized bulk modulus obtained by selected homogenization schemes are arranged on two-dimensional slices within the body of admissible fiber orientation tensors, visualizing the influence of the orientation tensor on the stiffness tensor. The orientation-dependence of the generalized bulk modulus differs significantly between selected homogenizations. Restrictions on the effective anisotropic material response caused by orthotropy of closure approximations are discussed

    Paraxial diffusion-field retrieval

    Full text link
    Unresolved spatially-random microstructure, in an illuminated sample, can lead to position-dependent blur when an image of that sample is taken using an incoherent imaging system. For a small propagation distance, between the exit surface of the sample and the entrance surface of a position-sensitive detector, the paraxial approximation implies that the blurring influence of the sample may be modeled using an anomalous-diffusion field. This diffusion field may have a scalar or tensor character, depending on whether the random microstructure has an autocorrelation function that is rotationally isotropic or anisotropic, respectively. Partial differential equations are written down and then solved, in a closed-form manner, for several variants of the inverse problem of diffusion-field retrieval given suitable intensity images. Both uniform-illumination and structured-illumination schemes are considered. Links are made, between the recovered diffusion field and certain statistical properties of the unresolved microstructure. The developed theory -- which may be viewed as a crudely parallel form of small-angle scattering under the Guinier approximation -- is applicable to a range of paraxial radiation and matter fields, such as visible light, x rays, neutrons, and electrons

    GPS analysis

    Get PDF
    SatellitengestĂŒtzte geodĂ€tische Messmethoden, insbesondere GPS (Global Positioning System), sind von zunehmender Bedeutung in den Geowissenschaften und erlauben neue Einblicke in verschiedenste geophysikalische Prozesse. Zeitreihen hochprĂ€ziser Positionsmessungen von Punkten auf der ErdoberflĂ€che ermöglichen unter anderem die Bestimmung von Relativgeschwindigkeiten tektonischer Einheiten, die Messung von Verformungsraten der Kruste an aktiven Störungen und Vulkanen und erlauben es RĂŒckschlĂŒsse auf die rheologischen Parameter der LithosphĂ€re und der AsthenosphĂ€re zu ziehen. Mit zunehmender LĂ€nge und Genauigkeit der Zeitreihen ist es möglich, auch zeitabhĂ€ngige dynamische tektonische Prozesse in GPS Zeitreihen zu identifizieren. Die Schwierigkeiten in der Interpretation der Messungen bestehen unter anderem darin, von Punktmessungen auf kontinuierliche Deformationsmuster zu schließen, zeitlich korreliertes Rauschen zu quantifizieren, um realistische Fehlergrenzen anzugeben, und schließlich zeitabhĂ€ngige tektonische Signale von zeitabhĂ€ngigem Rauschen zu trennen. In dieser Arbeit werden LösungsansĂ€tze zu diesen Punkten erarbeitet. ZunĂ€chst wird ein Algorithmus entwickelt, durch den aus einem diskreten Geschwindigkeitsfeld, ohne Vorgabe weiterer Randbedingungen (Geometrie der Störungen etc.), der kontinuierliche zweidimensionale Tensor der Verformungsraten abgeleitet werden kann. Aus der Tensoranalysis erhĂ€lt man Informationen zur maximalen Scher- und Rotationsverformungsrate, sowie zur Dilatationsrate. Die Anwendung dieses Algorithmus auf verschiedene DatensĂ€tze in SĂŒdkalifornien und Island zeigt, dass hiermit sowohl aktive Störungen identifiziert, als auch Informationen uber BruchflĂ€chen von Erdbeben aus ko- bzw. postseismischen GPS Messungen abgeleitet werden können. Außerdem wurden zeitabhĂ€ngige Signale in den GPS Geschwindigkeitsfeldern ersichtlich. Im zweiten Teil dieser Arbeit wird ein weiterer Algorithmus eingefĂŒhrt, der unter BerĂŒcksichtigung der Effekte zeitabhĂ€ngigen Rauschens die Berechnung der Varianz innerhalb von GPS Geschwindigkeitsfeldern ermöglicht. Somit wird außerdem der Notwendigkeit Rechnung getragen, realistische Fehlergrenzen als Grundlage zur KonfidenzabschĂ€tzung von Modellen zu definieren. Dieser Algorithmus basiert auf der Allan Varianz, die bei der Messung der StabilitĂ€t von Oszillatoren Verwendung findet und ausschließlich im Zeitbereich berechnet wird. Er wird ausfĂŒhrlich mit verschiedenen synthetischen Zeitreihen und Fehlermodellen getestet und auf einen sĂŒdafrikanischen Datensatz angewandt. Der Vergleich mit Methoden, die auf einer Spektralanalyse oder einem Maximum Likelihood Estimator beruhen zeigt, dass der relativ schnelle Algorithmus stabile und verlĂ€ssliche Angaben liefert. Zuletzt wird der entwickelte Algorithmus erweitert, um die Kovarianz der Geschwindigkeit zu erhalten. Die Anwendung auf verschiedene DatensĂ€tze an konvergenten Plattengrenzen, wo regelmĂ€ĂŸig Kriechereignisse in Form von Slow Slip Events auftreten, zeigt fĂŒr einige Stationen stark richtungsabhĂ€ngige und rĂ€umlich korrelierte Geschwindigkeitsfehler. Des Weiteren konnte eine Zeitkorrelation beobachtet werden, die auf einen tektonischen Ursprung der Ereignisse hinweist. Die korrigierten Zeitreihen, von denen die modellierten Ereignisse subtrahiert wurden, haben dagegen richtungsunabhĂ€ngig eine Zeitkorrelation, die etwa dem 1/f Rauschen entspricht, und weisen keine rĂ€umlich korrelierten stark exzentrischen Fehlerellipsen auf. Die Analyse ermöglicht somit eine qualitative Bewertung der Modelle zeitabhĂ€ngiger Signale in GPS Zeitreihen

