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Zusammenfassung

Die effektiven mechanischen Eigenschaften von faserverstärkten Ver-
bundwerkstoffen hängen stark von der Mikrostruktur, d. h. von der
Ausrichtung der Fasern im Verbundwerkstoff, ab. In dieser Arbeit wird
der Einfluss von Faserorientierungsverteilungen auf die effektiven Ei-
genschaften von langfaserverstärkten Verbundwerkstoffen untersucht.

Die vorliegende Arbeit wird von der Deutschen Forschungsgemein-
schaft (DFG) im Rahmen des interdisziplinären Graduiertenkollegs
GRK 2078 finanziert. Daher liegt der Fokus auf sogenannten „Sheet
Molding Compound“ (SMC) Materialien. SMC ist ein Verbundwerk-
stoff aus langen Glasfasern und duroplastischer Polymermatrix, für
Leichtbauanwendungen mit flachen Bauteilformen, beispielsweise in
der Automobilindustrie.

Gemittelte Information einer Faserorientierungsverteilung kann durch
Faserorientierungstensoren quantifiziert werden. Ein vollständiges Bild
des Einflusses dieses Richtungsmaßes auf die effektiven mechanischen
Eigenschaften wird präsentiert, basierend auf einer neu abgeleiteten
Vielfalt von Faserorientierungstensoren vierter Stufe. Diese Vielfalt wird
identifiziert durch lineare invariante Zerlegung von Faserorientierungs-
tensoren vierter Stufe, was zu einfachen und flexiblen Parametrisie-
rungen führt. Beschränkungen durch materielle Symmetrie werden in
diese Parametrisierungen einbezogen und zulässige Parameterberei-
che werden bestimmt, indem positive Semi-Definitheit eingefordert
wird. In dieser Arbeit werden Schließungsapproximationen durch die
Vielfalt der Faserorientierungstensoren vierter Stufe kontrastiert. Mi-
krostrukturen von SMC werden durch planare Orientierungszustände
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Zusammenfassung

approximiert. Die Beziehung zwischen planaren Faserverteilungen und
planaren Faserorientierungstensoren wird im Detail diskutiert. Dazu
werden tensorielle Fourierreihen in 2D- und 3D-Darstellungen sowie
die Maximum-Entropie-Rekonstruktion von Faserorientierungsvertei-
lungen durch führende Faserorientierungstensoren untersucht. Eine
detaillierte Analyse des Advani-Tucker-Orientierungsmittelwertes gibt
Aufschluss über die Struktur verschiedener orientierungsgemittelter
Meanfield-Homogenisierungen. Ein vollständiges Bild der Richtungs-
abhängigkeit der effektiven linear-elastischen Steifigkeiten, die durch
diese Homogenisierungsverfahren vorhergesagt werden, wird beschrie-
ben. Dazu wird eine innovative Visualisierungsmethode basierend auf
Übersichtsplots und Polarplot-Ensembles entwickelt. Diese Methode
ist anwendbar auf jede richtungsabhängige skalare Größe, die eine
Funktion verschiedener planarer Faserorientierungstensoren ist.

Diese Arbeit motiviert die Verwendung von Faserorientierungsinfor-
mationen vierter Stufe und hat somit weitreichende Implikationen für
virtuelle Prozessketten für planare langfaserverstärkte Bauteile.
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Summary

Effective mechanical properties of fiber reinforced composites strongly
depend on the microstructure, i.e., the fibers’ alignment within the
composite. In this work, the influence of fiber orientation distribution on
the effective properties of long-fiber-reinforced composites is studied.

The present work is funded by the German Research Foundation (DFG)
within the interdisciplinary research training group GRK 2078. Within
this research group, the material class sheet molding compound (SMC)
is of primary interest. SMC is a composite of long glass fibers and a
thermoset polymer matrix, serving lightweight applications with flat
component designs, for instance in the automotive industry.

Averaged information of a fiber orientation distribution can be quantified
by fiber orientation tensors. This work gives a complete picture of the
influence of fiber orientation tensors up to fourth order on effective me-
chanical properties, based on the newly derived variety of fourth-order
fiber orientation tensors. This variety is identified by linear invariant
decomposition of fourth-order fiber orientation tensors leading to simple
and flexible parameterizations. Constraints of material symmetry are
incorporated into these parameterizations and admissible parameter
ranges are identified by demanding positive semi-definiteness. Through-
out this work, closure approximations are contrasted by the variety
of fourth-order fiber orientation tensors. Microstructures of SMC are
approximated by planar orientation states. The correspondence of planar
fiber distributions and planar fiber orientation tensors are presented in
detail, deploying tensorial Fourier series in 2D- and 3D-frameworks
as well as maximum entropy reconstruction of fiber orientation distri-
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Summary

butions by leading fiber orientation tensors. Detailed analysis of the
Advani-Tucker orientation average yields insights on the structure of
several orientation-averaging mean field homogenization approxima-
tions. A complete picture of the directional dependence of effective
linear elastic stiffnesses predicted by those mean field homogenizations
is drawn. Therefore, an innovative visualization method based on
overview plots and polar plot ensembles is derived. This method
is applicable to any direction-dependent scalar quantity, which is a
function of distinct planar fiber orientation tensors.

This work emphasizes the importance of fourth-order fiber orientation
information and therefore has far-reaching implications for virtual pro-
cess chains for planar long-fiber-reinforced components.

iv
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Chapter 1

Introduction

1.1 Motivation

Fiber-reinforced composites solve lightweight construction tasks in a
wide variety of application areas. A major reason for the frequent
use of these composites is their excellent mechanical performance at
relatively low density. In the case of epoxy resins reinforced with
glass fibers, competitive mechanical properties of the composite are
achieved by the combination of the high strength and stiffness of the
fibers with the flexibility of the matrix material. The microstructure
of the composite, i.e., the amount, arrangement and orientation of the
fibers, largely determines the effective properties. The realization of
beneficial microstructures and, in particular, the suitable alignment of
fibers in highly stressed areas of the component is therefore a crucial
task in the design and manufacturing process. Optimal component
design and optimized manufacturing requires a profound understand-
ing of the relationship between fiber orientations and effective local
mechanical material properties. The local mechanical properties can
be determined by material models within the framework of continuum
mechanics, on scales relevant to engineering. A practically relevant class
of such material models are orientation-averaging linear elastic mean
field homogenization methods, which are the focus of this work. These
homogenization methods combine information on the microstructure

1



1 Introduction

with mechanical properties of the constituents, fiber and matrix, to
identify the effective material behavior. Fiber orientation tensors are
well-established descriptors for the orientation of fibers on a selected
discretization scale. They can be predicted numerically by process simu-
lations as well as determined experimentally by computer tomography.
The variety of second-order fiber orientation tensors is known and
is represented graphically by the so-called fiber orientation triangle.
Knowledge of the variety of all possible second-order fiber orientation
tensors offers far-reaching simplification options for individual steps
within a virtual process chain and facilitates the assessment and classifi-
cation of microstructures. However, since the effective material behavior
of solids depends on both second- and fourth-order fiber orientation
tensors, the knowledge of the variety of fourth-order fiber orientation
tensors is of great interest to obtain a complete picture of the realizable
effective properties. The present work has been funded by the German
Research Foundation (DFG) interdisciplinary research training group
GRK 2078. This research training group focuses on the material class
sheet molding compound (SMC), a composite of long glass fibers and
thermoset polymer matrix, which is suitable for the mass production of
flat components. In this work the variety of fourth-order fiber orientation
tensors is studied and for the first time the complete picture of the
realizable effective properties using microstructure properties in the
form of planar fourth-order fiber orientation tensors is outlined. The
subgroup of planar fourth-order fiber orientation tensors is of special
interest, as the typical fiber lengths in SMC are in the range of two to
ten times of the component thickness. Due to this length ratio and low
tendency towards fiber bending, SMC microstructures may be described
by a low-dimensional planar approximation.

2



1.2 Research objectives

1.2 Research objectives

The main objective of this thesis is the connection between local fiber ori-
entation states in SMC components and effective mechanical properties.
A compact and nevertheless complete representation of this connections
is aimed at, which is in contrast to limited examinations of concrete
examples, present in the literature. The identification of the variety of
fiber orientation tensors of fourth-order represents the starting point for
the investigations. This identification is done for general orientation
states. In a subsequent step, subspaces of these general orientation
states, which state reasonable approximations to SMC microstructures
are of interest, possibly leading to compact representations. For the
special case of planar orientation states, correlations between orientation
tensors and orientation distributions are of concern. Therefore, methods
reconstructing fiber orientation distributions by a set of leading fiber
orientation tensors are given. These methods lead to a flexible numerical
scheme for the calculation of orientation averages. Consequences of
orientation states on effective mechanical properties are to be drawn
for different orientation-averaging homogenizations. Visual represen-
tations for all realizable planar orientation states are of special value
giving a simple picture of the dependencies between microstructure and
effective mechanical properties. Emphasis is to be taken on linearity of
effective stiffnesses in fiber orientation tensors within the Advani-Tucker
orientation average.

The diversity of fiber orientation tensors is in direct contradiction to
commonly used closure algorithms. Therefore, representations which
contrast fourth-order information obtained by closure approximations
and the variety of possible fourth-order information, are of interest.

3



1 Introduction

1.3 Originality

The major novelties of this work, which is based on Bauer and Böhlke
(2022c;a;b), are summarized.

• An invariant framework for parameterizations of fourth-order fiber
orientation tensors based on deviators from the isotropic orientation
state is developed. The most general case is obtained by an orthotropic
deviator of second order and a triclinic deviator of fourth order.
Within this framework, deviators of stronger material symmetries
are obtained as special cases.

• Explicit parameterizations and admissible parameter ranges for or-
thotropic as well as planar fiber orientation tensors of fourth order are
identified and visualized in Figures 4.5 to 4.8 and 5.1b.

• Boundaries of the set of admissible fiber orientation tensors of fourth
order are identified to correspond to localized fiber orientation states
which can be represented by empirical fiber orientation distribution
functions with a limited number of Dirac-distributions.

• Redundancies and degeneration in the planar set of admissible fourth-
order fiber orientation tensors are discussed in detail.

• A generic visual representation of the dependence of any scalar quan-
tity on planar fourth-order fiber orientation tensors is derived and
applied to fiber orientation distribution functions and effective me-
chanical properties.

• Drawbacks of fiber orientation distribution reconstruction based on
truncated Fourier series expansion within two- and three-dimensional
frameworks are demonstrated, highlighting the role of the isotropic
reference states.

• For the planar case and within the two dimensional framework it is
shown that interference of second- and fourth-order contributions
leads to the variety of reconstructed FODF based on truncated Fourier
series.

4



1.3 Originality

• The maximum entropy reconstruction of Müller and Böhlke (2016) is
recast for the planar case in a two-dimensional framework, leading to
a low-dimensional optimization problem.

• Fiber orientations of sheet molding compound are identified to be
approximately planar, leading to a reduction of the independent
components of fourth-order fiber orientation tensors from eleven
to three in the orientation coordinate system.

• The orientation average of an elasticity tensor based on a fiber ori-
entation tensor following Advani and Tucker III (1987) is linear in
both the transversely isotropic elasticity tensor and the second- and
fourth-order fiber orientation tensors.

• A new numerical formulation of the Advani-Tucker orientation av-
erage in fiber orientation tensors Advani and Tucker III (1987) for
the special class of planar fiber orientations is proposed based on
a maximum entropy reconstruction of fiber orientation distribution
functions.

• Effective stiffnesses obtained by homogenizations which perform
the orientation average in the stiffness domain and those which
perform the average in the compliance domain are demonstrated
to differ significantly with respect to the orientation dependence of
the generalized bulk modulus.

• Possible directional dependence of the elastic response for Advani-
Tucker averaged two-phase materials of isotropic constituents and
planar orientation measures are comprehensively presented. This
presentation is complete and can be used to express the orientation
dependence of any quantity which is a function of planar fiber orien-
tation tensors up to fourth order. The dependence is restricted by the
limited averaged information given by fourth-order fiber orientation
tensors and due to the constraints of linear elasticity.

5



1 Introduction

1.4 State of the art 1

1.4.1 Fiber orientation tensors

Local fiber orientation distributions are completely defined by a fiber
orientation distribution function (FODF). However, in applications the
FODF is usually approximated by a limited number of fiber orientation
tensors (FOT), as tensor representations fit into the continuum mechanics
framework. Multiple kinds of orientation tensors exist, originating
from Kanatani (1984). Applications related to fiber orientations include
both identification of the fiber orientation information by experimental
methods (Pinter et al., 2018) or process simulation (Meyer et al., 2020a)
and usage of the orientation information in fullfield (Görthofer et al.,
2020), mean field (Müller and Böhlke, 2016; Kehrer et al., 2020), or
damage simulations (Schemmann et al., 2018b). Both groups of applica-
tions, identification and usage of orientation information, benefit from
a well known variety of fiber orientation tensors. If the variety of fiber
orientation tensors is well-defined, the identified orientation tensors can
be assessed and the space of input parameters of methods predicting
effective mechanical properties is set. The variety of second-order fiber
orientation tensors is well known (Cintra Jr and Tucker III, 1995; Chung
and Kwon, 2002; Cowin, 1985) and used, e.g., in Köbler et al. (2018);
Görthofer et al. (2020); Köbler et al. (2021) to generate clear pictures of
the dependence of mechanical properties on the second-order directional
measures. However, concise descriptions and parameterizations of
fourth-order fiber orientation tensors are rare. The variety of transversely
isotropic fourth-order orientation tensors is identified by Nomura et al.
(1970) and used in Müller and Böhlke (2016); Jack and Smith (2008). For
a given second-order orientation tensor, closure approximations (Advani
and Tucker III, 1990; Han and Im, 1999; Cintra Jr and Tucker III, 1995;

1 Most of the content of this section is taken directly from Bauer and Böhlke (2022c;a;b).
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Chung and Kwon, 2002; Montgomery-Smith et al., 2011a) identify a
corresponding fourth-order orientation tensor based on assumptions.
Although literature on closure approximations involves much infor-
mation on fourth-order fiber orientation tensors, most closures state
simplifying assumptions on the material symmetry of fourth-order FOT.
In consequence, generic, i.e., triclinic FOT are not covered in the literature
on closure approximations.

1.4.2 Fiber orientation distribution reconstruction

Fiber orientation distribution functions represent exact microstructure
descriptors of the orientation of axisymmetric fibers within a specified
volume of a fiber-reinforced composite (Kanatani, 1984; Advani and
Tucker III, 1987). However, in practice (Böhlke et al., 2019; Görthofer
et al., 2019) the exact distribution of fibers is commonly approximated
by fiber orientation tensors which represent averaged directional mea-
sures and can be directly determined either by non-destructive analysis
methods, such as computer tomography (Pinter et al., 2018; Schöttl et al.,
2020) or by numerical flow simulations (Meyer et al., 2020a; Böhlke
et al., 2019; Karl et al., 2021a). Some applications, e.g., damage model-
ing (Schemmann et al., 2018b) or averaging schemes (Hessman et al.,
2021; Brylka, 2017), require FODF information and therefore motivate
reconstruction of FODF from a given set of leading fiber orientation
tensors. Due to the averaged character of fiber orientation tensors, no
one-to-one correspondence between a set of leading FOT and a FODF
exists. Truncated Fourier series are used by Schöttl et al. (2020); Jack
and Smith (2004); Eik et al. (2016) to identify an FODF based on leading
FOT. However, the identified functions do not meet the non-negativity
requirement of a FODF. Non-negativity of the reconstructed FODF
based on transversely isotropic leading FOT of order two and four,
is enforced by Müller and Böhlke (2016) using a maximum entropy
method. Maximum entropy methods are deployed, e.g., in Böhlke
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(2005; 2006). Closure approximations (Advani and Tucker III, 1990;
Chung and Kwon, 2001; 2002; Cintra Jr and Tucker III, 1995; Han and
Im, 1999; Jack et al., 2010; Kuzmin, 2018; Montgomery-Smith et al.,
2011a;b; Karl et al., 2021c; Dray et al., 2007) are commonly used to
estimate fourth-order FOT based on second-order FOT and therefore
have reconstruction character. The closures in Montgomery-Smith et al.
(2011a;b) are based on assumptions on an FODF associated with the
second- and fourth-order FOT of the closure and therefore state a FODF
reconstruction scheme. Breuer et al. (2019) assess the reconstruction of
FODFs based on closure approximations and minimum entropy method
used by Böhlke (2005); Müller and Böhlke (2016).

1.4.3 Orientation-averaging mean field homogenization

Approximation of effective mechanical properties of heterogeneous
materials by mean field homogenization dates back to Voigt (1889);
Reuß (1929); Hill (1952) with major contributions by Hashin and Shtrik-
man (1962); Walpole (1966a;b); Willis (1977; 1981); Walpole (1969); Mori
and Tanaka (1973) with a strong dependence on Eshelby (1957). The
transformation of volume averages into averages over orientations (Böh-
lke, 2001) leads to orientation-averaging homogenizations (Benveniste,
1987; Duschlbauer et al., 2006; Hessman et al., 2021; Müller and Böhlke,
2016; Müller, 2016; Brylka, 2017; Schemmann et al., 2018b; Kehrer et al.,
2020). Hessman et al. (2021) cast several popular orientation-averaging
homogenizations (Hill, 1965b; Budiansky, 1965; Mori and Tanaka, 1973;
Benveniste, 1987; Castañeda and Willis, 1995; Zheng and Du, 2001;
Pierard et al., 2004) into a unified framework. Effective mechanical
properties of SMC are identified by Trauth et al. (2021); Schemmann et al.
(2018b); Kehrer (2019); Kehrer et al. (2020) using orientation-averaging
mean field homogenization, whereas Görthofer et al. (2020) deploy a fast
Fourier transform method (Schneider, 2021; Moulinec and Suquet, 1994;
1998). Most mean field homogenizations are based on the averaging
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scheme of Advani and Tucker III (1987) which is directly formulated
in FOT. However, some authors apply direct numerical integration
based on FODF, e.g., Pettermann et al. (1997). Müller and Böhlke
(2016) showed that the identification of effective mechanical properties
based on second-order orientation tensors yields insufficient accuracy
(Breuer et al., 2019). Closure approximations are used by, e.g., Jack
and Smith (2007; 2008); Buck et al. (2015); Müller and Böhlke (2016);
Goldberg et al. (2017) to model mechanical properties. However, as
closure approximations are based upon assumptions and do not generate
information, the assessment of Müller and Böhlke (2016) applies to those
studies.

1.5 Outline

The present work starts with a compact introduction to selected topics
of continuum mechanics, i.e., kinematics, stresses, balance equations
and the role of material modeling, followed by tensor algebra with focus
on linear invariant decompositions, irreducible tensors and material
symmetry in Chapter 3.

The variety of fiber orientation tensors of order two and four is investi-
gated in Chapter 4, which is based on Bauer and Böhlke (2022c). Positive
semi-definiteness is discovered to define the set of admissible parameter
ranges for parameterizations of fourth-order fiber orientation tensors.
Constraints induced by material symmetry are utilized explicitly to
derive admissible orientation tensors for the transversely isotropic and
planar case. The orthotropic case is presented visually. Notes on closure
approximations and their limitations close this chapter.

In Chapter 5, which is based on Bauer and Böhlke (2022a), the in-
sights on admissible planar fiber orientation tensors are refined and
the correspondence with fiber distributions is investigated. For the
first time, a complete picture of planar fiber orientation distributions,

9



1 Introduction

reconstructed from the planar subspace of fiber orientation tensors, is
given. This picture is based on a visualization method which slices
the space of admissible fiber orientation tensors. Reconstruction of
fiber orientation distribution functions by truncated tensorial Fourier
series demonstrates advantage of a two-dimensional framework for
planar orientations. The variety of orientation distributions is explicitly
explained by interference of second- and fourth-order contributions
on fiber orientation distributions. A maximum entropy reconstruction
method for planar fiber distributions is given in compact and explicit
notation in a two-dimensional framework. An explicit representation of
the exact closure for the planar case closes this chapter.

The transition from microstructure descriptors to mechanical properties
is investigated in Chapter 6 based on Bauer and Böhlke (2022b). Local
fiber orientation states of SMC components are identified as approx-
imately planar. Based on this planarity assumption, the variety of
associated fiber orientation tensors and distributions is known. In
consequence, the complete picture of the effective mechanical prop-
erties obtained by orientation-averaging mean field homogenizations is
presented. Characteristics of homogenization methods averaging in the
stiffness or compliance domain are discussed. The orientation average of
Advani-Tucker Advani and Tucker III (1987) is recast as linear invariant
decomposition and a new numerical formulation based on reconstructed
fiber distributions is given.

Finally, in Chapter 7 the results are summarized and an outlook on
future research is given.
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1.6 Notation, frequently used acronyms, sym-
bols, and operators

Symbolic tensor notation is preferred in this work. Tensors of first
order are denoted by bold lowercase letters such as q, n, v, e. Ten-
sors of second-order are denoted by bold uppercase letters like N or
Q and fourth-order tensors are denoted by, e.g., N or D. Tensors in
representations for varying tensor order are represented by, e.g., D⟨𝑘⟩,
where 𝑘 defines the tensor order. Tensorial quantities are defined in a
three-dimensional space, unless underlined. If a tensor is underlined
like, e.g., q or N, it is defined in a two-dimensional space and follows this
spaces algebra. A linear mapping of a second-order by a fourth-order
tensor reads as A = C [B]. The scalar product reads as A · B. The
tensor power, i.e., the 𝑘-th dyadic product of, e.g., a first order tensor
a is denoted by a⊗𝑘 yielding, e.g., a⊗3 = a ⊗ a ⊗ a. An orthonormal
basis is denoted by {e𝑖} with e𝑖 · e𝑗 = 𝛿𝑖𝑗 and the Kronecker delta 𝛿𝑖𝑗 . If
a matrix of tensor coefficients is used in mixed notation, the coefficient
matrix is directly followed by the tensor basis where the first index of the
basis corresponds to the rows of the coefficients matrix, the second one
to the columns. Summation convention applies, unless otherwise stated.
Representations in index notation always refer to an orthonormal basis.
The Rayleigh product is used to represent an active rotation of a physical
quantity and for a first order tensor is defined by Q ⋆ n = 𝑛𝑖 Q e𝑖. Sets,
i.e., collections of quantities, are denoted by calligraphic symbols, e.g.,
ℱ and are constructed by curly braces. Inside the curly braces, elements
of the set are given explicitly, or by a generator expression following the
pattern {quantity | condition fulfilled inside set}. Although this work
and related code is based on Harris et al. (2020); Meurer et al. (2017),
numbering and indices follow the continuum mechanics convention
starting at one.
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Acronyms

CODF Crystal orientation distribution function
CT Computer tomography
FODF Fiber orientation distribution function
FOT Fiber orientation tensor
IBOF Invariant-based optimal fitting
iso Isotropic
ORF Orthotropic fitted
ortho Orthotropic
perm Permutation
plan Planar
RV Reference volume
RVE Representative volume element
SMC Sheet molding compound
sym Symmetric
transv Transversely isotropic
unidirect Unidirectional

Latin letters

𝑎, 𝑏, 𝑐, 𝐴,𝐵,𝐶 Scalar quantities
a,b, c Tensors of first order
A,B,C Tensors of second order
A,B,C Tensors of fourth order
A⟨𝑘⟩,B⟨𝑘⟩,C⟨𝑘⟩ Tensors of 𝑘-th order
𝑐f Fiber volume content
𝑒 Mass specific internal energy
𝑤⋆ Complementary energy density
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𝐸(n) Direction-dependent Young’s modulus
𝐺 Shear modulus
𝐾 Compression modulus
𝐾(n) Direction-dependent generalized compression

modulus
𝒮 Singular surface
𝑉RV Reference volume
n Normal vector, i.e., direction
q Heat flux
t Stress vector
u Displacement
x Position in current configuration
X Position in reference configuration
D Distortion rate tensor
F Structure tensor
F̂ Deformation gradient
H Displacement gradient
N Second-order fiber orientation tensor of Kanatani

first kind
Q Rotation, i.e., element of 𝑆𝑂(3)
ASI
𝑖 Strain localization tensor of the 𝑖-th phase in the

single inclusion problem
C Elastic stiffness
C0 Reference stiffness
C̄HSW2 Effective stiffnesss of two-step Hashin Shtrikman

homogenization scheme
C̄MTlinearStiffness Average of phase stiffnesses
C̄MTlinearCompliance Inverse of the average of phase compliances
C̄MTOAB Effective stiffnesss following Benveniste (1987)
F Structure tensor
I Identity on fourth-order tensors
IS Identity on symmetric fourth-order tensors
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N Fourth-order fiber orientation tensor of Kanatani
first kind

P1, P2 Isotropic projectors
P Hill’s polarization tensor
D̂⟨𝑘⟩ Fiber orientation tensor of Kanatani third kind

and 𝑘-th order

Greek letters

𝛼𝑖 Weight of the 𝑖-th transversely isotropic structure
tensor

𝜂 Entropy
𝜃 Temperature
𝜆𝑖 𝑖-th eigenvalue of N
𝜌 Density
𝜓 Fiber orientation distribution function
𝜒 Movement
𝜀 Infinitesimal strain tensor
𝜎 Cauchy stress

Operators

det(·) Determinant of a quantity
dev(·) Deviatoric part of a quantity
sym(·) Symmetric part of a quantity
˙(·) Material time derivative

𝒮(·) Symmetry group of a quantity
⌈·⌉ Jump of a field quantity
(·) Quantity in 2D framework
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(·)⊗𝑘 𝑘-th dyadic product of a quantity
(·)T Transpose of a second-order tensor

(·)TR Right transpose of a fourth-order tensor
⋆ Rayleigh product operator
{e𝑖} Orthonormal coordinate system
{v𝑖} Orthonormal eigensystem of N
(·)S Quantity at a singular surface
(·)𝑓 Fiber quantity
(·)𝑚 Matrix quantity
(̄·) Effective quantity
⟨· ⟩ Volume average over RVE
⟨ ⟨· ⟩ ⟩ Generalized average
⟨· ⟩AT Advani-Tucker average
⟨· ⟩ATN Advani-Tucker average explicitly formulated in

fiber orientation tensor N
⟨· ⟩ATGOS Advani-Tucker average in formulation of Gold-

berg et al. (2017)
⟨· ⟩ME Advani-Tucker average in numerical 2D maxi-

mum entropy formulation
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Chapter 2

Continuum Mechanics

2.1 Motivation

Abstracted and restricted to a classical mechanical point of view, motion
and deformation of physical bodies in an Euclidean space at different
size-scales can be used to describe the environment we are living in.
Continuum mechanics allows for a mathematically well-defined de-
scription of bodies, their motion and their deformation on a chosen
size scale. The flexibility in choosing an appropriate size scale for engi-
neering applications is a striking feature of continuum mechanics. For
engineering tasks on macroscopic technical components, a consideration
on the scale of molecules or atoms is not purposeful. For this reason,
numerical implementations based on models, motivated by continuum
mechanics, are ubiquitous in engineering. The best known application is
structural analysis using the finite element method, to analyze stresses
and deformations in technical components. The present work is focused
on the analysis of microstructures, i.e., the structure of heterogeneous
components, specifically fiber-reinforced polymers, and the effect of the
microstructure on macroscopic material properties. Due to this focus,
only a very small part of the continuum mechanics fundamentals is
relevant for this work. In the following chapter, important basic terms
are introduced and a classification in the broad context of continuum
mechanics is given. This chapter in large parts follows Böhlke and
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Frohnapfel (2019); Böhlke (2014) and is influenced by Bertram and Glüge
(2013); Bertram (2012).

2.2 Kinematics and deformation

We choose a closed region in a three-dimensional Euclidean space at
a randomly chosen reference time and call this region material body.
Points of a material body in the initial placement, called reference place-
ment, can be identified by a position vector X. The current placement of
a material point is denoted by x. The movement of a material point is
described by a function

x (X, 𝑡) = 𝜒 (X, 𝑡) , (2.1)

taken to be invertible and twice continuously differentiable. Therefore,
x (X, 𝑡) at a given time 𝑡, defines a field specifying the current placement
of a body composed of material points. The first partial derivative of the
movement 𝜒 (X, 𝑡) with respect to the reference placement

F̂ (X, 𝑡) = 𝜕𝜒 (X, 𝑡)
𝜕X (2.2)

is called deformation gradient and states the basis for several possible
deformation measures capable of describing large deformations. How-
ever, in this work only small deformations are considered, which can be
described by a linearized theory, developed hereafter. The displacement
field is defined as

u (X, 𝑡) = 𝜒 (X, 𝑡) − X. (2.3)

Taking the first partial derivative of the displacement field u (X, 𝑡) with
respect to the reference placement X, the displacement gradient is
defined as

H (X, 𝑡) = 𝜕u (X, 𝑡)
𝜕X . (2.4)
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Based on the displacement gradient, a unique deformation measure for
small deformations exists and is given by the infinitesimal strain tensor
𝜀 (x, 𝑡), which can be calculated for a known field of displacement u (x, 𝑡)
by

𝜀 (x, 𝑡) = 1
2

(︂
𝜕u (x, 𝑡)
𝜕x +

(︂
𝜕u (x, 𝑡)
𝜕x

)︂⊺)︂
= 1

2 (H (x, 𝑡) + H⊺ (x, 𝑡)) . (2.5)

The transposition A⊺ of a second-order tensor A is defined by

v · (A⊺ w) = w · (A v) ∀v, w (2.6)

with tensors of first order v and w. Theories, based on the infinitesimal
strain tensor, which is linear in the deformation gradient, are called
geometrically linear. Deformations are small, if ‖H‖ =

√
H · H ≪ 1

holds and imply x ≈ X.

2.3 Time derivatives

The material time derivative of a field quantity 𝜓(X, 𝑡) is given by

�̇�(X, 𝑡) = 𝜕𝜓(X, 𝑡)
𝜕𝑡

, (2.7)

whereas the material time derivative of the same quantity parameterized
as a function of the current placement 𝜓(x, 𝑡) is given by

�̇�(x, 𝑡) = 𝜕𝜓(x, 𝑡)
𝜕𝑡

+ 𝜕𝜓(x, 𝑡)
𝜕x · v(x, 𝑡) (2.8)
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following the chain rule with the velocity of a material point

v = ẋ = 𝜕𝜒(X, 𝑡)
𝜕𝑡

. (2.9)

2.4 Stress

Mechanical interaction between bodies can be described by the concept
of forces. Similarly, mechanical interaction between material points
located inside or at the boundary of a body can be described by force
densities. The introduction of the principle of cuts (Bertram and Glüge,
2013) allows the definition of stress tensors. Let a body be mentally
divided into two new bodies along a cut surface. The mechanical
interaction that existed before the hypothetical separation process can
be represented by a stress vector t on each of the two, newly created cut
surfaces. The stress vectors on both surfaces are of equal magnitude and
oriented in opposite directions. According to Cauchy’s theorem, a stress
vector on the cut surface with normal n is defined by

t = 𝜎n (2.10)

and is associated with a symmetric second-order tensor, the Cauchy
stress 𝜎. The Cauchy stress can be interpreted as a tensor-valued field
𝜎 (X) which assigns each point X on a material body a local stress tensor.

2.5 Balance equations

The object of interest is an abstract material body which consists of
material points. As this body might move in space, the volume occupied
by the body 𝒱(𝑡) might be a function of time. Points at which fields
are smooth are called regular points. Smooth means continuous and
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continuously differentiable. This smoothness of the fields is not given
perpendicular to so-called singular surfaces 𝒮(𝑡). Singular surfaces
(Bertram, 2012; Cermelli et al., 2005; Prahs, 2020) describe places where
jumps of field quantities occur and separate areas of regular points. An
example of singular surfaces are the interfaces of different phases in
inhomogeneous materials, e.g., the interface between fibers and matrix
in fiber reinforced composites.

2.5.1 Divergence theorem

For a given vector-valued field quantity b and a domain 𝒱(𝑡) with
boundary 𝜕𝒱(𝑡) and singular surfaces 𝒮(𝑡), the surface integral over b
expressed by a volume integral is∫︁

𝜕𝒱(𝑡)
b · n dA −

∫︁
𝒮(𝑡)

⌈b⌉ · n dA =
∫︁

𝒱(𝑡)
div (b) dV (2.11)

with the jump of b at the singular surface ⌈b⌉ = b+ −b− and the normal
n at 𝒮(𝑡) pointing from the side where b has the value b− towards
the side where b is equal to b+. The divergence operator div (·) =
tr (grad (·)) is based on the trace operator tr (·) and the gradient denoted
by grad (·). This relation is essential for transforming integral balances
into local balances.

2.5.2 Transport theorem

Let 𝒱 (𝑡) be the volume of a certain domain, for example a body. This
volume may change and therefore is a function of time. The time
derivative of an integral over a domain depends both on the change
of the integrated field quantity 𝜓 and the change of the volume 𝒱 (𝑡)
occupied by the domain. For a volume 𝒱 associated with a material, this
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relation is described by

d
d𝑡

∫︁
𝒱(𝑡)

𝜓 dV =
∫︁

𝒱(𝑡)

𝜕𝜓

𝜕𝑡
dV +

∫︁
𝜕𝒱(𝑡)

𝜓v · n dA

−
∫︁

𝒮(𝑡)
⌈𝜓⌉𝑣S

⊥ dA (2.12)

with v being the velocity field of the body, ⌈𝜓⌉ the jump of 𝜓 at 𝒮(𝑡) and
𝑣S

⊥ the velocity of the singular surface normal to 𝒮(𝑡). In the absense of
singular surfaces, combining Equation (2.12) with Equation (2.11) yields

d
d𝑡

∫︁
𝒱(𝑡)

𝜓 dV =
∫︁

𝒱(𝑡)

𝜕𝜓

𝜕𝑡
+ div (𝜓v) dV (2.13)

being valid only at regular points.

2.5.3 General balance equation

We consider balancing a time-dependent field quantity 𝜓 (x, 𝑡) over a
material body. The volume occupied by the material body 𝒱 (𝑡) is a
function of time 𝑡. The field quantity is said to be additive in nature and
has an associated

• Production density 𝑝𝜓 (x, 𝑡) representing the local production of 𝜓 per
unit volume

• Supply density 𝑠𝜓 (x, 𝑡) representing the local supply of 𝜓 per unit
volume

• Non-convective flux q𝜓 (x, 𝑡) representing the local flux of 𝜓 per unit
area.

Fluxes caused by other physical processes than convection are called
non-convective fluxes. Heat flux and Cauchy stress are examples of
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non-convective fluxes. The balance of 𝜓 over 𝒱 reads as

d
d𝑡

∫︁
𝒱(𝑡)

𝜓 dV =
∫︁

𝒱(𝑡)
𝑝𝜓 + 𝑠𝜓 dV +

∫︁
𝜕𝒱(𝑡)

q𝜓 · n dA. (2.14)

The local form of this balance restricted to regular points is obtained
using Equation (2.13) leading to

𝜕𝜓

𝜕𝑡
+ div (𝜓v) = 𝑝𝜓 + 𝑠𝜓 + div (q𝜓) (2.15)

with 𝜓v being the convective flux. If the volume in which Equation (2.14)
is evaluated is completely shrunk to the singular surfaces, a jump
condition for the field quantity at 𝒮(𝑡) is obtained and reads

⌈𝜓(v · n − 𝑣S
⊥)⌉ − ⌈q𝜓⌉ · n = 0. (2.16)

In the case of a material singular surface, such as those present at phase
boundaries in heterogeneous materials, 𝑣S = v holds and the jump
condition in Equation (2.16) reduces to a requirement on q𝜓 .

2.5.4 Specific balance equations at regular points

Balance equations for mass, linear momentum, angular momentum, en-
ergy, and entropy can be obtained from Equation (2.14) or Equation (2.15)
using the quantities specified in Table 2.1. The remaining considerations
within this chapter are restricted to regular points. Jump conditions at
singular surfaces can be found in Böhlke (2014); Bertram (2012).

Mass

The balance of mass is given by

�̇�+ 𝜌div (v) = 0 (2.17)
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Balance Quantity: 𝜓 Produc.: 𝑝𝜓 Supply: 𝑠𝜓 Flux: q𝜓

Mass 𝜌 0 0 0
Lin. Momentum 𝜌v 0 𝜌b 𝜎

Ang. Momentum (x − x0) × 𝜌v 0 (x − x0) × 𝜌b (x − x0) × 𝜎

Energy 𝜌𝑒+ 𝜌
2 v · v 0 𝜌𝑤 + 𝜌b · v −q + 𝜎⊺v

Entropy 𝜌𝜂 𝜌𝑝𝜂
𝜌
𝜃
𝑤 − 1

𝜃
q

Table 2.1: Building blocks to derive specific balance equations from the general balance
equation. The ansatz for supply and flux of entropy are of constitute nature. The
abbreviation produc. stands for production.

with the mass density 𝜌.

Linear momentum

The axiom of the balance of linear momentum fits experimental observa-
tions for non-relativistic cases and leads to

𝜌v̇ = 𝜌b + div (𝜎) . (2.18)

with a mass force density b.

Angular momentum

The balance of angular momentum, is an axiom, which for a Boltzmann
continuum, i.e., a continuum without point-wise rotational degrees of
freedom, results in a system of algebraic equations denoted by

𝜎 = 𝜎⊺. (2.19)
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Total energy

Total energy is the sum of kinetic and internal energy and its balance is

𝜌�̇�+ 1
2𝜌 (v · v)˙ = 𝜌𝑤 − div (q) + 𝜌b · v + div (𝜎⊺v) (2.20)

with the heat source density 𝑤 and the heat flux q. The total energy is a
conservation quantity because the production term vanishes. The local
balances used in this section apply to material points. A material point
can be considered as a thermodynamic system. The energy due to the
motion of this system is its kinetic energy. The mass specific internal
energy 𝑒 contains the energy which is independent of the system’s
motion. The internal energy states a thermodynamic potential.

Kinetic energy

The balance of kinetic energy is obtained by scalar multiplication of
Equation (2.18) with the velocity field v leading to

1
2𝜌 (v · v)˙ = 𝜌b · v + div (𝜎⊺v) − 𝜎 · D (2.21)

with the distortion rate tensor D = sym(grad (v)). This procedure
implies that the balance of kinetic energy is another representation of
information already included in the balance of linear momentum.
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2 Continuum Mechanics

Internal energy

The balance of internal energy, given in Equation (2.22), is obtained by
subtracting the balance of kinetic energy from the balance of total energy.

𝜌�̇�+1
2𝜌 (v · v)˙ =𝜌𝑤 − div (q) + 𝜌b · v + div (𝜎⊺v) tot. (2.20)

1
2𝜌 (v · v)˙ = 𝜌b · v + div (𝜎⊺v) − 𝜎 · D kin. (2.21)

𝜌�̇� =𝜌𝑤 − div (q) + 𝜎 · D (2.22)

Entropy

The balance of entropy is given by

𝜌�̇� = 𝜌𝑤

𝜃
− div

(︁q
𝜃

)︁
+ 𝜌𝑝𝜂 (2.23)

with entropy 𝜂, temperature 𝜃 and the entropy production 𝑝𝜂 , which has
to be non-negative to satisfy the second law of thermodynamics.

2.6 Material modeling and closure of balance
equations

The following considerations are limited to small deformations and
in consequence, deformation is described by the infinitesimal strain
tensor 𝜀. Further consequences are that the reference placement is
approximately equal to the current placement (X ≈ x), the density is
approximately constant (𝜌 ≈ 𝜌0) and the symmetric part of the velocity
gradient can be approximated by the rate of 𝜀, i.e., D ≈ �̇� holds.

Applying the restrictions of small deformations and regular points, the
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2.6 Material modeling and closure of balance equations

resulting balance equations

𝜌 ≈ 𝜌0 (2.24)

𝜎 = 𝜎⊺ (2.25)

𝜌ü = 𝜌b + div (𝜎) (2.26)

𝜌�̇� = 𝜌𝑤 − div (q) + 𝜎 · �̇� (2.27)

𝜌�̇� = 𝜌𝑤

𝜃
− div

(︁q
𝜃

)︁
+ 𝜌𝑝𝜂 (2.28)

state the starting point to derive a closed system of field equations
for initial boundary value problems. The quantities 𝜌,b and 𝑤 are
known for a given initial boundary value problem. Displacement u,
temperature 𝜃 and a vector of internal variables 𝛼 are selected as base
fields ℬ = {u, 𝜃, 𝛼}. The base fields state the solution space of the initial
boundary value problems.