    Near-field Optical Interactions And Applications

    Get PDF
    The propagation symmetry of electromagnetic fields is affected by encounters with material systems. The effects of such interactions, for example, modifications of intensity, phase, polarization, angular spectrum, frequency, etc. can be used to obtain information about the material system. However, the propagation of electromagnetic waves imposes a fundamental limit to the length scales over which the material properties can be observed. In the realm of near-field optics, this limitation is overcome only through a secondary interaction that couples the high-spatial-frequency (but non-propagating) field components to propagating waves that can be detected. The available information depends intrinsically on this secondary interaction, which constitutes the topic of this study. Quantitative measurements of material properties can be performed only by controlling the subtle characteristics of these processes. This dissertation discusses situations where the effects of near-field interactions can be (i) neglected in certain passive testing techniques, (ii) exploited for active probing of static or dynamic systems, or (iii) statistically isolated when considering optically inhomogeneous materials. This dissertation presents novel theoretical developments, experimental measurements, and numerical results that elucidate the vectorial aspects of the interaction between light and nano-structured material for use in sensing applications

    Multiphoton Quantum Optics and Quantum State Engineering

    Full text link
    We present a review of theoretical and experimental aspects of multiphoton quantum optics. Multiphoton processes occur and are important for many aspects of matter-radiation interactions that include the efficient ionization of atoms and molecules, and, more generally, atomic transition mechanisms; system-environment couplings and dissipative quantum dynamics; laser physics, optical parametric processes, and interferometry. A single review cannot account for all aspects of such an enormously vast subject. Here we choose to concentrate our attention on parametric processes in nonlinear media, with special emphasis on the engineering of nonclassical states of photons and atoms. We present a detailed analysis of the methods and techniques for the production of genuinely quantum multiphoton processes in nonlinear media, and the corresponding models of multiphoton effective interactions. We review existing proposals for the classification, engineering, and manipulation of nonclassical states, including Fock states, macroscopic superposition states, and multiphoton generalized coherent states. We introduce and discuss the structure of canonical multiphoton quantum optics and the associated one- and two-mode canonical multiphoton squeezed states. This framework provides a consistent multiphoton generalization of two-photon quantum optics and a consistent Hamiltonian description of multiphoton processes associated to higher-order nonlinearities. Finally, we discuss very recent advances that by combining linear and nonlinear optical devices allow to realize multiphoton entangled states of the electromnagnetic field, that are relevant for applications to efficient quantum computation, quantum teleportation, and related problems in quantum communication and information.Comment: 198 pages, 36 eps figure