From Equations (2.26) and (2.27) follows that the remaining set of quan-
tities is 𝒦 = {𝜎, 𝑒,q, 𝜂}. These quantities are called constitutive quan-
tities and are unknown and not yet linked to the base fields. From
an engineering point of view, the entropy is usually not of practical
interest. However, including entropy as an auxiliary quantity in the set
of constitutive quantities permits to incorporate restrictions stated by the
second law of thermodynamics. In order to generate a closed system of
equations, a set of material functions ℳ has to be defined, expressing the
constitutive quantities as functions of the base fields. As the constitutive
quantities 𝒦 may also depend on gradients and time derivatives of the
base fields, a set of input quantities ℰ is defined containing the base
fields as well as their gradients and derivatives.

Material modeling is the process of defining the material functions ℳ
such that 𝒦 = ℳ(ℰ) closes the system of Equations (2.24) to (2.28) while

• Fulfilling restrictions stated by material theory

• Not violating the second law of thermodynamics and
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2 Continuum Mechanics

• Reproducing experimental observations.

Equations (2.24) and (2.25) state algebraic equations and can be fulfilled
identically. Equations (2.26) and (2.27) state the primary partial differen-
tial equations and Equation (2.28) states the basis for restrictions caused
by the second law of thermodynamics.

2.7 Linear elasticity

Within this work, only the simplest material model, linear elasticity for
small deformations is considered. Linear elasticity implies, that there
is no interaction between temperature and the displacement field. In
addition, no state variables exist, as the current stress is solely deter-
mined by the current deformation. In consequence, the only non-trivial
field equation is the balance of linear momentum in Equation (2.26) and
material modeling is reduced to finding the relation between 𝜎 and 𝜀.

Linear elasticity postulates this relation to be a linear mapping

𝜎 = C [𝜀] (2.29)

defining the material stiffness C. As the stiffness maps between symmet-
ric tensors of second-order, without loss of generality, the stiffness can
be assumed to have both minor symmetries. A fourth-order tensor C is
called minor symmetric, if

A · C [B] = A⊺ · C [B] = A · C [B⊺] ∀A, B (2.30)

holds with A and B being tensors of second order and their transposition
is defined in Equation (2.6). Hyperelasticity, i.e., postulating the existence
of a strain energy density function, implies the main symmetry of the
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2.7 Linear elasticity

stiffness C. A fourth-order tensor C is major symmetric, if

A · C [B] = B · C [A] ∀A, B (2.31)

holds. Based on the assumptions of linear elasticity and small deforma-
tions, the interaction between averaged microstructure descriptors and
the linear elastic anisotropic effective material behavior is investigated
within this work.
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Chapter 3

Tensoralgebra

3.1 Motivation

Euclidean tensors, i.e., tensor components 𝐴𝑖𝑗 associated with a fixed
orthonormal coordinate system {e𝑖}, defining A = 𝐴𝑖𝑗e𝑖 ⊗ e𝑗 , are
established descriptors for physical quantities in continuum mechan-
ics. Second- and fourth-order tensors have a special significance in
continuum mechancis, since stress and strain are described by second-
order tensors and linear constitutive laws can be represented as linear
mappings between tensors of second order. Tensors of fourth order
map second-order tensors linearly. A major contribution of this work is
the identification of suitable parameterizations for special fourth-order
tensors, namely fiber orientation tensors. The most important building
blocks are linear invariant decompositions, irreducible tensors and
material symmetry. Following Adams et al. (1992); Onat and Leckie
(1988); Jerphagnon et al. (1978), material modeling can be reduced to
the identification of irreducible tensors and definition of corresponding
evolution equations.

3.2 Linear invariant decomposition

Linear invariant decomposition of symmetric second-order tensors is a
common topic of continuum mechanics lessons. Applied to the stress
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3 Tensoralgebra

tensor, a linear invariant decomposition into the sum of a spherical and
a deviatoric part reads as

𝜎 = 1
3 tr (𝜎) I + dev (𝜎) (3.1)

= −𝑝 I + dev (𝜎) (3.2)

and can be motivated by the physical interpretation of the pressure 𝑝 and
remaining deviatoric stresses dev (𝜎) = 𝜎 − 1

3 tr (𝜎) I with the identity
on second-order tensors I defined by I [v] = v for all first-order tensors
v. Both parts are orthogonal and transform differently with respect to
rotations, i.e., actions of elements of the special orthogonal group 𝑆𝑂(3).
The spherical part is isotropic by definition, i.e.,

Q ⋆ (−𝑝 I) = −𝑝 I ∀Q ∈ 𝑆𝑂(3) (3.3)

holds, whereas the deviatoric stress transforms with respect to Q ∈
𝑆𝑂(3) by

Q ⋆ dev (𝜎) = Q dev (𝜎) Q−1. (3.4)

The scalar pressure and the deviatoric stress do not interact with each
other under the action of elements of 𝑆𝑂(3) and are called irreducible
tensors, being of order zero and two. Linear invariant decompositions
into irreducible tensors exist for tensors of arbitrary order and symmetry.
However, in this work fourth-order tensors with at least minor and
major symmetry are of special interest.

Different linear invariant decompositions are given in the literature,
see Rychlewski (2000); Forte and Vianello (1996); Olive et al. (2017). A
detailed discussion on specific decompositions defined by the selec-
tion of two pairs of symmetrization operators is given in Rychlewski
(2000) and utilized in Section 4.6.1. However, the so-called harmonic
decomposition is the most common decomposition (Forte and Vianello,
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3.2 Linear invariant decomposition

1996; Rychlewski, 2000; Böhlke and Brüggemann, 2001; Fernández and
Böhlke, 2019; Lobos et al., 2017; Backus, 1970; Baerheim, 1993; Boehler
et al., 1994; Mochizuki, 1988; Rychlewski, 2001; Lubarda and Chen, 2008)
and decomposes a minor and major symmetric fourth-order tensor C
into

C (ℎ1, ℎ2, H1, H2, H) =
ℎ1 P1 + ℎ2 P2 + (I ⊗ H1 + H1 ⊗ I) + J [H2] + H (3.5)

with

ℎ1 = P1 · C, ℎ2 = P2

‖P2‖2 · C, H = dev (C) (3.6)

and

H1 = 1
7 [5 dev (C) − 4 dev (V)] (3.7)

H2 = 1
7 [3 dev (C) − 2 dev (V)] (3.8)

based on the dilatational modulus C and the Voigt tensor V which are
given by

(C)𝑖𝑗 = (C)𝑖𝑗𝑘𝑘 (3.9)

(V)𝑖𝑗 = (C)𝑖𝑘𝑗𝑘 , (3.10)

see Cowin (1989). The isotropic projectors P1 and P2 are given by

P1 = 1
3I ⊗ I, P2 = IS − P1 (3.11)

with IS = 1
2

(︀
I + ITR

)︀
, I = e𝑖 ⊗ e𝑗 ⊗ e𝑖 ⊗ e𝑗 . (3.12)

The right index transpose operator for fourth-order tensors (·)TR is
defined by (A ⊗ B)TR = A ⊗ BT for arbitrary second-order tensors A,
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3 Tensoralgebra

B and the transpose of a second-order tensor (·)T. The deviatoric part
of a fourth-order tensor is defined in Spencer (1970); Kanatani (1984);
Böhlke (2001) and can be written as

dev (C) = C − 6
7sym(C ⊗ I) + 3

35 C · I sym(I ⊗ I). (3.13)

with the intermediate quantity C = C [I] and the operator sym(·) taking
the completely symmetric part of a tensor (Spencer, 1970). The isotropic
sixth-order tensor J in Equation (3.5) is defined by

J = 1
2(e𝑖 ⊗ e𝑗 + e𝑗 ⊗ e𝑖)

⊗ (e𝑗 ⊗ e𝑘 + e𝑘 ⊗ e𝑗)
⊗ (e𝑘 ⊗ e𝑖 + e𝑖 ⊗ e𝑘), (3.14)

see Forte and Vianello (1996); Böhlke and Brüggemann (2001).

Consequently, any minor and major symmetric fourth-order tensor C can
be decomposed into a unique set of irreducible tensors ℎ1, ℎ2, H1, H2, H
of orders zero, zero, two, two and four. Following Forte and Vianello
(1996, Equation (9)), the harmonic parts obtained from Equation (3.5)
transform with respect to a rotation Q ∈ 𝑆𝑂(3) with

Q ⋆ C = (ℎ1, ℎ2, Q ⋆H1, Q ⋆H2, Q ⋆H) . (3.15)

3.3 Irreducible tensors

Irreducible tensors are completely (index) symmetric and traceless
(Spencer, 1970; Forte and Vianello, 1996; Jerphagnon et al., 1978; Adams
et al., 1992; Cowin, 1989; Rychlewski, 2000). Due to the complete
symmetry and the condition of the vanishing trace, the number of
independent components of the tensors obtained by the decomposition
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3.4 Material symmetry

in Equation (3.5) are

dim (ℎ1) = 1, dim (ℎ2) = 1, dim (H1) = 5, (3.16)

dim (H2) = 5, dim (H) = 9 (3.17)

and reflect the dimension of the associated subspaces. In the absence of
additional (material) symmetry a generic irreducible tensor of second
order reads as

F (𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞5) =

⎡⎢⎣ 𝑞1 𝑞5 𝑞4

𝑞2 𝑞3

sym −(𝑞1 + 𝑞2)

⎤⎥⎦ e𝑖 ⊗ e𝑗 . (3.18)

and an irreducible tensor of fourth order is given by

F (𝑝1, ...𝑝9) = (3.19)⎡⎢⎢⎢⎣
−(𝑝1 + 𝑝2) 𝑝1 𝑝2 −

√
2 (𝑝4 + 𝑝5)

√
2 𝑝6

√
2 𝑝8

−(𝑝1 + 𝑝3) 𝑝3
√

2 𝑝4 −
√

2 (𝑝6 + 𝑝7)
√

2 𝑝9
−(𝑝2 + 𝑝3)

√
2 𝑝5

√
2 𝑝7 −

√
2 (𝑝8 + 𝑝9)

completely symmetric

⎤⎥⎥⎥⎦
B𝜉 ⊗ B𝜁

in Kelvin-Mandel notation and short hand notation for completely
symmetric tensors defined in Appendix B.1 and derived in Section 4.6.
Representations of irreducible tensors in Equations (3.18) and (3.19)
combined with the harmonic decomposition in Equation (3.5) can be
used to parameterize fourth-order tensors.

3.4 Material symmetry

The concept of material symmetries is an important tool for understand-
ing consequences of the structured composition of matter (Jerphagnon

35



3 Tensoralgebra

et al., 1978). Even in the absence of such a structured composition, artifi-
cial assumption of material symmetry offers the possibility to reduce the
dimensionality of a problem and to gain in this way simplified insights
into underlying principles.

A quantity C is symmetric with respect to a rotation, if the rotation does
not affect the quantity, i.e.,

Q ⋆ C = C (3.20)

holds. If Equation (3.20) is true for a specific Q, this rotation is said to be
part of the symmetry group of C, denoted by 𝒮(C). Consequently, the
symmetry group 𝒮(C) of a quantity C is defined by

Q ⋆ C = C ∀ Q ∈ 𝒮(C). (3.21)

Forte and Vianello (1996) showed that eight material symmetries, i.e.,
eight distinct closed groups of elements of 𝑆𝑂(3), exist. These material
symmetries are also referred to as material symmetry classes and their
hierarchy is depicted in Fig. 3.1, following Bóna et al. (2007); Olive et al.
(2022); Abramian et al. (2020); Weber et al. (2019). Zheng and Boehler
(1994) discuss connections to the concept of point-groups. Visualizations
of the material symmetry classes based on symmetry planes are given in
Table 3.1 following Francois et al. (1998).

Material symmetry of a quantity simplifies its parameterization by
reducing the number of independent components. Following Forte
and Vianello (1996, Equation (10)), the symmetry group of a tensorial
quantity C is the intersection of the symmetry groups of its harmonic
parts, i.e.,

𝒮 (C) = 𝒮 (H1) ∩ 𝒮 (H2) ∩ 𝒮 (H) . (3.22)

Therefore, a physical quantity C might be parameterized by the combina-
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isotropic

cubictransv. isotropic

tetragonal

trigonal

orthotropic

monoclinic

triclinic

Figure 3.1: Hierarchy of material symmetries following Abramian et al. (2020); Francois
et al. (1998). Arrows indicate inclusion, i.e., an arrow points from a symmetry classes with
strong symmetry to a symmetry class which is included.

tion of a linear invariant decomposition and a set of irreducible tensors
potentially constrained by material symmetry. Essential building blocks
for such a parameterization are irreducible second- and fourth-order
tensors constrained by material symmetry.

3.5 Irreducible tensors constrained by material
symmetry

This section is based on personal communication with Prof. Dr.-Ing.
habil. Thomas Böhlke, (Böhlke, 2021). Derived from the generic parame-
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terizations of irreducible tensors in Equations (3.18) and (3.19), material
symmetries lead to the tensors listed below.

3.5.1 Second-order tensors

Triclinic, monoclinic and orthotropic irreducible second-order tensors
Ftricl, Fmono, Fortho coincide and can not be distinguished, i.e., F =
Ftricl = Fmono = Fortho holds. In other words, orthotropy is the weakest
possible material symmetry an irreducible second-order tensor can have.
This observation is directly related to the observation that any symmetric
second-order tensor can be diagonalized. If an ordering convention for
the eigenvectors based on eigenvalues applies, exactly four right-handed
and four left-handed coordinate systems exist (Hasan et al., 2001; Bro
et al., 2008). These are called eigensystems and lead to representations
of Equation (3.18) with vanishing off-diagonal entries in the component
matrix reading as

F (𝑞1, 𝑞2, Q (𝑞3, 𝑞4, 𝑞5)) = (3.23)⎡⎢⎣ 𝑞1 0 0
𝑞2 0

sym −(𝑞1 + 𝑞2)

⎤⎥⎦ Q̂ e𝑖 ⊗ Q̂ e𝑗

with an orthogonal tensor

Q̂ (𝑞3, 𝑞4, 𝑞5) = v̂𝑖 ⊗ e𝑖 (3.24)

defined by three scalars and mapping the arbitrary but fixed basis {e𝑖}
onto an eigensystem {v̂𝑖}. This observation highlights the relevance of
Equation (3.22), since the symmetry group of one single harmonic part
does not define the symmetry group of the decomposed quantity. How-
ever, eigensystems of a decomposed quantity, such as C in Equation (3.5)
are also eigensystems of the harmonic parts. Hereafter, the dependence
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3.5 Irreducible tensors constrained by material symmetry

of the eigensystem on usually three scalar parameters is no longer stated
explicitly and the representations are given directly in an eigensystem
{v̂𝑖}.

A transversely isotropic irreducible tensor of second order in an eigen-
system which first axis v1 is aligned with the transversely isotropic axis
is given by

Ftransv (𝑞1) = 𝑞1

⎡⎢⎣ 1 0 0
−1/2 0

sym −1/2

⎤⎥⎦ v̂𝑖 ⊗ v̂𝑗 . (3.25)

The definition of a valid eigensystem in the transversely isotropic case
only requires two scalars, since any rotation about the transversely
isotropic axis leads to an equally admissible eigensystem. The represen-
tation in Equation (3.25) coincides with those of trigonal and tetragonal
irreducible tensors of second order, i.e., Ftransv = Ftetra = Ftrigo holds.
Irreducible tensors of second order with isotropic or cubic material
symmetry vanish, i.e., Fcubic = Fiso = 0.

3.5.2 Fourth-order tensors

Departing from the generic, i.e., triclinic, case in Equation (3.19) a
monoclinic irreducible tensor of fourth-order is given by

Fmono z (𝑝1, 𝑝2, 𝑝3, 𝑝8, 𝑝9) = (3.26)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(𝑝1 + 𝑝2) 𝑝1 𝑝2 0 0
√

2 𝑝8

−(𝑝1 + 𝑝3) 𝑝3 0 0
√

2 𝑝9

−(𝑝2 + 𝑝3) 0 0 −
√

2 (𝑝8 + 𝑝9)

completely symmetric

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Bv̂
𝜉 ⊗ Bv̂

𝜁
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in a coordinate system {v̂𝑖} with v̂3 aligned with the normal of the
monoclinic symmetry plane, see Table 3.1. The constraints of material
symmetry for weaker symmetries lead to the irreducible tensors

Fortho (𝑝1, 𝑝2, 𝑝3) = (3.27)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(𝑝1 + 𝑝2) 𝑝1 𝑝2 0 0 0
−(𝑝1 + 𝑝3) 𝑝3 0 0 0

−(𝑝2 + 𝑝3) 0 0 0

completely symmetric

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Bv̂
𝜉 ⊗ Bv̂

𝜁 ,

Ftrigo xy (𝑝3, 𝑝9) = (3.28)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

8 𝑝3 −4 𝑝3 −4 𝑝3 0 0 0
3 𝑝3 𝑝3 0 0

√
2 𝑝9

3 𝑝3 0 0 −
√

2 𝑝9

completely symmetric

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Bv̂
𝜉 ⊗ Bv̂

𝜁 ,

Ftetra x (𝑝1, 𝑝3) = (3.29)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 𝑝1 𝑝1 𝑝1 0 0 0
−(𝑝1 + 𝑝3) 𝑝3 0 0 0

−(𝑝1 + 𝑝3) 0 0 0

completely symmetric

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Bv̂
𝜉 ⊗ Bv̂

𝜁 ,
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Ftransv x (𝑝3) = 𝑝3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

8 −4 −4 0 0 0
3 1 0 0 0

3 0 0 0

completely symmetric

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Bv̂
𝜉 ⊗ Bv̂

𝜁 , (3.30)

and

Fcubic (𝑝1) = 𝑝1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 1 1 0 0 0
−2 1 0 0 0

−2 0 0 0

completely symmetric

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Bv̂
𝜉 ⊗ Bv̂

𝜁 (3.31)

represented in coordinate systems aligned along characteristic axes of
the material. Isotropic irreducible tensors vanish by definition. The
superscripts of the irreducible tensors Fmono z, Ftrigo xy, Ftetra x and Ftransv x

indicate, that for these material symmetry groups multiple minimal
representations by tensor components exist. These representation are
equivalent, but differ by the mapping of the axes of the coordinate
system {v̂𝑖} and the charactersitic axes of the material, see Table 3.1.
The representations in Equations (3.26) to (3.31) fit the alignment of the
visualizations in Table 3.1. The aligment of the dominant axes of the
trigonal, tetragonal and transversely isotropic representations with v̂1

and the alignment of the symmetry plane normal of the monoclinic case
with v̂3 proves to be practical later in this work. Representations of fiber
orientation tensors of planar fiber-reinforced composites are directly
connected to the selected representations if the out-of-plane normal of
the plane of planarity is aligned with the local v̂3 axis and interpreted
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as monoclinic symmetry plane. The fiber direction of unidirectional-
reinforced composites is typically associated with either the v̂3 or v̂1 axis.
In this work, the latter convention is followed.
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3.5 Irreducible tensors constrained by material symmetry

Material Symmetry Symmetry Planes Generators

Triclinic
v1

v2
v3

I

Monoclinic
v1

v2
v3

Q𝜋
e3

Orthotropic
v1

v2
v3

Q𝜋
e1 , Q𝜋

e2

Trigonal
v1

v2
v3

Q𝜋
e3 , Q2𝜋/3

e1

Tetragonal
v1

v2
v3

Q𝜋
e1 , Q3𝜋/2

e1

Transversely isotropic
v1

v2
v3

Q𝜋
e2 , Q𝜙

e1

Cubic
v1

v2
v3

Q3𝜋/2
e1 , Q2𝜋/3

(e1+e2+e3)/
√

3

Isotropic
v1

v2
v3

Q𝜙
v

Table 3.1: Visualization of symmetry planes of material symmetry classes. The specified
non-unique generators are rotations, i.e., elements of 𝑆𝑂(3), which generate the complete
symmetry group, if combined exhaustively (Weber et al., 2019). Two rotations Q1 and Q2
are combined to a third one Q3 by linear contraction, i.e., Q3 = Q1Q2. The rotation Q𝜋

e3
rotates about the axis e3 by the angle 𝜋 and the rotation Q𝜙

v rotates about the arbitrary
axis v by the arbitrary but non-vanishing angle 𝜙.
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Chapter 4

Variety of Fiber Orientation
Tensors 1

4.1 Introduction

The microstructure of fiber reinforced composites significantly affects the
effective mechanical properties of the compound. Two local microstruc-
ture descriptors commonly used to predict the effective properties are
the fiber volume fraction and the fiber orientation distribution. The local
fiber orientation distribution is completely defined by a fiber orientation
distribution function (FODF). However, in practical applications the
FODF is usually approximated by a limited number of fiber orientation
tensors, as tensor representations fit into the continuum mechanics
framework. Multiple kinds of orientation tensors exist (Kanatani, 1984).
Practical applications related to fiber orientations include both identifica-
tion of the fiber orientation information by experimental methods (Pinter
et al., 2018) or process simulation (Meyer et al., 2020a) and usage of the
orientation information in full field (Görthofer et al., 2020), mean field
(Müller and Böhlke, 2016; Kehrer et al., 2020) or damage simulations
(Schemmann et al., 2018b). Both groups of applications, identification

1 This chapter reproduces (Bauer and Böhlke, 2022c), i.e., Bauer, J. K., Böhlke, T., 2022.
Variety of fiber orientation tensors. Mathematics and Mechanics of Solids 27 (7),
1185–1211, 10.1177/10812865211057602. Reproduced with permission. ©2021 The
Authors. Published by SAGE Publications Ltd under CC BY-NC 4.0
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and usage of orientation information, benefit from a well known variety
of fiber orientation tensors. If the variety of fiber orientation tensors is
well defined, the identified orientation tensors can be assessed and the
space of input parameters of methods predicting effective mechanical
properties is set. The variety of second-order fiber orientation tensors
is well known (Cintra Jr and Tucker III, 1995; Chung and Kwon, 2002;
Cowin, 1985) and used, e.g., in Köbler et al. (2018); Görthofer et al.
(2020); Köbler et al. (2021) to generate clear pictures of the dependence
of mechanical properties on the second-order directional measures.
However, concise descriptions and parameterizations of fourth-order
fiber orientation tensors are rare. The variety of transversely isotropic
fourth-order orientation tensors is identified by Nomura et al. (1970)
and used in Müller and Böhlke (2016); Jack and Smith (2008). Müller
and Böhlke (2016) showed that the identification of effective mechanical
properties based on second-order orientation tensors yields insufficient
accuracy (Breuer et al., 2019). For a given second-order orientation tensor,
closure approximations (Advani and Tucker III, 1990; Han and Im, 1999;
Cintra Jr and Tucker III, 1995; Chung and Kwon, 2002; Montgomery-
Smith et al., 2011a) identify a corresponding fourth-order orientation
tensor based on assumptions. Closure approximations are used by, e.g.,
Jack and Smith (2007; 2008); Buck et al. (2015); Müller and Böhlke (2016);
Goldberg et al. (2017) to model mechanical properties. Breuer et al. (2019)
assess the reconstruction of FODFs based on closure approximations and
minimum entropy method used by Böhlke (2005); Müller and Böhlke
(2016). This paper addresses the research question on the variety of
fiber orientation tensors of order two and four. The paper has review
character and is structured as follows: The definition of FODF and fiber
orientation tensors is followed by a review on the variety of second-order
orientation tensors, leading to the orientation triangle. The classical
parameterization of the orientation triangle is framed and parameteri-
zations which highlight the isotropic state and material symmetry are
motivated. Implications of index symmetry of fourth-order tensors
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4.2 Fiber orientation

in Mandel (Mandel, 1965) notation are discussed, before fourth-order
orientation tensors are treated as special Hooke tensors and harmonic de-
composition is applied. This translates the reasoning of Kanatani (1984)
into continuum mechanics notation, leading to simplified notation with
focus on the isotropic state. A parameterization of a generic fourth-order
orientation tensor is given based on a parameterization of the second-
order orientation tensor in combination with a triclinic structure tensor.
Admissible orientation states are identified by demanding positive semi-
definiteness. Results of Nomura et al. (1970); Müller and Böhlke (2016)
on admissible transversely isotropic orientation tensors are reproduced
and framed by coefficient-wise constraints. Minimal sets of discrete fiber
orientations leading to special transversely isotropic orientation states
are presented and discussed. The variety of orthotropic fourth-order
fiber orientation tensors is visualized. Transversely isotropic and planar
orthotropic fourth-order orientation tensors are highlighted as limiting
orthotropic cases and admissible parameter ranges are specified. A
compact parameterization of planar orthotropic fourth-order orientation
tensors is given. Minimal sets of discrete planar orthotropic fiber orien-
tations visualize the character of fourth-order orientation information.
The variety of planar fourth-order fiber orientation tensors including a
parameterization and admissible ranges is given. This paper closes with
notes on a small set of closure approximations which are contrasted by
the variety of fourth-order orientation tensors.

4.2 Fiber orientation

Given a reference volume (RV) of arbitrary size and shape, which might
be interpreted as the part of a body ℬ centered around position x. The
orientation of axisymmetric fibers inside this reference volume can be
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4 Variety of Fiber Orientation Tensors

described by the fiber orientation distribution function (FODF)

𝜓 : 𝒮2 → R, with 𝒮2 =
{︀

n ∈ R3 | ‖n‖ = 1
}︀

(4.1)

mapping any direction n onto a scalar value 𝜓 (n). 𝒮2 is the two-
dimensional surface of a unit sphere parameterized by, e.g., a unit vector
n. The function 𝜓 (n) is non-negative, i.e.

𝜓 (n) ≥ 0, ∀ n ∈ 𝒮2 (4.2)

holds and normalization of 𝜓 (n) implies∫︁
𝒮2
𝜓 (n) d𝑛 = 1. (4.3)

As fibers have a direction but no attitude, 𝜓 (n) is symmetric, i.e.

𝜓 (−n) = 𝜓 (n) , ∀ n ∈ 𝒮2 (4.4)

holds (see Görthofer et al. (2020); Advani and Tucker III (1987)). The
fiber orientation distribution function solely describes the orientation of
the fibers. Being a one-point statistic information, the FODF contains
no additional information on, e.g., the spatial arrangement of the fibers
inside the reference volume. In a heterogeneous material with spatially
varying microstructure, the FODF usually is influenced by the size of
the reference volume (see, e.g., size parameter in Görthofer et al. (2019,
Figure 4) ). If the fibers have identical volumes, e.g., because of identical
length and constant cross section, the volume fraction 𝑐ℱ of those fibers
pointing through ℱ ⊆ 𝒮2 on all fibers, is given by

𝑐ℱ = 1
𝑉f

∫︁
𝑉ℱ

d𝑉 =
∫︁

ℱ
𝜓 (n) d𝑛 (4.5)
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4.3 Fiber orientation

with the volume of all fibers 𝑉f and 𝑉ℱ being the volume of fibers
pointing through ℱ (see Schemmann et al. (2015); Müller and Böhlke
(2016)). Equation (4.5) demonstrates the transformation of a volume
average, e.g., over 𝑉ℱ , into an average over corresponding parts of
the unit sphere. Volume averages on a reference volume 𝑉RV of a field
quantity q (x) which is axisymmetric about a spatially varying principle
axis n (x) can be transformed into an average over 𝒮2

1
𝑉RV

∫︁
𝑉RV

q (x) d𝑉 =
∫︁

𝒮2
𝜓 (n) q (n) d𝑛, (4.6)

if q can be parameterized solely in n. Similar reasoning for volume
averages over the special orthogonal group 𝑆𝑂(3) in context of crys-
tal orientation distribution functions (CODF) are extensively used in
literature, see, e.g., Böhlke (2005); Fernández and Böhlke (2019). ODF
averages are limited to axisymmetric quantities since FODF is defined
on directions. In contrast, CODF can be interpreted as rotations of
coordinate systems and therefore induce no restriction on the quantity
which is to be averaged. The FODF reflects the material symmetry of the
microstructure. As a consequence,

𝜓 (S ⋆ n) = 𝜓 (n) ∀ S ∈ 𝑆RV ⊆ 𝑆𝑂(3) (4.7)

holds. Equation (4.7) implies that 𝜓 (n) is symmetric with respect to all
rotations S which are contained in the symmetry group of the microstruc-
ture 𝑆RV being a subset of 𝑆𝑂(3). Following Forte and Vianello (1996),
eight different material symmetries exist and tensor representations of
Hooke tensors following these symmetries are given in, e.g. Böhlke
(2001). An inclusion scheme, depicting the hierarchy of the symmetry
classes combined with illustrations of the symmetry planes, can be found
in Francois et al. (1998, Fig. 4). Implications of material symmetries on
second-order tensors are summarized in Appendix A.1.

49



4 Variety of Fiber Orientation Tensors

4.3 Orientation tensors of first kind

In the standard framework of continuum mechanics, physical quantities
are expressed as invariant tensors. This enables the use of known
transformation rules and simplifies the storage in computer memory.
Kanatani (1984) approximates experimentally obtained directional data
by tensor series and Advani and Tucker III (1987) defines orientation
tensors of Kanatani first kind (Kanatani, 1984) by

N⟨𝑘⟩ =
∫︁

𝒮2
𝜓 (n) n⊗𝑘 d𝑛 (4.8)

with n⊗𝑘 being the 𝑘-th moment of n. For example, the resulting second-
and fourth-order tensors are

N = N⟨2⟩ =
∫︁

𝒮2
𝜓 (n) n ⊗ n d𝑛 (4.9)

N = N⟨4⟩ =
∫︁

𝒮2
𝜓 (n) n ⊗ n ⊗ n ⊗ n d𝑛. (4.10)

Equation (4.8) can be interpreted as a weighted summation of moment
tensors. The moment tensor represents the tensorial character of a spe-
cific direction and weights are specified by the distribution information
of the FODF. It follows from Equation (4.8) that N and N are completely
symmetric with respect to index permutations. Odd orientation tensors
vanish due to the symmetry of 𝜓 (n) and higher order tensors contain
all tensors of lower order as

N⟨𝑘−2⟩ = N⟨𝑘⟩ [I] (4.11)

holds for 2 ≤ 𝑘 with the identity on second-order tensors I. As a
consequence of the normalization of both 𝜓 (n) and n, the limiting case
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4.4 Orientation tensors of third kind

of Equation (4.11) yields

N · I = tr (N) = 1. (4.12)

Orientation tensors of Kanatani first kind (Kanatani, 1984) are commonly
used to represent experimentally obtained directional data, e.g., from
computer tomography scans or results of flow simulations (Görthofer
et al., 2019).

4.4 Orientation tensors of third kind

The FODF can be expressed as a tensorial Fourier series

𝜓 (n) = 1
4𝜋

∞∑︁
𝑘=0

D̂⟨𝑘⟩ · n⊗𝑘 (4.13)

which is called spherical harmonic expansion (Kanatani, 1984, page 154)
and introduces orientation tensors of Kanatani third kind (Kanatani,
1984)

D̂⟨𝑘⟩ = 2𝑘 + 1
2𝑘

(︂
2𝑘
𝑘

)︂
dev

(︀
N⟨𝑘⟩

)︀
. (4.14)

Constructing D̂⟨𝑘⟩ in Equation (4.14) contains two steps, first taking
the deviatoric part of N⟨𝑘⟩ and second, scaling with factors for the
series expansion given by 2𝑘+1

2𝑘

(︀2𝑘
𝑘

)︀
. Skipping the second step, defines

orientation tensors of third kind, as done by, e.g., Müller and Böhlke
(2016), as

D⟨𝑘⟩ = dev
(︀
N⟨𝑘⟩

)︀
. (4.15)
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4 Variety of Fiber Orientation Tensors

In combination with Equations (4.11) and (4.12) this leads for 𝑘 ∈ [2, 4]
to

D⟨2⟩ = dev (N) = N − 1
3Itr (N) (4.16)

= N − Niso (4.17)

D⟨4⟩ = dev (N) = N − 6
7sym ((N [I]) ⊗ I)

+ 3
35sym (I ⊗ I) tr (N [I]) (4.18)

= N − 6
7sym (N ⊗ I) + 3

35sym (I ⊗ I) (4.19)

with the isotropic orientation tensor of second order

Niso = 1
3I. (4.20)

The operator dev(·) extracts the deviatoric part and the operator sym(·)
extracts the totally symmetric part with respect to index symmetry.
Definitions of the operators sym(·) and dev(·) for higher order tensors
are given in Spencer (1970). In other communities, alternative repre-
sentations of directional data are common. The connection to spherical
harmonics in the context of quantitative texture analysis is discussed in
Fernández and Böhlke (2019); Breuer et al. (2019); Kanatani (1984); Jack
and Smith (2008).

4.5 Variety of second-order orientation tensors

Equations (4.2) and (4.8) imply that orientation tensors of Kanatani first
kind (Kanatani, 1984) and second order N are symmetric and positive
semi-definite. As a consequence, N can be diagonalized, i.e., pairs
of eigenvalues 𝜆𝑖 with 𝜆𝑖 ≥ 0 and orthonormal eigenvectors v𝑖 for
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4.5 Variety of second-order orientation tensors

𝑖 ∈ [1, 2, 3] exist, such that

N = 𝑁
(2)
𝑖𝑗 e𝑖 ⊗ e𝑗 =

3∑︁
𝑖=1

𝜆𝑖v𝑖 ⊗ v𝑖 =

⎡⎢⎣ 𝜆1 0 0
𝜆2 0

sym 𝜆3

⎤⎥⎦ v𝑖 ⊗ v𝑗 (4.21)

holds and there exists a rotation defined by an orthogonal tensor

Q = v𝑖 ⊗ e𝑖 (4.22)

mapping the arbitrary but fixed basis {e𝑖} onto the basis {v𝑖}. In the
following, the orthonormal basis {v𝑖} spanned by the eigenvectors is
called orientation coordinate system. The arbitrary ordering convention
of the eigenvalues

𝜆3 ≤ 𝜆2 ≤ 𝜆1 (4.23)

is common in the literature (see Goldberg et al. (2017); Mentges et al.
(2021)). The constraint in Equation (4.12) is equivalent to

𝜆1 + 𝜆2 + 𝜆3 = 1 (4.24)

and reduces the number of independent components of N from six
to five. The coordinate system {v𝑖} or equivalently the mapping Q is
defined by three scalars, leaving two scalars specifying structural infor-
mation on fiber orientations inside the orientation coordinate system. As
a consequence, the variety of N can be expressed as a two dimensional
space known as the orientation triangle, e.g., parameterized in pairs
(𝜆1, 𝜆2), in combination with a mapping Q which defines the orientation
coordinate system. Information of N is limited to the definition of a
coordinate system and two half axes of an ellipsoid aligned with theses
coordinate axes, see Cowin (1985). The third half axis of the ellipsoid is
defined by Equation (4.24). The weakest material symmetry which can
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Figure 4.1: (a) Constraints defining the orientation triangle (b) Material symmetries in the
orientation triangle (Cintra Jr and Tucker III, 1995)

be described by N is orthotropy (see Cowin (1985) or Appendix A.1).

Representations of orientation triangles are given, e.g., in Cintra Jr and
Tucker III (1995); Chung and Kwon (2002); Goldberg et al. (2017); Köbler
et al. (2018) as well as in Figure 4.1a. An alternative visualization
is given by the orientation invariant map in Chung and Kwon (2002,
Figure 1b). The triangle in Figure 4.1a is only one of possible orientation
triangles and is called standard orientation triangle. The boundaries of
the triangle are labeled in Figure 4.1a and follow directly from Equations
(4.23) and (4.24) and 0 ≤ 𝜆3. Following Cintra Jr and Tucker III (1995),
vertices and edges of the triangle are discussed, based on Figure 4.1b.
The vertices A, B and C are given by the extremal orientation states,
which are isotropic, unidirectional and planar isotropic. Starting from a
planar isotropic state (𝜆1 = 𝜆2 = 1/2, 𝜆3 = 0) at vertex C, moving along
the orange edge towards vertex A, 𝜆3 increases while 𝜆1 and 𝜆2 decrease
uniformly until the isotropic state (𝜆1 = 𝜆2 = 𝜆3) is reached. Continuing
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4.5 Variety of second-order orientation tensors

from vertex A along the edge towards vertex B, the largest eigenvalue
𝜆1 increases while 𝜆2 and 𝜆3 decrease uniformly until the unidirectional
state (𝜆1 = 1, 𝜆2 = 𝜆3 = 0) is reached. All states along the edges CA and
AB have at least two identical eigenvalues and therefore are transversely
isotropic with principle axes being v3 and v1 respectively. The material
symmetries of points of the orientation triangle are visualized in 4.1b
and discussions can be found in Cowin (1985); Cintra Jr and Tucker III
(1995). The states along the edge BC are planar as 𝜆3 vanishes. Starting
from vertex B along the edge towards vertex C, 𝜆1 decreases and 𝜆2

increases until both are equal. All points inside the triangle including
the edge between vertex B and C are orthotropic. In summary, two edges
are transversely isotropic, one edge is planar and one point is isotropic.

The triangles in Figures 4.1a and 4.1b are projections of one sixth of a
orientation plane in the three-dimensional space spanned by {v𝑖} given
in Figure 4.2a. For each point in the orientation triangle, five correspond-
ing points with identical structural properties and different ordering
conventions of eigenvalues exist. To illustrate the redundancy which is
inherent in the orientation plane, a randomly chosen orientation state
with eigenvalues being any permutation of (1/2, 1/3, 1/6) is marked in
orange multiple times in Figures 4.2a and 4.2b. For each eigenvector
in {v𝑖}, transversely isotropic orientation states with principle axis v𝑖
are located along a straight line being the interSection of the orientation
plane and a plane with 𝜆𝑚 = 𝜆𝑛 for 𝑖 ̸= 𝑚 ̸= 𝑛. Planar states are found
at the interSection of the orientation plane and planes of one vanishing
eigenvalue. The central character of the isotropic state is reflected
by Figure 4.2a. The three-dimensional representation in Figure 4.2a
extends existing visualizations, e.g., in Goldberg et al. (2017, Figure 2), by
adding material symmetries and motivates alternative parameterizations
introduced in the next section.
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Figure 4.2: (a) Orientation plane, triangle and selected orientation states in the space
spanned by the eigenvalues of N (b) Plane, triangle, selected states and states constrained
by the norm of N in parameter space (𝛼1, 𝛼3) (c) Shared legend of Figures 4.2a and 4.2b

4.5.1 Parameterizations of the orientation triangle

The classic parameterization of the orientation triangle in eigenvalues 𝜆1

and 𝜆2 is

N (𝜆1, 𝜆2) = 𝜆1v1 ⊗ v1 + 𝜆2v2 ⊗ v2 + (1 − 𝜆1 − 𝜆2) v3 ⊗ v3 (4.25)

with

1
3 ≤ 𝜆1 ≤ 1 and

1
2(1 − 𝜆1) ≤ 𝜆2 ≤ min (𝜆1, 1 − 𝜆1) . (4.26)
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4.5 Variety of second-order orientation tensors

Introducing two transversely isotropic deviatoric structure tensors

Ftransv1 =

⎡⎢⎣ 1 0 0
−1/2 0

sym −1/2

⎤⎥⎦ v𝑖 ⊗ v𝑗 (4.27)

Ftransv3 =

⎡⎢⎣−1/2 0 0
−1/2 0

sym 1

⎤⎥⎦ v𝑖 ⊗ v𝑗 (4.28)

enables an alternative parameterization of the orientation triangle by

N (𝛼1, 𝛼3) = Niso + 𝛼1Ftransv1 + 𝛼3Ftransv3 (4.29)

with
0 ≤ 𝛼1 ≤ 2

3 and
𝛼1
2 − 1

3 ≤ 𝛼3 ≤ 0. (4.30)

The parameterization in Equation (4.29) highlights the central role of the
isotropic state, which is reached for 𝛼1 = 𝛼3 = 0. Positive values of 𝛼1

lead to a deviation from the isotropic state towards the unidirectional
state in direction v1. Deviation towards the planar isotropic state with
principle axis v3 , i.e., away from the unidirectional state in direction v3 is
described by 𝛼3. Figure 4.2b shows the orientation triangle as part of the
orientation plane in the parameter space (𝛼1, 𝛼3). The orientation plane
itself is part of those pairs of (𝛼1, 𝛼3) which lead to orientations with
norm less than one. If the separation into two transversely directions
is not required, Ftransv1 and Ftransv3 can be combined to a generally
orthotropic structure tensor of second order, leading to

N (�̂�, 𝑐) = Niso + Fortho (�̂�, 𝑐) . (4.31)
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4 Variety of Fiber Orientation Tensors

with

Fortho (�̂�, 𝑐) =

⎡⎢⎣ �̂� 0 0
− (�̂�+ 𝑐) 0

sym 𝑐

⎤⎥⎦ v𝑖 ⊗ v𝑗 (4.32)

A parameterization reflecting the arbitrariness of the ordering conven-
tion on 𝜆𝑖 and deploying barycentric coordinates is given as a function
of three non-negative weights 0 ≤ �̂�𝑖 with 𝑖 ∈ [1, 2, 3] and �̂�Σ =

∑︀3
𝑖=1 �̂�𝑖

by

N (�̂�1, �̂�2, �̂�3) = N
(︂
𝜆1 = �̂�1

�̂�Σ
, 𝜆2 = �̂�2

�̂�Σ

)︂
(4.33)

requiring �̂�Σ > 0. See Goldberg et al. (2017, Figure 2) for a visualization
of this parameterization. Each parameterization given in equations
(4.25), (4.29), (4.31) and (4.33) in combination with a rotation, following
Equation (4.22), can be used to represent all possible second-order
orientation tensors. A table with parameters of special points in all
parameterizations is given in Appendix A.2.