    Simulation de la propagation d'ondes élastiques en domaine fréquentiel par des méthodes Galerkine discontinues

    Get PDF
    The scientific context of this thesis is seismic imaging which aims at recovering the structure of the earth. As the drilling is expensive, the petroleum industry is interested by methods able to reconstruct images of the internal structures of the earth before the drilling. The most used seismic imaging method in petroleum industry is the seismic-reflection technique which uses a wave equation model. Seismic imaging is an inverse problem which requires to solve a large number of forward problems. In this context, we are interested in this thesis in the modeling part, i.e. the resolution of the forward problem, assuming a time-harmonic regime, leading to the so-called Helmholtz equations. The main objective is to propose and develop a new finite element (FE) type solver characterized by a reduced-size discrete operator (as compared to existing such solvers) without hampering the accuracy of the numerical solution. We consider the family of discontinuous Galerkin (DG) methods. However, as classical DG methods are much more expensive than continuous FE methods when considering steady-like problems, because of an increased number of coupled degrees of freedom as a result of the discontinuity of the approximation, we develop a new form of DG method that specifically address this issue: the hybridizable DG (HDG) method. To validate the efficiency of the proposed HDG method, we compare the results that we obtain with those of a classical upwind flux-based DG method in a 2D framework. Then, as petroleum industry is interested in the treatment of real data, we develop the HDG method for the 3D elastic Helmholtz equations.Le contexte scientifique de cette thĂšse est l'imagerie sismique dont le but est de reconstituer la structure du sous-sol de la Terre. Comme le forage a un coĂ»t assez Ă©levĂ©, l'industrie pĂ©troliĂšre s'intĂ©resse Ă  des mĂ©thodes capables de reconstituer les images de la structure terrestre interne avant de le faire. La technique d'imagerie sismique la plus utilisĂ©e est la technique de sismique-rĂ©flexion qui est basĂ©e sur le modĂšle de l'Ă©quation d'ondes. L'imagerie sismique est un problĂšme inverse qui requiert de rĂ©soudre un grand nombre de problĂšmes directs. Dans ce contexte, nous nous intĂ©ressons dans cette thĂšse Ă  la rĂ©solution du problĂšme direct en rĂ©gime harmonique, soit Ă  la rĂ©solution des Ă©quations d'Helmholtz. L'objectif principal est de proposer et de dĂ©velopper un nouveau type de solveur Ă©lĂ©ment fini (EF) caractĂ©risĂ© par un opĂ©rateur discret de taille rĂ©duite (comparĂ©e Ă  la taille des solveurs dĂ©jĂ  existants) sans pour autant altĂ©rer la prĂ©cision de la solution numĂ©rique. Nous considĂ©rons les mĂ©thodes de Galerkine discontinues (DG). Comme les mĂ©thodes DG classiques sont plus coĂ»teuses que les mĂ©thodes EF continues si l'on considĂšre un mĂȘme problĂšme Ă  cause d'un grand nombre de degrĂ©s de libertĂ© couplĂ©s, rĂ©sultat des approximations discontinues, nous dĂ©veloppons une nouvelle classe de mĂ©thode DG rĂ©duisant ce problĂšme : la mĂ©thode DG hybride (HDG). Pour valider l'efficacitĂ© de la mĂ©thode HDG proposĂ©e, nous comparons les rĂ©sultats obtenus avec ceux obtenus avec une mĂ©thode DG basĂ©e sur des flux dĂ©centrĂ©s en 2D. Comme l'industrie pĂ©troliĂšre s'intĂ©resse au traitement de donnĂ©es rĂ©elles, nous dĂ©veloppons ensuite la mĂ©thode HDG pour les Ă©quations Ă©lastiques d'Helmholtz 3D
    corecore