Parameterizations of all transversely isotropic N, not being restricted to
the standard orientation triangle, are given by

Ntransv (𝜆1) = N (𝜆1, 𝜆2 = (1 − 𝜆1) /2) (4.34)

Ntransv (𝛼1) = N (𝛼1, 𝛼3 = 0) . (4.35)

A parameterization of transversely isotropic N inside the orientation
triangle requires a piece-wise definition due to the kink at the isotropic
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4.6 Variety of fourth-order orientation tensors

state leading to

Ntransv (𝜆2) = (4.36)⎧⎨⎩(1 − 2𝜆2) v1 ⊗ v1 + 𝜆2v2 ⊗ v2 + 𝜆2v3 ⊗ v3 if 0 ≤ 𝜆2 ≤ 1
3 ,

𝜆2v1 ⊗ v1 + 𝜆2v2 ⊗ v2 + (1 − 2𝜆2) v3 ⊗ v3 if 1
3 < 𝜆2 ≤ 1

2 .

Planar second-order orientation tensors inside the orientation triangle
can be parameterized by, e.g.

Nplanar (𝛼1) = N
(︂
𝛼1, 𝛼3 = 𝛼1

2 − 1
3

)︂
(4.37)

=
(︂

1
2 + 3

4𝛼1

)︂
v1 ⊗ v1 +

(︂
1
2 − 3

4𝛼1

)︂
v2 ⊗ v2

with 0 ≤ 𝛼1 ≤ 2/3.

4.6 Variety of fourth-order orientation tensors

Equation (4.10) implies that N is completely (or totally) symmetric, i.e.,
any permutation of the indices

𝑁
(4)
𝑖𝑗𝑘𝑙 = 𝑁

(4)
perm(𝑖𝑗𝑘𝑙) (4.38)

holds for a representation with tensor coefficients N = 𝑁
(4)
𝑖𝑗𝑘𝑙 e𝑖 ⊗ e𝑗 ⊗

e𝑘 ⊗ e𝑙. Complete (index) symmetry reduces the number of independent
components of a generic fourth-order tensor in three dimensions from
81 = 34 to 15, as there are 15 =

(︀
𝑛+𝑘−1

𝑘

)︀
unordered ways of choosing a

combination of 𝑘 = 4 elements from a set of 𝑛 = 3 elements. Mandel
notation, introduced in Mandel (1965) and also known as normalized
Voigt notation (Mehrabadi and Cowin, 1990; Böhlke, 2001) enables
compact two-dimensional representations of fourth-order tensors with at
least minor symmetry. A fourth-order tensor A = 𝐴𝑖𝑗𝑘𝑙 e𝑖 ⊗ e𝑗 ⊗ e𝑘 ⊗ e𝑙
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is minor symmetric if it has both minor symmetries, i.e. 𝐴𝑖𝑗𝑘𝑙 = 𝐴𝑗𝑖𝑘𝑙 =
𝐴𝑖𝑗𝑙𝑘 holds. Introducing base tensors in an arbitrary Cartesian basis {e𝑖}
by

𝐵1 = 𝑒1 ⊗ 𝑒1, 𝐵4 =
√

2
2 (𝑒2 ⊗ 𝑒3 + 𝑒3 ⊗ 𝑒2) ,

𝐵2 = 𝑒2 ⊗ 𝑒2, 𝐵5 =
√

2
2 (𝑒1 ⊗ 𝑒3 + 𝑒3 ⊗ 𝑒1) , (4.39)

𝐵3 = 𝑒3 ⊗ 𝑒3, 𝐵6 =
√

2
2 (𝑒2 ⊗ 𝑒1 + 𝑒1 ⊗ 𝑒2) ,

a minor symmetric tensor A is represented by a six by six matrix of
coefficients 𝐴𝜉𝜁

A = 𝐴𝑖𝑗𝑘𝑙 e𝑖 ⊗ e𝑗 ⊗ e𝑘 ⊗ e𝑙 = 𝐴𝜉𝜁 B𝜉 ⊗ B𝜁 =⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐴1111 𝐴1122 𝐴1133
√

2𝐴1123
√

2𝐴1113
√

2𝐴1112

𝐴2211 𝐴2222 𝐴2233
√

2𝐴2223
√

2𝐴2213
√

2𝐴2212

𝐴3311 𝐴3322 𝐴3333
√

2𝐴3323
√

2𝐴3313
√

2𝐴3312√
2𝐴2311

√
2𝐴2322

√
2𝐴2333 2𝐴2323 2𝐴2313 2𝐴2312√

2𝐴1311
√

2𝐴1322
√

2𝐴1333 2𝐴1323 2𝐴1313 2𝐴1312√
2𝐴1211

√
2𝐴1222

√
2𝐴1233 2𝐴1223 2𝐴1213 2𝐴1212

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
B𝜉 ⊗ B𝜁 (4.40)

with 𝜉 and 𝜁 summing from 1 to 6. A Hooke tensor B is minor and major
symmetric, i.e., in addition to the minor symmetry condition it holds
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4.6 Variety of fourth-order orientation tensors

that 𝐵𝑖𝑗𝑘𝑙 = 𝐵𝑘𝑙𝑖𝑗 . The coefficient matrix of a Hooke tensor

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐵11 𝐵12 𝐵13
√

2𝐵14
√

2𝐵15
√

2𝐵16

𝐵12 𝐵22 𝐵23
√

2𝐵24
√

2𝐵25
√

2𝐵26

𝐵13 𝐵23 𝐵33
√

2𝐵34
√

2𝐵35
√

2𝐵36√
2𝐵14

√
2𝐵24

√
2𝐵34 2𝐵44 2𝐵45 2𝐵46√

2𝐵15
√

2𝐵25
√

2𝐵35 2𝐵45 2𝐵55 2𝐵56√
2𝐵16

√
2𝐵26

√
2𝐵36 2𝐵46 2𝐵56 2𝐵66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
B𝜉 ⊗ B𝜁 (4.41)

is symmetric and contains 21 independent parameters. Complete index
symmetry of N implies

N =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑁
(4)
11 𝑁

(4)
12 𝑁

(4)
13

√
2𝑁 (4)

14
√

2𝑁 (4)
15

√
2𝑁 (4)

16
𝑁

(4)
22 𝑁

(4)
23

√
2𝑁 (4)

24
√

2𝑁 (4)
25

√
2𝑁 (4)

26
𝑁

(4)
33

√
2𝑁 (4)

34
√

2𝑁 (4)
35

√
2𝑁 (4)

36

2𝑁 (4)
23 2𝑁 (4)

36 2𝑁 (4)
25

major symmetric 2𝑁 (4)
13 2𝑁 (4)

14
2𝑁 (4)

12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
B𝜉 ⊗ B𝜁 . (4.42)

In Equation (4.42) indices of redundant tensor coefficients are colored.
The redundancy implies that six coefficients in the upper left quadrant
and nine coefficients in the upper right quadrant of the coefficients in
Mandel notation define a completely symmetric tensor. This motivates a
short hand notation „completely symmetric“, which to the best of the
authors’ knowledge has not been used in the literature so far, see, e.g.,
Equation (4.55). As N contains N, the constraint on the trace of N in
Equation (4.12) reduces the number of independent components of N by
one to 14. In the literature erroneous implications of Equation (4.12) on
the number of independent components of N are found, see, e.g., Dray
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4 Variety of Fiber Orientation Tensors

et al. (2007). Expressing N by contraction of N, i.e.,

N =⎡⎢⎣ 𝑁
(4)
11 +𝑁

(4)
12 +𝑁

(4)
13 𝑁

(4)
16 +𝑁

(4)
26 +𝑁

(4)
36 𝑁

(4)
15 +𝑁

(4)
25 +𝑁

(4)
35

𝑁
(4)
16 +𝑁

(4)
26 +𝑁

(4)
36 𝑁

(4)
12 +𝑁

(4)
22 +𝑁

(4)
23 𝑁

(4)
14 +𝑁

(4)
24 +𝑁

(4)
34

𝑁
(4)
15 +𝑁

(4)
25 +𝑁

(4)
35 𝑁

(4)
14 +𝑁

(4)
24 +𝑁

(4)
34 𝑁

(4)
13 +𝑁

(4)
23 +𝑁

(4)
33

⎤⎥⎦
𝑒𝑖 ⊗ 𝑒𝑗 (4.43)

reveals the implication of Equation (4.12) on N to be 𝑁 (4)
11 +𝑁

(4)
22 +𝑁

(4)
33 +

2𝑁 (4)
12 + 2𝑁 (4)

13 + 2𝑁 (4)
23 = 1.

4.6.1 Harmonic decomposition

Linear invariant decompositions, including the classic harmonic decom-
position, are frequently used on Hooke tensors. The fourth-order orien-
tation tensor N is a Hooke tensor and has additional index symmetry.
Therefore, linear invariant decompositions can be applied to N to study
its structure. Literature on invariant decompositions of fourth-order
tensors is extensive, see, e.g. Backus (1970); Mochizuki (1988); Baerheim
(1993); Boehler et al. (1994); Forte and Vianello (1996); Olive et al. (2017)
or those focusing on Hooke tensors and addressing an engineering
audience Rychlewski (2000; 2001); Böhlke (2001).

Following Rychlewski (2000), a Hooke tensor H with 21 independent
components can be split into five parts (𝐾,𝐺,H1,H2,dev (H)) leading
to

H = 3𝐾P1 + 2𝐺P2 + sym1 (I ⊗ H1 + H1 ⊗ I) (4.44)

+ sym2 (I ⊗ H2 + H2 ⊗ I) + dev (H)

with isotropic projectors P1 and P2, two symmetrization operators
sym1(·), sym2(·) and the deviatoric operator dev(·). The symmetrization
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4.6 Variety of fourth-order orientation tensors

operators have to follow a special structure which is described in
Rychlewski (2000). Two common choices of the symmetrization
operators are used in the following. The numbers of independent
parameters of the five parts (𝐾, 𝐺, H1, H2, dev (H)) are (1, 1, 5, 5, 9)
with the scalar compression modulus 𝐾 and shear modulus 𝐺. The
isotropic parts are obtained by projections, i.e.

3𝐾 = P1 · H, 2𝐺 = 1
‖P2‖2 P2 · H = 1

5 P2 · H. (4.45)

The parts H1 and H2 depend on the choice of the operators sym1(·) and
sym2(·) but for any choice are only functions of the dilatational modulus
C and the Voigt tensor V which are given in index notation by

𝐶𝑖𝑗 = 𝐻𝑖𝑗𝑘𝑘 and 𝑉𝑖𝑗 = 𝐻𝑖𝑘𝑗𝑘 (4.46)

with C = 𝐶𝑖𝑗 e𝑖 ⊗ e𝑗 , V = 𝑉𝑖𝑗 e𝑖 ⊗ e𝑗 and H = 𝐻𝑖𝑗𝑘𝑙 e𝑖 ⊗ e𝑗 ⊗ e𝑘 ⊗ e𝑙.
The classic harmonic decomposition, e.g., used in Böhlke (2001), is
obtained for sym1(·) being the identity and sym2(·) symmetrizing the
only remaining index asymmetry of Hooke tensors, leading to

Hclassic
1 = 1

7 (5dev (C) − 4 dev (V)) (4.47)

Hclassic
2 = 1

7 (3dev (C) − 2 dev (V)) . (4.48)

Applying the classic harmonic decomposition to N reveals that the
dilatational modulus and the Voigt modulus of N coincide and both
are N. Following Cowin (1989), a Hooke tensor whose dilatational
modulus and Voigt tensor coincide, is said to fulfill the Cauchy relations.
Any completely symmetric tensor and thus also any orientation tensor
fulfills the Cauchy relations. Referencing Musgrave (1970), Cowin (1989)
states about the Cauchy relations „ [...] the relations do not hold for most
elastic materials, but only for materials which can be described as having
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4 Variety of Fiber Orientation Tensors

central-force laws operating between points of a simple lattice, [...] “.
This observation fits the model of fibers pointing towards the origin of a
unit sphere. A stiffness which is linear in the orientation tensors does not
have to fulfill the Cauchy relations as its deviatoric parts (H1 and H2 in
Equation (4.44)) might be multiples of N and therefore do not coincide.

Motivated by their orthogonality, Rychlewski (2000) proposes an alterna-
tive pair of symmetrization operators sym1(·) = sym(·) and sym2(·) =
I𝑆 − sym1(·) focusing on the index symmetry with the identity on sym-
metric fourth-order tensors I𝑆 . This choice leads to the corresponding
parts

Hindex
1 = 1

7 (dev (C) + 2 dev (V)) (4.49)

Hindex
2 = dev (C) − dev (V) . (4.50)

As a consequence, N can be decomposed into

N = 3�̂� P1 + 2�̂�P2 + sym
(︂

I ⊗ 3
7dev (N) + 3

7dev (N) ⊗ I
)︂

+ dev (N) (4.51)

= 3�̂� P1 + 2�̂�P2 + 2 sym
(︂

3
7dev (N) ⊗ I

)︂
+ dev (N) (4.52)

= 3�̂� P1 + 2�̂�P2 + 6
7 sym (dev (N) ⊗ I) + dev (N) . (4.53)

Due to the isotropy of the isotropic projectors, the linearity of the scalar
product and the normalization of 𝜓 (n), the projection of N on either of
the isotropic projectors is

P𝑖 · N = P𝑖 ·
∫︁

𝒮2
𝜓 (n) n⊗4 d𝑛 = P𝑖 · n⊗4 with 𝑖 ∈ [1, 2]. (4.54)

Consequently, the isotropic part of N can be determined analyzing the
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4.6 Variety of fourth-order orientation tensors

fourth-order moment n⊗4 which is given in Mandel notation by

n⊗4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑛4
1 𝑛2

1𝑛
2
2 𝑛2

1𝑛
2
3

√
2𝑛2

1𝑛2𝑛3
√

2𝑛3
1𝑛3

√
2𝑛3

1𝑛2

𝑛4
2 𝑛2

2𝑛
2
3

√
2𝑛3

2𝑛3
√

2𝑛1𝑛
2
2𝑛3

√
2𝑛1𝑛

3
2

𝑛4
3

√
2𝑛2𝑛

3
3

√
2𝑛1𝑛

3
3

√
2𝑛1𝑛2𝑛

2
3

completely symmetric

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
B𝜉 ⊗ B𝜁 (4.55)

leading to

3�̂� = P1 · n⊗4 = 1
3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
B𝜉 ⊗ B𝜁 ·

(︀
n⊗4)︀

= 1
3

(︀
𝑛4

1 + 2𝑛2
1𝑛

2
2 + 2𝑛2

1𝑛
2
3 + 𝑛4

2 + 2𝑛2
2𝑛

2
3 + 𝑛4

3
)︀

= 1
3 (4.56)

and

2�̂� = P2

‖P2‖2 · n⊗4 = 1
15

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 −1 0 0 0
−1 2 −1 0 0 0
−1 −1 2 0 0 0
0 0 0 3 0 0
0 0 0 0 3 0
0 0 0 0 0 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
B𝜉 ⊗ B𝜁 ·

(︀
n⊗4)︀

= 2
15 . (4.57)
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Thus, the isotropic part of any fourth-order fiber orientation tensor is
fixed due to the normalization of both 𝜓 (n) and n and is given by

Niso = 3�̂�P1 + 2�̂�P2 = 1
15

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 1 1 0 0 0
1 3 1 0 0 0
1 1 3 0 0 0
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
B𝜉 ⊗ B𝜁

= 7
35sym (I ⊗ I) (4.58)

leading to a compact representation of Equation (4.53) by

N = Niso + 6
7sym (dev (N) ⊗ I) + dev (N) . (4.59)

This representation emphasizes isotropy as the one element of directional
measures. Equation (4.59) reveals that in contrast to the well known har-
monic decomposition of Hooke tensors, the harmonic decomposition of
fourth-order orientation tensors only contains one irreducible subspace
of second order and the isotropic subspace degenerates from two scalars
to a constant value. Coincidence of Equations (4.59) and (4.19) is given
by

sym (I ⊗ dev (N)) = sym (I ⊗ N) − 1
3sym (I ⊗ I) . (4.60)

Interpretation of N as a Hooke tensor and applying the harmonic decom-
position translates the reasoning of Kanatani (1984) into the language
of continuum mechanics. N can be parameterized by two deviators,
one being of second and the other of fourth order. Both represent the
deviation from the isotropic state. Five of the 14 independent parameters
of N define the second-order deviator and nine define the fourth-order
deviator. Three independent parameters of the second-order deviator
define an orientation coordinate system in which both deviators have
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4.6 Variety of fourth-order orientation tensors

simplified representations (see the structure tensor in Equation (4.31)
and the following section).

4.6.2 Parameterizations and admissible parameter ranges

The space of fourth-order orientation tensors N, which fulfill the alge-
braic constraints imposed by Equation (4.8) and which can be derived
from an FODF, remains to be identified. The variety of N is known from
Section 4.5. Therefore, Equation (4.59) reveals that the analysis of the
variety of N is reduced to the identification of a fourth-order deviator
dev(N). This fourth-order deviator reflects the material symmetry of
the FODF and consequently also of N and N. As a consequence, special
representations of the fourth-order deviator in the orientation coordinate
system exist. Knowledge on material symmetries of Hooke tensors is
applied to identify admissible ranges of the fourth-order deviator. The
most general fourth-order orientation tensor has the structure

N (N, 𝑑1, ..., 𝑑9) = Niso + 6
7 sym (dev (N) ⊗ I) + Ftricl (𝑑1, ..., 𝑑9) (4.61)

with a triclinic deviatoric structure tensor

Ftricl (𝑑1, ..., 𝑑9) = (4.62)⎡⎢⎢⎢⎣
−(𝑑1 + 𝑑2) 𝑑1 𝑑2 −

√
2 (𝑑4 + 𝑑5)

√
2 𝑑6

√
2 𝑑8

−(𝑑1 + 𝑑3) 𝑑3
√

2 𝑑4 −
√

2 (𝑑6 + 𝑑7)
√

2 𝑑9
−(𝑑2 + 𝑑3)

√
2 𝑑5

√
2 𝑑7 −

√
2 (𝑑8 + 𝑑9)

completely symmetric

⎤⎥⎥⎥⎦
Bv
𝜉 ⊗ Bv

𝜁

which is a function of nine scalar parameters. The Mandel basis Bv
𝜉 ⊗Bv

𝜁

is spanned in the orientation coordinate system, i.e., for example the
first definition in Equation (4.39) becomes 𝐵1 = v1 ⊗ v1. Without loss of
generality, any orthotropic parameterization of N, e.g., Equation (4.35),
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Material symmetry reflected by
Symmetry class of 𝜓 N N
isotropic isotropic isotropic
cubic cubic isotropic
transv. iso. transv. iso. transv. iso.
tetragonal tetragonal transv. iso.
trigonal trigonal transv. iso.
orthotropic orthotropic orthotropic
monoclinic monoclinic orthotropic
triclinic triclinic orthotropic

Table 4.1: Implications of symmetry classes of the FODF 𝜓 on the second- and fourth-order
fiber orientation tensors

can be combined with Equation (4.62) yielding a set of parameters,
e.g., (𝛼1, 𝛼3, 𝑑1, ..., 𝑑9). If the FODF has a material symmetry, this
symmetry also applies to the orientation tensors and reduces the number
of independent parameters, see, e.g., the implications of transverse
isotropy on the parameterization of N in Equation (4.35). For a given
material symmetry class, the number of independent parameters is fixed.
All eight material symmetries imply different constraints on N. However,
e.g., triclinic, monoclinic and orthotropic symmetry of 𝜓 lead to identical
constraints on N. In other words, triclinic, monoclinic and orthotropic
symmetric second-order tensors coincide and are usually referred to as
orthotropic (see Appendix A.1). Implications of the symmetry of the
FODF on the symmetry of N and N are listed in Table 4.1. The hierarchy
of material symmetries including visualizations of symmetry planes is
given in Francois et al. (1998, figure. 4). As a consequence, index and
material symmetry constrain the space of N. The question on the variety
of fiber orientation tensors is reduced to the determination of admissible
parameter combinations. The flexible parameterization of fourth-order
fiber orientation tensors in Equation (4.61) is new, highlights the isotropic
state and can be easily adapted to stronger material symmetries. The re-
maining algebraic constraint on N is positive semi-definiteness. Positive
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4.6 Variety of fourth-order orientation tensors

semi-definiteness implies that

0 ≤ N · (A ⊗ A) (4.63)

holds for any second-order tensor A. Without loss of generality, A can be
restricted to symmetric second-order tensors as N is symmetric and skew,
and symmetric parts are orthogonal. As a consequence, Equation (4.63)
can be written in Mandel notation stating a root finding problem of the
characteristic polynomial of N of degree six. N is positive semi-definite
if all of its eigenvalues Λ𝑖 are non-negative, i.e.

0 ≤ Λ𝑖 for 𝑖 ∈ [1, ..., 6] (4.64)

holds. Explicit representations of the eigenvalues of N are given for a
limited number of material symmetries in Mehrabadi and Cowin (1990).
Eigenvalues of fourth-order tensors can not be identified from coefficient
matrices in Voigt notation. Mandel notation has to be used (Mehrabadi
and Cowin, 1990; Böhlke, 2001; Mandel, 1965).

4.6.3 Transversely isotropic case

A transversely isotropic harmonic, i.e., completely symmetric and com-
pletely traceless, tensor of fourth order with principle axis in direction
e1 is a multiple of the structure tensor

Ftransv1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

8 −4 −4 0 0 0
3 1 0 0 0

3 0 0 0

completely symmetric

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
B𝜉 ⊗ B𝜁 (4.65)

= Ftricl (−4, −4, 1, 0, 0, 0, 0, 0, 0) ,
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see, e.g., Fernández and Böhlke (2019, (75)), Lobos Fernández (2018,
A.3) or Müller and Böhlke (2016, (11)) and can be expressed in terms of
the triclinic structure tensor defined in Equation (4.62). In consequence,
transversely isotropic fourth-order orientation tensors are parameterized
in the orientation coordinate system by

Ntransv (𝛼, 𝜌) = Niso + 𝛼
6
7 sym

(︀
Ftransv1 ⊗ I

)︀
+ 𝜌 Ftransv1 = (4.66)

Niso +

⎡⎢⎢⎢⎢⎢⎢⎢⎣

6𝛼/7 + 8𝜌 𝛼/14 − 4𝜌 𝛼/14 − 4𝜌 0 0 0
−3𝛼/7 + 3𝜌 −𝛼/7 + 𝜌 0 0 0

−3𝛼/7 + 3𝜌 0 0 0

completely symmetric

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Bv
𝜉 ⊗ Bv

𝜁 .

The choice of the principle axis only effects the mapping Q, defined in
Equation (4.22), and parameterizations around v2 or v3 are equivalent,
see, e.g., Müller and Böhlke (2016). Demanding positive eigenvalues
leads to the set of admissible transversely isotropic fourth-order orienta-
tion tensors

𝒩 transv =
{︂
Ntransv (𝛼, 𝜌) | −1

3 ≤ 𝛼 ≤ 2
3 , (4.67)

1
8𝛼

2 − 1
42𝛼− 1

90 ≤ 𝜌 ≤ 1
56𝛼+ 1

60

}︂
given, e.g., in Nomura et al. (1970); Müller and Böhlke (2016). The set
𝒩 transv combined with the parameterization in Equation (4.66) represents
the variety of transversely isotropic fourth-order orientation tensors
(Müller and Böhlke, 2016).

An alternative derivation of 𝒩 transv is given by Nomura et al. (1970,
Equation (54)) deploying the Schwarz inequality on directional cosines
to identify a relationship between N and N. This relationship implies
constraints on the coefficients of N which are reformulated in the notation
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of this work as(︁
𝑁

(2)
𝑘𝑘 v𝑘 ⊗ v𝑘

)︁2
≤ 𝑁

(4)
𝑘𝑘 Bv

𝑘 ⊗ Bv
𝑘 ≤ 𝑁

(2)
𝑘𝑘 v𝑘 ⊗ v𝑘 (4.68)

for 𝑘 ∈ [1, 2, 3] without summation convention. To be precise, the set

𝒩 transv
cosines =

{︂
Ntransv | (4.69)(︁
𝑁

(2)
𝑘𝑘 v𝑘 ⊗ v𝑘

)︁2
≤ 𝑁

(4)
𝑘𝑘 Bv

𝑘 ⊗ Bv
𝑘 ≤ 𝑁

(2)
𝑘𝑘 v𝑘 ⊗ v𝑘

}︂
is identical to the set 𝒩 transv. However, for weaker symmetries, positive
definiteness is a stronger constraint than the conditions in Equation
(4.68). Comparison of second- and fourth-order moment tensors (see,
e.g., Equation (4.55)) motivates the reasoning behind Equation (4.68).
In order to frame the implications of positive semi-definiteness, Figure
4.3 contains additional subsets, lines and special points discussed in
the following. Interpretation of N as weighted summation of moment
tensors leads to coefficient-wise constraints on N (see Appendix A.3).
The set 𝒩 transv

linear , defined in Equation (A.15), fulfills these coefficient-wise
constraints. The set of transversely isotropic orientation states bounded
by the norm of a singular orientation is denoted by

𝒩 transv
norm =

{︀
Ntransv | 0 ≤ ‖N‖Frobenius ≤ 1

}︀
. (4.70)

Figure 4.3 visualizes the relation 𝒩 transv ⊂ 𝒩 transv
linear ⊂ 𝒩 transv

norm . Spe-
cial orientation states, such as the planar isotropic and unidirectional
state are marked in Figure 4.3 for reference. The isotropic state Niso,
defined in Equation (4.58), is located at 𝛼 = 𝜌 = 0 and is part of a
straight vertical line with 𝛼 = 0 which contains orientation states with
isotropic second-order tensor. Therefore, the set of transversely isotropic
orientation states with isotropic second-order orientation tensor is a
one dimensional subspace of 𝒩 transv with limiting orientation states
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Figure 4.3: Transversely isotropic fourth-order orientation states following Nomura et al.
(1970)

visualized in Figure 4.3 and given by

A = Ntransv (𝛼 = 0, 𝜌 = 1/60)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1/3 0 0 0 0 0
1/4 1/12 0 0 0

1/4 0 0 0

completely symmetric

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Bv
𝜉 ⊗ Bv

𝜁 (4.71)
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4.6 Variety of fourth-order orientation tensors

and

B = Ntransv (𝛼 = 0, 𝜌 = −1/90)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1/9 1/9 1/9 0 0 0
1/6 1/18 0 0 0

1/6 0 0 0

completely symmetric

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Bv
𝜉 ⊗ Bv

𝜁 . (4.72)

The states A and B can not be distinguished by means of second-order
orientation tensors as

A [I] = B [I] = Niso (4.73)

holds, but the states differ significantly. Figure 4.3 shows that for the spe-
cial case of transversely isotropy, only two second-order fiber orientation
tensors, namely those defined by 𝛼 = −1/3 and 𝛼 = 2/3, are connected
to a corresponding fourth-order fiber orientation tensor by a one-to-one
relation. The subsequent sections show that for weaker symmetries a
one-to-one correspondence solely remains for the unidirectional case.
Closure approximations, shortly discussed in Section 4.7, construct a
one-to-one mapping between a given second-order fiber orientation
tensor and an unknown fourth-order fiber orientation tensor. In Figure
4.3, three closures which are discussed in Section 4.7 are visualized
and indicate that the variety of transversely isotropic fourth-order fiber
orientation tensors is not fully reflected by the selected closures.

An intuitive interpretation of the orientation states described by A and
B in Equations (4.71) and (4.72) is obtained by minimal sets of discrete
fibers which are described by these fiber orientation tensors. The single
fibers can be visualized and represent minimal realisations of states in
𝒩 transv. To the best of the authors’ knowledge, visualization of fiber
orientation tensors by minimal discrete fiber arrangements is new. For
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4 Variety of Fiber Orientation Tensors

both the state A and the state B, an FODF can be build by a sum of delta
functions with homogeneous weights

𝜓 (n) = 1
𝑁

𝑁∑︁
𝑖

1
2 (𝛿 (n − n𝑖) + 𝛿 (n + n𝑖)) (4.74)

based on a set of discrete fiber directions {n𝑖 with 𝑖 ∈ [1, ..., 𝑁 ]}. Mini-
mal sets of discrete fiber directions leading to orientation tensors A and
B are

𝒟A =

⎧⎪⎨⎪⎩
⎡⎢⎣ 0

cos (𝜑𝑖)
sin (𝜑𝑖)

⎤⎥⎦ with 𝜑𝑖 = 2𝜋(𝑖− 1)
6 for 𝑖 ∈ [1, ..., 6]

⎫⎪⎬⎪⎭ (4.75)

+ 3

⎧⎪⎨⎪⎩
⎡⎢⎣1

0
0

⎤⎥⎦
⎫⎪⎬⎪⎭ and

𝒟B =

⎧⎪⎨⎪⎩
⎡⎢⎣cos (𝜋/4)

cos (𝜑𝑖)
sin (𝜑𝑖)

⎤⎥⎦ with 𝜑𝑖 = 2𝜋(𝑖− 1)
6 for 𝑖 ∈ [1, ..., 6]

⎫⎪⎬⎪⎭ (4.76)

given in the orientation coordinate system {v𝑖}. Visualizations of the
sets of directions are given in Figures 4.4b and 4.4c. Comparison of
the vector sets and inspection of Figures 4.4b, 4.4c and 4.3 allow for an
interpretation of the parameter 𝜌 in Equation (4.66). The lower the value
of 𝜌, the more pronounced are directions towards diagonals between the
principle axis of the orientation coordinate system.

4.6.4 Orthotropic case

An orthotropic harmonic tensor of fourth order is given by

Fortho (𝑑1, 𝑑2, 𝑑3) = Ftricl (𝑑1, 𝑑2, 𝑑3, 0, 0, 0, 0, 0, 0) (4.77)
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Figure 4.4: Visualization of minimal sets of discrete directions representing extremal
transversely isotropic orientation states which are N-isotropic: (a), (b) Two views on 𝒟A
leading to A, (b) 𝒟B leading to B

with Ftricl defined in Equation (4.62). As the weakest material symmetry
of second-order tensors is orthotropy, a parameterization of orthotropic
fourth-order orientation tensors is given by

Northo (N, 𝑑1, 𝑑2, 𝑑3) =

Niso + 6
7 sym (dev (N) ⊗ I) + Fortho (𝑑1, 𝑑2, 𝑑3) . (4.78)

The set of admissible orthotropic fourth-order orientation tensors is

𝒩 ortho =
{︁
Northo (N, 𝑑1, 𝑑2, 𝑑3) | (4.79)

0 ≤ Λ𝑖 ∀ Λ𝑖 in eigenvalues of Northo
}︁
,

see Section 4.6.2.
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4 Variety of Fiber Orientation Tensors

Parameterization of N following Equation (4.29) leads to

Northo (𝛼1, 𝛼3, 𝑑1, 𝑑2, 𝑑3) = Niso+ (4.80)⎡⎢⎢⎢⎢⎢⎣
3
7 (2𝛼1 9 𝛼3) 9 𝑑1 9 𝑑2

1
14 (𝛼1 9 2𝛼3) + 𝑑1

1
14 (𝛼1 + 𝛼3) + 𝑑2 0 0 0

9 3
7 (𝛼1 + 𝛼3) 9 𝑑1 9 𝑑3

1
14 (92𝛼1 + 𝛼3) + 𝑑3 0 0 0
3
7 (9𝛼1 + 2𝛼3) 9 𝑑2 9 𝑑3 0 0 0

completely symmetric

⎤⎥⎥⎥⎥⎥⎦
Bv
𝜉 ⊗ Bv

𝜁 .

Three eigenvalues of Northo in the six dimensional space of the Mandel
representation are directly given by

1
2Λ1 = 1

14 (−2𝛼1 + 𝛼3) + 𝑑3 + 1
15 , (4.81)

1
2Λ2 = 1

14 (𝛼1 + 𝛼3) + 𝑑2 + 1
15 , (4.82)

1
2Λ3 = 1

14 (𝛼1 − 2𝛼3) + 𝑑1 + 1
15 , (4.83)

due to the diagonal form of the lower right quadrant of Northo in Equation
(4.80). Following Mehrabadi and Cowin (1990, Equation (5.35)), the re-
maining eigenvalues (Λ4,Λ5,Λ6) are the roots of the characteristic poly-
nomial

det(M − Ω I) = 0 (4.84)

being cubic in Ω, with the identity matrix of dimension three I and the
matrix

M = (4.85)[︃
3
7 (2𝛼1 9 𝛼3) 9 𝑑1 9 𝑑2 + 1

5
1

14 (𝛼1 9 2𝛼3) + 𝑑1 + 1
15

1
14 (𝛼1 + 𝛼3) + 𝑑2 + 1

15
9 3

7 (𝛼1 + 𝛼3) 9 𝑑1 9 𝑑3 + 1
5

1
14 (92𝛼1 + 𝛼3) + 𝑑3 + 1

15
symmetric 3

7 (9𝛼1 + 2𝛼3) 9 𝑑2 9 𝑑3 + 1
5

]︃
.
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4.6 Variety of fourth-order orientation tensors

For transversely isotropic orientation tensors, a compact and explicit
representation of the admissible parameters, is given by Equation (4.67).
For the orthotropic case, explicit formulas specifying 𝒩 ortho by combina-
tions of the parameters of Northo, can be identified analytically, e.g., using
complex or trigonometric expressions. As an alternative, non-negativity
of eigenvalues can be demanded by alternating signs of monomials of
the cubic characteristic following Vieta’s formula preventing the need to
explicitly calculate the eigenvalues. However, the resulting expressions
are lengthy and therefore are not given here. For applications 𝒩 ortho can
be calculated numerically.

However, for a given specific second-order orientation tensor N, com-
pact representations of sets of admissible tuples (𝑑1 , 𝑑2 , 𝑑3), i.e., tuples
leading to Northo (N, 𝑑1, 𝑑2, 𝑑3) ∈ 𝒩 ortho, exist. For reference, an ex-
plicit parameterization of admissible tuples for the special case of an
isotropic second-order orientation tensor Niso is given in Appendix A.4.
Admissible tuples for specific N along three paths are visualized in
Figures 4.6, 4.7 and 4.8. The paths are defined in Figure 4.5a. Figure
4.6 reveals that the admissible region of (𝑑1, 𝑑2, 𝑑3) for an isotropic
second-order orientation tensor is symmetric and comparably large.
Departing from the isotropic second-order orientation tensor along the
blue path along v1 (see Figure 4.5a) towards the unidirectional state,
the admissible region of (𝑑1, 𝑑2, 𝑑3) changes its shape and position in
the space spanned by 𝑑1, 𝑑2 and 𝑑3 and finally degenerates to a single
point representing the unidirectional state. As all points on the blue
path are transversely isotropic with respect to the v1-axis, the admissible
ranges of the parameters 𝑑1 and 𝑑2 are identical along this path (see
Ftransv1 in Equation (4.27)). Figure 4.7 contains views on the admissible
tuples for specific second-order orientation tensors along the orange
path, in 4.5a. Second-order orientation tensors along the orange path
between the isotropic and the planar isotropic state are transversely
isotropic with principle axis v3. Therefore, admissible ranges of the

77



4 Variety of Fiber Orientation Tensors

[git] • Branch: add˙param˙planar @ 93fc690 • Release: (2021-06-05)

0 1/6 1/3 1/2 2/3

0

−1/12

−1/6

−1/4

−1/3

α1

α3

[git] • Branch: add˙param˙planar @ 93fc690 • Release: (2021-06-05)

path along v1 path along v3

mixed path planar states
isotropic unidirectional v1

planar iso. v3 N planar ortho

1. row figure 9 2. row figure 9

(a)

[git] • Branch: add˙param˙planar @ 93fc690 • Release: (2021-06-05)

0 2/9 1/3 1/2 2/3

19/140

34/315

41/560

3/280
0

−4/35

α1

d1

(b)

Figure 4.5: (a) Paths on the orientation triangle defining specific second-order orientation
tensors used in Figures 4.6, 4.7 and 4.8 (b) Admissible ranges of 𝑑1 for planar orthotropic
orientation states and specific orientation states used in Figure 4.9. The legend is shared
with Figure 4.5a.

parameters 𝑑2 and 𝑑3 change homogeneously and shrink along the path
towards the planar isotropic second-order orientation tensor. For the
planar isotropic second-order orientation tensor, the parameters 𝑑2 and
𝑑3 are fixed and equal −3/70. Therefore, at this second-order state the
admissible region degenerates to a line and the remaining degree of
freedom of an orthotropic fourth-order orientation tensor with planar
isotropic Nplanar iso is 𝑑1 with admissible range −4/35 ≤ 𝑑1 ≤ 19/140.
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Figure 4.6: Three views on admissible ranges of (𝑑1, 𝑑2, 𝑑3) for specific second-order
orientation tensors along the blue path (along v1) in Figure 4.5a
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Figure 4.7: Three views on admissible ranges of (𝑑1, 𝑑2, 𝑑3) for specific second-order
orientation tensors along the orange path (along v3) in Figure 4.5a
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Figure 4.8: Three views on admissible ranges of (𝑑1, 𝑑2, 𝑑3) for specific second-order
orientation tensors along the black path on orthotropic states in Figure 4.5a

The planar isotropic orientation state is located at 𝑑1 = 3/280. Second-
order orientation tensors of planar orientation states are located at the
purple line in Figure 4.5a. This line connects the planar isotropic and
the unidirectional states. Planar orthotropic fourth-order orientation
tensors are degenerated in the sense that the parameters 𝑑2 and 𝑑3 are
directly related to N, ensuring that the orientation state is planar. As
a consequence, the remaining degree of freedom of planar orthotropic
fourth-order orientation tensors is solely determined by the remaining
parameter 𝑑1. In consequence, a parameterization of planar orthotropic
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fourth-order orientation tensors is given by

Nplanar ortho (𝛼1, 𝑑1) = Northo
(︂

N = Nplanar (𝛼1) , 𝑑1, (4.86)

𝑑2 = −15𝛼1 − 6
140 , 𝑑3 = 15𝛼1 − 6

140

)︂
with Nplanar (𝛼1) following Equation (4.37). The set of admissible planar
orthotropic orientation tensors

𝒩 planar ortho =
{︂
Nplanar ortho (𝛼1, 𝑑1) | (4.87)

0 ≤ 𝛼1 ≤ 2
3 , − 4

35 ≤ 𝑑1 ≤ 19
140 − 9

16𝛼
2
1

}︂
is visualized in Figure 4.5b. For reference, the planar isotropic and unidi-
rectional states are highlighted in Figure 4.5b. To the best of the authors’
knowledge, the set of admissible orthotropic fiber orientation tensors of
fourth order has not been presented in the literature before. Second-order
orientation tensors which describe planar orientation states in a three-
dimensional space have four variable parameters. Three of these four
parameters define the mapping Q (see Equation (4.22)) which defines
the orientation coordinate system and the fourth parameter defines the
orientation state. One possible choice for this fourth parameter is 𝛼1 (see
Equation (4.37)). Orthotropic fourth-order orientation tensors, which
represent planar orientation states, add one additional independent
parameter, e.g., 𝑑1. Figure 4.5b visualizes the admissible ranges of 𝑑1

as a function of 𝛼1, assuming orthotropy. The admissible range of this
fourth-order orientation tensor parameter 𝑑1 degenerates to a single
value in case of the unidirectional state. This degeneration reveals a
valuable view on the information which is contained in N but not in N.
The second-order orientation tensor N contains directional measures in
the directions defined by the axes of the orientation coordinate system.
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Figure 4.9: Visualizations of minimal discrete sets of directions in the orientation
coordinate system {v𝑖} for given planar orthotropic orientation tensors which are
marked in Figure 4.9 and parameterized by 𝛼1 and 𝑑1 (see Equation (4.86)). (a)
𝛼1 = 0, 𝑑1 = 19/140 with 𝒟(a) = {[1/

√
2, 1/

√
2 − 𝜀, 0], [1/

√
2,−(1/

√
2 − 𝜀), 0]}

with 𝜀 ≪ 1 (b) 𝛼1 = 0, 𝑑1 = −4/35 with 𝒟(b) = {[1, 0, 0], [0, 1, 0]} (c) 𝛼1 = 2/9,
𝑑1 = 34/315 with 𝒟(c) = {[

√
2/

√
3, 1/

√
3, 0], [

√
2/

√
3,−1/

√
3, 0]} (d) 𝛼1 = 2/9,

𝑑1 = −4/35 with 𝒟(d) = {2 × [1, 0, 0], [0, 1, 0]} (e) 𝛼1 = 1/3, 𝑑1 = 41/560
with 𝒟(e) = {[

√
3/2, 1/2, 0], [

√
3/2,−1/2, 0]} (f) 𝛼1 = 1/3, 𝑑1 = −4/35 with

𝒟(f) = {3 × [1, 0, 0], [0, 1, 0]} (g) 𝛼1 = 2/3, 𝑑1 = −4/35 with 𝒟(g) = {[1, 0, 0]}

An orthotropic fourth-order orientation tensor contains additional direc-
tional information representing the spread around the directions defined
by the axes of the orientation coordinate system. For the unidirectional
state, i.e., if all fibers are aligned in one direction, there is no spread. In
the planar orthotropic case, there is only one spread. This mental model
is a simplification of directional measures by spherical harmonics but
suits engineering applications and can be used to interpret Figures 4.6 to
4.8. In the following, examples of planar orthotropic orientation states
are discussed. Figures 4.9a to 4.9g visualize sets of discrete directions
for planar orthotropic orientation states marked in figure 4.5b. The
upper (lower) row of sub Figures in Figure 4.9 represents discrete sets of
directions which lead to planar and orthotropic fourth-order orientation
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tensors with maximum (minimum) admissible values 𝑑1 (see Figure
4.5b for reference). A minimal set of discrete directions for each sub
Figure in Figure 4.9 is given in the caption. The discrete sets of directions
labeled 𝒟(𝑖) for 𝑖 ∈ [a, b, c, d, e, f, g] in the caption of Figure 4.9 can
be combined with Equation (4.74) to identify the corresponding FODF
and orientation tensors. For reference, limiting cases of orthotropic
fourth order orientation tensors which contract to the planar isotropic
second-order orientation tensor are given by

Nplanar ortho (𝛼1 = 0, 𝑑1 = 19/140) = (4.88)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1/4 1/4 0 0 0 0
1/4 0 0 0 0

0 0 0 0

completely symmetric

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Bv
𝜉 ⊗ Bv

𝜁

and

Nplanar ortho (𝛼1 = 0, 𝑑1 = −4/35) = (4.89)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1/2 0 0 0 0 0
1/2 0 0 0 0

0 0 0 0

completely symmetric

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Bv
𝜉 ⊗ Bv

𝜁 .

4.6.5 Planar case

Without loss of generality, inspection of planar states is restricted to
orientation states which are located inside the plane spanned by v1 and
v2. Following this convention, some coefficients of moment tensors
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represented in the orientation coordinate system (see, e.g., equation
(4.55) or (A.12)) vanish, because out of plane components of the unit
vector, which builds the moment tensors, equal zero. Combining the
knowledge of vanishing coefficients of Nplanar with Equation (4.61) leads
to the parameterization

Nplanar (𝛼1, 𝑑1, 𝑑8) = (4.90)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
4𝛼1 − 𝑑1 + 27

70 𝑑1 + 4
35 0 0 0

√
2 𝑑8

− 3
4𝛼1 − 𝑑1 + 27

70 0 0 0 −
√

2 𝑑8

0 0 0 0

completely symmetric

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Bv
𝜉 ⊗ Bv

𝜁

which fits into the general triclinic framework given by equations (4.61)
and (4.62) with

Nplanar (𝛼1, 𝑑1, 𝑑8) = N
(︂

Nplanar (𝛼1) , 𝑑1, (4.91)

𝑑2 = −15𝛼1 − 6
140 , 𝑑3 = 15𝛼1 − 6

140 ,

0, 0, 0, 0, 𝑑8, 𝑑9 = −𝑑8

)︂
.

Similar to the planar orthotropic case, the parameters 𝑑2 and 𝑑3 are
directly related to N, ensuring that out of plane coefficients in the
upper left quadrant in Equation (4.90) vanish. Removing the orthotropic
constraint adds degrees of freedom. However, the planar plane intrin-
sically acts as a symmetry plane and planar orientation states have at
least monoclinic material symmetry. As a consequence of this material
symmetry as well as due to the planarity itself, the parameters 𝑑4,
𝑑5, 𝑑6 and 𝑑7 in Equation (4.62), which is utilized in Equation (4.91),
equal zero. Due to the planarity, 𝑑9 = −𝑑8 holds in Equation (4.91) as
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the coefficient
√

2 (𝑑8 + 𝑑9) in Equation (4.62) has to vanish. This can
be seen by comparison of Equation (4.62) and the moment tensor in
Equation (A.12) where the planarity implies 𝜃 = 𝜋

2 . Demanding positive
eigenvalues of Nplanar in Equation (4.90) leads to the set of admissible
planar fourth-order orientation tensors

𝒩 planar =
{︁
Nplanar (𝛼1, 𝑑1, 𝑑8) | 0 ≤ 𝛼1 ≤ 2

3 , (4.92)

− 4
35 ≤ 𝑑1 ≤ 19

140 − 9
16𝛼

2
1, −𝑓 (𝛼1, 𝑑1) ≤ 𝑑8 ≤ 𝑓 (𝛼1, 𝑑1)

}︁
with

𝑓 (𝛼1, 𝑑1) = (4.93)
1

140

√︁
304 − 1260𝛼2

1 + 420 𝑑1 − 11025𝛼2
1 𝑑1 − 19600 𝑑2

1 .

To the best of the author’s knowledge, this set is new in the literature
and of great practical importance for shell-like components reinforced
with long fibers. The set of admissible planar fourth-order orientation
tensors is visualized in Figures 4.10a and 4.10b. The connection to the
admissible ranges in the planar orthotropic case, which is illustrated in
Figure 4.5b, is given by a projection of 𝒩 planar onto the plane 𝑑8 = 0. In
Figure 4.10c, the plotting range of the parameter 𝛼1 is extended from
one unidirectional state along a planar boundary of the orientation plane
in Figure 4.2b towards a second unidirectional orientation state. This
illustrates the continuity of the admissible ranges and the redundancy
of the orientation plane.

4.7 A note on closure approximations

For a given second-order orientation tensor N, closure approximations
identify an unknown fourth-order orientation tensor Nunknown following

84



4.7 A note on closure approximations

[git] • Branch: fix˙redundancies @ 13efb4e • Release: (2021-06-04)

(a)

[git] • Branch: fix˙redundancies @ 13efb4e • Release: (2021-06-04)

(b)

[git] • Branch: fix˙redundancies @ 13efb4e • Release: (2021-06-04)

(c)

Figure 4.10: (a), (b) Views on 𝒩 planar (c) Transition of admissible parameters of planar
states between two unidirectional orientation states visualized by varying the parameter
𝛼1 in Equation (4.92) in the range −2/3 ≤ 𝛼1 ≤ 2/3.

a specific closure approach such that

Nunknown [I] = N (4.94)

holds. Based on the quantity which is directly affected by a closure’s
assumptions, closure approximations might be classified into three
groups. The first group contains closures based on algebraic assump-
tions. Closures based on assumptions on the material symmetry of
orientation tensors form the second group. The third group contains
closures which state assumptions on the FODF. The linear closure is
given by

Nlinear (N) = Niso + 6
7sym (dev (N) ⊗ I) , (4.95)

belongs to the first group and is defined in Han and Im (1999, Equation
(13)) or Advani and Tucker III (1990). The representation in (4.95) benefits
from the notation introduced in Equations (4.58) and (4.59). The linear
closure states that the unknown fourth-order orientation tensor is linear
in the second-order orientation tensor. This implies vanishing fourth-
order harmonic part, i.e., dev

(︀
Nunknown

)︀
= O. Figure 4.3 contains the

linear closure as dashed light green line and clearly shows the limitations
of this closure as the line is not completely within the admissible param-
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eter space. The second group contains, e.g., orthotropic fitted closures
which combine analytical insights on the material symmetry of fiber
orientation tensors with fitting procedures reproducing selected flow
simulation results. Examples are given in Cintra Jr and Tucker III (1995);
Chung and Kwon (2001; 2002) and both the orthotropic fitted closure
(ORF) (Cintra Jr and Tucker III, 1995) and the invariant-based optimal
fitting closure (IBOF) (Chung and Kwon, 2002) are visualized in Figure
4.3 using nilsmeyerkit and JulianKarlBauer (2021). The third group
contains closures, e.g., Montgomery-Smith et al. (2011a); Görthofer
et al. (2020), which enable exact reconstructions of the unknown FODF,
based on the assumption that the ODF belongs to a special class of
FODFs. Therefore, assumptions are made on the FODF and tensors
of any order can be constructed based on the reconstructed FODF.
Although this short note on closures does not claim to be exhaustive,
reference is made to additional closures, e.g., VerWeyst et al. (1999);
Montgomery-Smith et al. (2011b); Jack et al. (2010). Reproduction of
the FODF by maximization of the information entropy, e.g., Müller
and Böhlke (2016) (see also Böhlke (2005)) states an alternative and its
wording explicitly addresses the problem of gaining information by
assumptions. Assessment of closure approximations is challenging since
the definition of an application-independent metric for the quality of the
closure is difficult. Nevertheless, assessments of closure approximations
are given in Breuer et al. (2019); Jack and Smith (2007; 2008).

4.8 Summary and conclusions

Application of linear invariant decomposition with focus on index sym-
metry (Rychlewski, 2000) transfers the results of Kanatani (1984) into the
continuum mechanics framework and leads to a compact representation
of fourth-order fiber orientation tensors in Equations (4.58) and (4.59). A
harmonic, i.e. completely symmetric and completely traceless, triclinic
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fourth-order structure tensor is introduced in Equation (4.62). This struc-
ture tensor has a simplified structure in the coordinate system spanned
by the eigenvectors of the second-order fiber orientation tensor and leads
to a parameterization of generic fourth-order fiber orientation tensors in
Equation (4.61). Material symmetries of the orientation distribution func-
tion reduce the number of independent parameters. In the triclinic case,
the independent parameters are a second-order fiber orientation tensor
plus nine scalars. Admissible ranges of the independent parameters are
discussed in detail for orthotropy, transversely isotropy and planar cases.
Insufficiency of coefficient-wise constraints are demonstrated for the
transversely isotropic case. The variety of fourth-order fiber orientation
tensors is given by the set of positive-definite tensors which can be
expressed by Equation (4.61). Inspection of planar orthotropic states
illustrates the character of fourth-order orientation information. Notes
on closure approximations demonstrate their limitations on reflecting
the variety of fourth-order fiber orientation tensors.

As a summary, the parameterizations of generic second-order orientation
tensors N

N (𝛼1, 𝛼3) = Niso + 𝛼1Ftransv1 + 𝛼3Ftransv3, see (4.29)

generic fourth-order orientation tensors N

N (N, 𝑑1, ..., 𝑑9) = see (4.61)

Niso + 6
7 sym (dev (N) ⊗ I) + Ftricl (𝑑1, ..., 𝑑9) ,

orthotropic fourth-order orientation tensors Northo

Northo (N, 𝑑1, 𝑑2, 𝑑3) = see (4.78)

Niso + 6
7 sym (dev (N) ⊗ I) + Fortho (𝑑1, 𝑑2, 𝑑3)
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and planar fourth-order orientation tensors Nplanar

Nplanar (𝛼1, 𝑑1, 𝑑8) = N
(︂

Nplanar (𝛼1) , 𝑑1, see (4.91)

𝑑2 = −15𝛼1 − 6
140 , 𝑑3 = 15𝛼1 − 6

140 ,

0, 0, 0, 0, 𝑑8, 𝑑9 = −𝑑8

)︂
are repeated, including the structure tensors

Ftransv1 =

⎡⎢⎣ 1 0 0
−1/2 0

sym −1/2

⎤⎥⎦ v𝑖 ⊗ v𝑗 , see (4.27)

Ftransv3 =

⎡⎢⎣−1/2 0 0
−1/2 0

sym 1

⎤⎥⎦ v𝑖 ⊗ v𝑗 , see (4.28)

Ftricl (𝑑1, ..., 𝑑9) = see (4.62)⎡⎢⎢⎢⎣
−(𝑑1 + 𝑑2) 𝑑1 𝑑2 −

√
2 (𝑑4 + 𝑑5)

√
2 𝑑6

√
2 𝑑8

−(𝑑1 + 𝑑3) 𝑑3
√

2 𝑑4 −
√

2 (𝑑6 + 𝑑7)
√

2 𝑑9
−(𝑑2 + 𝑑3)

√
2 𝑑5

√
2 𝑑7 −

√
2 (𝑑8 + 𝑑9)

completely symmetric

⎤⎥⎥⎥⎦
Bv
𝜉 ⊗ Bv

𝜁

and

Fortho (𝑑1, 𝑑2, 𝑑3) = Ftricl (𝑑1, 𝑑2, 𝑑3, 0, 0, 0, 0, 0, 0) . see (4.77)

Admissible parameter ranges follow from the requirement of positive
semi-definiteness (see Equation (4.64)) and are explicitly given for special
cases of material symmetry in Equations (4.67), (4.87), (4.92) and (A.16).
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Beside the review contribution, novel technical and scientific contribu-
tions in this work are listed hereafter.

• An invariant framework for parameterizations of fourth-order fiber
orientation tensors based on deviators from the isotropic orientation
state is developed. The most general case is obtained by an orthotropic
deviator of second order and an triclinic deviator of fourth order.
Within this framework, deviators of stronger material symmetries are
obtained as special cases with constrained parameters.

• Explicit parameterizations and admissible parameter ranges present
in the literature are extended by orthotropic as well as planar fiber
orientation tensors in a three-dimensional framework.

• Visualizations of admissible parameter sets are given for the first time
for the orthotropic states in Figures 4.5 to 4.8 and for the planar states
in Figures 4.10a.

• Positive semi-definiteness is identified to be a stronger constraint
on admissible orientation tensors than linear constraints on tensor
coefficients which themselves are identified to be stronger constraints
than a bonded norm.

• A short hand notation for completely symmetric fourth-order tensors
is introduced.

• Representations of discrete fiber sets (Figures 4.4 and 4.9) are identified
to be an valuable visualization of orientation tensors.

These results enable engineers to parameterize the space of admissi-
ble fiber orientation tensors obtaining a valuable tool for engineering
applications like model inspection or data validation.
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Chapter 5

Fiber Orientation Distributions
Based on Planar Fiber Orientation
Tensors of Fourth Order 1

5.1 Introduction

Suitable microstructure descriptors are essential for the prediction of
effective properties of fiber reinforced composites. Fiber orientation
distribution functions (FODF) represent exact microstructure descriptors
of the orientation of axisymmetric fibers within a specified volume of
a fiber reinforced composite (Kanatani, 1984; Advani and Tucker III,
1987). However, in practice the exact distribution of fibers is commonly
approximated by fiber orientation tensors (Böhlke et al., 2019; Görthofer
et al., 2019) which represent averaged directional measures and can
be directly determined by non-destructive analysis methods, such as
computer tomography (Pinter et al., 2018; Schöttl et al., 2020). Further-
more, fiber orientation tensors fit into the tensor-based framework of
continuum mechanics which is frequently used in material modeling

1 This chapter reproduces (Bauer and Böhlke, 2022a), i.e., Bauer, J. K., Böhlke, T., 2022.
Fiber orientation distributions based on planar fiber orientation tensors of fourth
order. Mathematics and Mechanics of Solids, online first, 10.1177/10812865221093958.
Reproduced with permission. ©2022 The Authors. Published by SAGE Publications Ltd
under CC BY-NC 4.0
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5 Fiber Orientation Distributions Based on Planar Fiber Orientation Tensors

(Kehrer et al., 2020; Brylka, 2017; Hessman et al., 2021). The dependence
of material models on the set of admissible second-order fiber orientation
tensors is studied numerically in, e.g., Goldberg et al. (2017); Görthofer
et al. (2020). However, the dependence of material models or other
quantities of interest such as reconstructed FODF itself on fourth-order
fiber orientation tensors is rarely studied analytically. In addition, for
some applications, e.g., damage modeling (Schemmann et al., 2018b) or
averaging schemes (Hessman et al., 2021; Brylka, 2017), the identification
of a FODF based on given fiber orientation tensors is beneficial. Due
to the averaged character of fiber orientation tensors, no one-to-one
correspondence to an FODF exists. Nevertheless, for a given fiber
orientation tensor, any associated FODF is of interest and eases the
indirect visualization of fiber orientation tensors. Many fiber-reinforced
composites are plate-like and if the mean fiber length is larger than the
plate thickness the resulting fiber distribution is approximately planar.
This holds, e.g., for sheet molding compound (Görthofer et al., 2019).
For such planar fiber distributions, Bauer and Böhlke (2022c) identifies a
set of all admissible fourth-order fiber orientation tensors. Based on this
set and reconstruction methods following Kanatani (1984); Müller and
Böhlke (2016), the variety of reconstructed FODF based on planar fiber
orientation tensors of fourth order is studied in the current work.

This paper is structured as follows: Definitions of FODF and fiber
orientation tensors are followed by a reformulation of planar fiber
orientation tensors following Bauer and Böhlke (2022c). Within the
admissible set of planar fourth-order fiber orientation tensors given by
Bauer and Böhlke (2022c), a subset of distinct planar fourth-order fiber
orientation tensors is identified. FODF approximations by truncated
Fourier series with planar leading fiber orientation tensors in a three-
dimensional framework are identified as non-planar and motivate a
two-dimensional framework. The reconstruction of FODF based on
the maximum entropy method following Müller and Böhlke (2016) is
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5.2 Directional measures as microstructure descriptors

recast into this two-dimensional framework. Discrete slices and points
of the set of admissible and distinct planar fourth-order fiber orientation
tensors are used to visualize reconstructed FODF based on fourth-order
fiber orientation tensors. A note on FODF reconstruction solely based
on second-order fiber orientation tensors including the exact closure
(Montgomery-Smith et al., 2011a) closes this paper.

5.2 Directional measures as microstructure
descriptors

Taking the average of a tensorial quantity over orientations requires
a directional measure which quantifies the orientations. Established
directional measures of axisymmetric fibers are the fiber orientation
distribution function (FODF) and fiber orientation tensors of several
kinds and orders. Both FODF and fiber orientation tensors quantify
orientations inside a reference volume which might be interpreted as
a section of specified size at a specific position x inside a structural
component. Consequently, the directional measurement depends on
the size of this reference volume which usually represents a scaling
parameter in measurement algorithms, see e.g., Görthofer et al. (2019,
Figure 4) or Schöttl et al. (2020). This section introduces basic quantities
and in large parts follows Bauer and Böhlke (2022c, sections 2.1 and 2.2).

5.2.1 Fiber orientation distribution function

The fiber orientation distribution function 𝜓 at a given position inside a
component

𝜓 : 𝒮2 → R, with 𝒮2 =
{︀

n ∈ R3 | ‖n‖ = 1
}︀

(5.1)
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maps any direction n onto a scalar value𝜓 (n). 𝒮2 is the two-dimensional
surface of a unit sphere in three dimensions parameterized by, e.g., a
unit vector n. The function 𝜓 (n) is non-negative, i.e.,

𝜓 (n) ≥ 0, ∀ n ∈ 𝒮2 (5.2)

holds and normalization of 𝜓 (n) implies∫︁
𝒮2
𝜓 (n) d𝑛 = 1. (5.3)

As fibers have a direction but no attitude, 𝜓 (n) is symmetric, i.e.,

𝜓 (−n) = 𝜓 (n) , ∀ n ∈ 𝒮2 (5.4)

holds (see Advani and Tucker III (1987); Görthofer et al. (2020)).

5.2.2 Fiber orientation tensors

Fiber orientation tensors of Kanatani first kind (Kanatani, 1984) are
defined by

N⟨𝑘⟩ =
∫︁

𝒮2
𝜓 (n) n⊗𝑘 d𝑛 (5.5)

with n⊗𝑘 being the 𝑘-th moment of n. In this work, only the second- and
fourth-order fiber orientation tensors

N = N⟨2⟩ =
∫︁

𝒮2
𝜓 (n) n ⊗ n d𝑛, (5.6)

N = N⟨4⟩ =
∫︁

𝒮2
𝜓 (n) n ⊗ n ⊗ n ⊗ n d𝑛 (5.7)

are used. More details on the properties of N⟨𝑘⟩ can be found, e.g., in
Bauer and Böhlke (2022c). Higher order fiber orientation tensors of

94



5.2 Directional measures as microstructure descriptors

Kanatani first kind contain all tensors of lower order as

N⟨𝑘−2⟩ = N⟨𝑘⟩ [I] (5.8)

holds for 2 ≤ 𝑘 with the identity on second-order tensors I = 𝛿𝑖𝑗 e𝑖 ⊗ e𝑗 .
In addition, for the second-order orientation tensor

N · I = tr (N) = 1 (5.9)

holds due to normalization, see Bauer and Böhlke (2022c). Orientation
tensors of Kanatani first kind are commonly used to represent direc-
tional data obtained by computer tomography scans or results of flow
simulations (Görthofer et al., 2019). Basic properties of the second-order
orientation tensor N are briefly summarized following Bauer and Böhlke
(2022c). N is symmetric and positive semi-definite. In consequence,
N can be diagonalized, i.e., pairs of eigenvalues 𝜆𝑖 with 𝜆𝑖 ≥ 0 and
orthonormal eigenvectors v𝑖 for 𝑖 ∈ [1, 2, 3] exist, such that

N = 𝑁
(2)
𝑖𝑗 e𝑖 ⊗ e𝑗 =

3∑︁
𝑖=1

𝜆𝑖v𝑖 ⊗ v𝑖 =

⎡⎢⎣ 𝜆1 0 0
𝜆2 0

sym 𝜆3

⎤⎥⎦ v𝑖 ⊗ v𝑗 (5.10)

holds and there exists a rotation defined by an orthogonal tensor

Q = v𝑖 ⊗ e𝑖 (5.11)

mapping the arbitrary but fixed basis {e𝑖} onto the basis {v𝑖}. The
orthonormal basis {v𝑖} spanned by the eigenvectors is, in the following,
called orientation coordinate system. Based on the ordering convention

𝜆3 ≤ 𝜆2 ≤ 𝜆1, (5.12)
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an established classification of structurally differing N exists (see Cin-
tra Jr and Tucker III (1995); Chung and Kwon (2002); Goldberg et al.
(2017); Köbler et al. (2018)). A visualization corresponding to this
classification exists and is called orientation triangle. Any second-
order orientation tensor can be represented by a pair (𝜆1, 𝜆2), which is
connected to a point inside the orientation triangle and by a mapping
Q which defines the orientation coordinate system. The FODF can be
expressed in terms of fiber orientation tensors as a three-dimensional
tensorial Fourier series

𝜓 (n) = 1
4𝜋

∞∑︁
𝑘=0

2𝑘 + 1
2𝑘

(︂
2𝑘
𝑘

)︂
dev

(︀
N⟨𝑘⟩

)︀
· n⊗𝑘 (5.13)

which is called spherical harmonic expansion (Kanatani, 1984, page
154). The operator dev(·) extracts the deviatoric part and its definition
for higher order tensors in a three-dimensional framework is given

1
3

1
2

4
6

5
6

1
0

1
6

1
3

1
2

𝜆1

𝜆
2

isotropic unidirectional
planar isotropic planar

(a) Orientation triangle visualizing
second-order orientation tensors

(b) Visualization of the set of admissible
planar fourth-order fiber orientation
tensors 𝒩 planar in the parameter space
{𝜆1, 𝑑1, 𝑑8} using the parameterization
of Nplanar in Equation (5.15)

Figure 5.1
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in Spencer (1970). Equation (5.13) implies, that in general an infinite
number of orientation tensors of increasing order is required to express
𝜓 (n). However, for many practical applications only second and fourth-
order orientation tensors are available at a specific location inside a
component. Recent developments in computer tomography methods for
fiber reinforced composites lead towards the identification of the FODF
instead of fiber orientation tensors, see, e.g., Schöttl et al. (2021).

5.3 Admissible and distinct planar fiber orien-
tation tensors

A parameterization of planar fiber orientation tensors of second order
Nplanar is given by

Nplanar (𝜆1) = 𝜆1 v1 ⊗ v1 + (1 − 𝜆1) v2 ⊗ v2 (5.14)

=

⎡⎢⎣ 𝜆1 0 0
1 − 𝜆1 0

sym 0

⎤⎥⎦ v𝑖 ⊗ v𝑗

in the orientation coordinate system {v𝑖} defined in Equation (5.11) and
with 1/2 ≤ 𝜆1 ≤ 1. Bauer and Böhlke (2022c, Equation (87)) identify
planar fiber orientation tensors of fourth order Nplanar (𝛼1, 𝑑1, 𝑑8) which
can be reparameterized in 𝜆1 with 𝛼1 = 4

3
(︀
𝜆1 − 1

2
)︀

leading to

Nplanar (𝜆1, 𝑑1, 𝑑8) = (5.15)⎡⎢⎢⎢⎣
𝜆1 − 𝑑1 − 4

35 𝑑1 + 4
35 0 0 0

√
2 𝑑8

(1 − 𝜆1) − 𝑑1 − 4
35 0 0 0 −

√
2 𝑑8

0 0 0 0

completely symmetric

⎤⎥⎥⎥⎦ Bv
𝜉 ⊗ Bv

𝜁
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in Kelvin-Mandel (Thomson, 1856; Mandel, 1965; Mehrabadi and Cowin,
1990) notation, which is explained in detail in Appendix B.1. The
Kelvin-Mandel basis Bv

𝜉 ⊗ Bv
𝜁 is spanned in the orientation coordinate

system {v𝑖}, i.e., for example the fourth basis vector in Equation (B.1)
becomes Bv

4 =
√

2
2 (v2 ⊗ v3 + v3 ⊗ v2). In Equation (5.15), a short

hand notation for completely symmetric fourth-order tensors following
Bauer and Böhlke (2022c) is used, which is explained in Appendix B.1.
Demanding positive eigenvalues of Nplanar in Equation (5.15) leads to
the set of admissible planar fourth-order orientation tensors

𝒩 planar =
{︂
Nplanar (𝜆1, 𝑑1, 𝑑8)

⃒⃒⃒ 1
2 ≤ 𝜆1 ≤ 1, (5.16)

− 4
35 ≤ 𝑑1 ≤ − 4

35 + 𝜆1 − 𝜆1
2,

− 𝑓 (𝜆1, 𝑑1) ≤ 𝑑8 ≤ 𝑓 (𝜆1, 𝑑1)
}︂

with

𝑓 (𝜆1, 𝑑1) = (5.17)
1

35

√
−16−280 𝑑1−1225 𝑑2

1+140𝜆1−140𝜆12+1225 𝑑1 𝜆1−1225 𝑑1 𝜆12 ,

see Bauer and Böhlke (2022c, Equation (89)). The set 𝒩 planar implicitly
defines a body in the parameter space {𝜆1, 𝑑1, 𝑑8}. This body is visual-
ized in Figure 5.1b and contains all admissible planar fourth-order fiber
orientation tensors. Any point inside this body represents a fourth-order
orientation tensor.

As Bauer and Böhlke (2022c) derive 𝒩 planar solely from algebraic prop-
erties of Nplanar, no planar fourth-order fiber orientation tensor outside
𝒩 planar exists. Consequently, the parameterization Nplanar (𝜆1, 𝑑1, 𝑑8)
combined with the parameter space 𝒩 planar allows for a complete study
of the influence of fiber orientation on the mechanical response of

98



5.3 Admissible and distinct planar fiber orientation tensors

material models, which are based on fourth-order fiber orientation
tensors of planar fiber architectures. However, not necessarily all points
inside 𝒩 planar represent orientation states which differ structurally and
therefore lead to different mechanical behavior. Two tensors A and B are
called structurally identical if they differ solely by a rotation, i.e.,

∃Q ∈ SO(3) with Q ⋆ A = B (5.18)

holds with the special orthogonal group in three dimensions SO(3). The
parameterization of Nplanar in Equation (5.15) and the corresponding set
of admissible parameter combinations 𝒩 planar in Equation (5.16) is based
on the orientation coordinate system which is introduced in Equations
(5.10) to (5.12). However, for orientation states with planar isotropic
second-order orientation tensor, i.e., 𝜆1 = 1/2, the eigenvalue problem
identifying v1 and v2 is ill-posed. As the eigenvalues of N (𝜆1 = 1/2)
are 1/2, 1/2 and 0, any pair of two orthonormal vectors being pairwise
perpendicular to v3 is a valid choice for the eigenvectors. The ambiguity
of the orientation coordinate system introduces a redundancy in the
set of admissible fourth-order orientation tensors given in Equation
(5.16), i.e., multiple parameter combinations lead to structurally identical
Nplanar. The shape of the body 𝒩 planar in Figure 5.1b motivates the
reparameterization of Nplanar (𝜆1, 𝑑1, 𝑑8) as a function of 𝜆1, 𝑟, 𝛽 with

𝑑1 = 𝑑1 + 1
2

[︀
𝜆1 − 𝜆2

1
]︀

− 4
35 , (5.19)

𝑑1 = 𝑟 sin
(︁
𝛽

)︁
, (5.20)

𝑑8 = 𝑟 cos
(︁
𝛽

)︁
. (5.21)

The parameters 𝑟 and 𝛽 are visualized in figure 5.2a and lead to a
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reformulation of Equation (5.15) with

Nplanar
(︁
𝜆1, 𝑟, 𝛽

)︁
= (5.22)⎡⎢⎢⎢⎢⎢⎣

−𝑟 sin
(︀
𝛽
)︀

+
𝜆2

1
2 + 𝜆1

2 𝑟 sin
(︀
𝛽
)︀

− 𝜆2
1

2 + 𝜆1
2 0 0 0

√
2𝑟 cos

(︀
𝛽
)︀

−𝑟 sin
(︀
𝛽
)︀

+
𝜆2

1
2 − 3𝜆1

2 + 1 0 0 0 −
√

2𝑟 cos
(︀
𝛽
)︀

0 0 0 0

completely symmetric

⎤⎥⎥⎥⎥⎥⎦
Bv
𝜉 ⊗ Bv

𝜁

and Equation (5.16) by

𝒩 planar =
{︂
Nplanar

(︁
𝜆1, 𝑟, 𝛽

)︁
| 1

2 ≤ 𝜆1 ≤ 1, (5.23)

0 ≤ 𝑟 ≤ 1
2

[︀
𝜆1 − 𝜆1

2]︀
,

0 ≤ 𝛽 < 2𝜋
}︂
.

For the special case 𝜆1 = 1/2, the reparameterized fourth-order fiber
orientation tensor reads as

Nplanar
(︁
𝜆1 = 1/2, 𝑟, 𝛽

)︁
= (5.24)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−𝑟 sin
(︁
𝛽

)︁
+ 3

8 𝑟 sin
(︁
𝛽

)︁
+ 1

8 0 0 0
√

2𝑟 cos
(︁
𝛽

)︁
−𝑟 sin

(︁
𝛽

)︁
+ 3

8 0 0 0 −
√

2𝑟 cos
(︁
𝛽

)︁
0 0 0 0

completely symmetric

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Bv
𝜉 ⊗ Bv

𝜁

and comparison with representations of rotations in Kelvin-Mandel
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5.3 Admissible and distinct planar fiber orientation tensors

notation in Cowin and Mehrabadi (1995, section 3) and Mehrabadi and
Cowin (1990, section 3) indicate a rotational redundancy. Active rotation
of Nplanar(𝜆1 = 1/2, 𝑟, 𝛽) by an angle of −𝛽/4 around the axis v3 leads
to

Qv3
(︁
𝛾 = −𝛽/4

)︁
⋆ Nplanar

(︁
𝜆1 = 1/2, 𝑟, 𝛽

)︁
(5.25)

= Nplanar
(︁
𝜆1 = 1/2, 𝑟, 𝛽 = 0

)︁

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

3/8 1/8 0 0 0
√

2𝑟
3/8 0 0 0 −

√
2𝑟

0 0 0 0

completely symmetric

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Bv
𝜉 ⊗ Bv

𝜁

with a rotation around the axis v3 parameterized by the angle 𝛾 with

Qv3 (𝛾) =

⎡⎢⎣ cos (𝛾) − sin (𝛾) 0
sin (𝛾) cos (𝛾) 0
0 0 1

⎤⎥⎦ v𝑖 ⊗ v𝑗 . (5.26)

As the angle 𝛽 in Equation (5.25) is arbitrary and the right hand side
of Equation (5.25) is independent of 𝛽, any Nplanar(𝜆1 = 1/2, 𝑟, 𝛽) can
be expressed by a reference tensor Nplanar

(︁
𝜆1 = 1/2, 𝑟, 𝛽 = 0

)︁
combined

with a rotation by

Nplanar
(︁
𝜆1 = 1/2, 𝑟, 𝛽

)︁
= (5.27)

Qv3
(︁
𝛾 = 𝛽/4

)︁
⋆ Nplanar

(︁
𝜆1 = 1/2, 𝑟, 𝛽 = 0

)︁
.

In consequence, coincidence or symmetry of the eigenvalues 𝜆1 and 𝜆2

in the special case of 𝜆1 = 1/2, degenerates the space of structurally
differing planar fiber orientation tensors of fourth order from a circle to
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− 1
8 1

8

1
2

1

− 1
8

1
8

𝛽𝑟 𝑑8

𝜆1
𝑑1

(a) The parameter space 𝒩 planar

spanned by (𝜆1, 𝑑1, 𝑑8) or
equivalently (𝜆1, 𝑟, 𝛽) following
Equations (5.19) to (5.21). The line
(𝜆1 = 1/2, 𝑟, 0) with 0 ≤ 𝑟 ≤ 1/8
is colored in red.

v1

v2

v3(1)

v1

v2

v3(2)

(b) As an example, an admissible parameter
triplet (𝜆′

1, 𝑑
′
1, 𝑑

′
8) is exemplarily selected to be

(2/3, 1/[16
√

2], 1/[16
√

2]). The polar plot (1)
shows the projection of Nplanar(𝜆′

1, 𝑑
′
1, 𝑑

′
8) onto the

v1-v2-plane, i.e., Nplanar(𝜆′
1, 𝑑

′
1, 𝑑

′
8) · n⊗4(𝜙, 𝜋/2)

with the fourth-order moment n⊗4(𝜙, 𝜃) of a
unit vector n(𝜙, 𝜃) in polar coordinates, e.g.,
defined in Equation (5.33). The polar plot (2) shows
Nplanar(𝜆′

1, 𝑑
′
1,−𝑑

′
8) · n⊗4(𝜙, 𝜋/2).

Figure 5.2

a line. Fiber orientation tensors along this line act as reference tensors
following Equation (5.27). The line is, e.g., parameterized by 𝑟 or
equivalently by 𝑑8 and one arbitrary choice is colored red in Figure
5.2a.

If Nplanar serves as a directional measure, the full parameter range of 𝑑8,
specified in Equation (5.16), is necessary to account for all admissible
orientation states. If, in contrast, the influence of Nplanar onto mechanical
properties or reconstructed FODF is to be studied, a minimal parameter
set of structurally differing planar fiber orientation tensors is of interest.
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5.4 Admissible and distinct planar fiber orientation tensors

This set is given by

�̂� planar =
{︁
Nplanar (𝜆1, 𝑑1, 𝑑8) | 1

2 < 𝜆1 ≤ 1,

− 4
35 ≤ 𝑑1 ≤ − 4

35 + 𝜆1 − 𝜆1
2,

0 ≤ 𝑑8 ≤ 𝑓 (𝜆1, 𝑑1)
}︁

∪
{︁
Nplanar (𝜆1 = 1/2, 𝑑1, 𝑑8) | 𝑑1 = 0, 0 ≤ 𝑑8 ≤ 1/8

}︁
(5.28)

with Nplanar and 𝑓 (𝜆1, 𝑑1) defined in Equations (5.15) and (5.17) and
𝑓(𝜆1 = 1/2, 𝑑1 = 0) = 1/8. Equation (5.28) accounts for the special
case 𝜆1 = 1/2 and removes a second redundancy which is visualized
in Figure 5.2b and derived by the following observation. Two fiber
orientation tensors of fourth order Nplanar (𝜆1, 𝑑1, 𝑑8) which differ solely
by the sign of the parameter 𝑑8 are structurally identical and only differ
by the rotation

Qmono x =

⎡⎢⎣ 1 0 0
0 −1 0
0 0 −1

⎤⎥⎦ v𝑖 ⊗ v𝑗 (5.29)

which rotates any physical quantity by 180∘ around the axis v1. Due to
its symmetries, for any planar fourth-order fiber orientation tensor

Qmono x ⋆ Nplanar (𝜆1, 𝑑1, 𝑑8) = Nplanar (𝜆1, 𝑑1, −𝑑8) (5.30)

holds and motivates restriction to positive values of 𝑑8 in the minimal set
specified in Equation (5.28). This set can be used to study the influence
of planar fourth-order orientation tensors on derived quantities.

103



5 Fiber Orientation Distributions Based on Planar Fiber Orientation Tensors

5.4 Reconstructed fiber orientation distribu-
tion functions

In the previous section distinct and admissible planar fiber orientation
tensors of fourth order are identified. The question of interest is, which
fiber orientation distributions are associated to these tensors? It is
evident from Equation (5.13) that for a given leading fiber orientation
tensor there is non one-to-one correspondence to an FODF. However,
identification of any FODF which is connected to the given leading fiber
orientation tensor is of interest. An approximation of a FODF by lead-
ing fiber orientation tensors up to fourth order in a three-dimensional
framework is given by

𝜓 (n,N) = 1
4𝜋

[︂
1 + 15

2 dev (N) · n⊗2 + 315
8 dev (N) · n⊗4

]︂
, (5.31)

following Equation (5.13), where N can be expressed by N based on
Equation (5.8). Müller and Böhlke (2016) discuss that the approximation
𝜓 (n,N) is not necessarily non-negative, i.e., the condition stated on 𝜓 (n)
in Equation (5.2) does not hold for the approximation 𝜓 (n,N), due to the
truncation after the fourth-order term. For the special case of planar fiber
orientation tensors Nplanar the approximation in Equation (5.31) leads to

𝜓Nplanar
(𝜙, 𝜃, 𝜆1, 𝑑1, 𝑑8) = 𝜓

(︁
n (𝜙, 𝜃) ,Nplanar (𝜆1, 𝑑1, 𝑑8)

)︁
(5.32)

= 1
2048𝜋

[︁
20160𝑑8 sin4 (𝜃) sin (4𝜙)

+ 3 [72 − 6720𝑑1] sin4 (𝜃) cos (4𝜙)
− 3 [1120𝜆1 − 560] [3 cos (2𝜃) + 1] sin2 (𝜃) cos (2𝜙)

− 420 cos (2𝜃) + 945 cos (4𝜃) + 435
]︁

104



5.4 Reconstructed fiber orientation distribution functions

(a) (b) (c)

Figure 5.3: Approximation of the FODF by leading fiber orientation tensors up to fourth
order following Equation (5.32), i.e., 𝜓Nplanar (︀

𝜙, 𝜃, Nplanar (𝜆1, 𝑑1, 𝑑8)
)︀

for three selected
points in 𝒩 planar. Positive values are plotted in blue and negative values are plotted in red.
The parameters in the format (𝜆1, 𝑑1, 𝑑8) are (a) (1/2, 3/280, 0) (b) (2/3, −1/315, 0) (c)
(1, −4/35, 0)

with a parameterization of the unit vector n in two spherical angles

n (𝜙, 𝜃) = sin(𝜃) cos(𝜙)v1 + sin(𝜃) sin(𝜙)v2 + cos(𝜃)v3. (5.33)

The approximation 𝜓Nplanar
is not planar. Figures 5.3a to 5.3c show

three-dimensional spherical plots of 𝜓Nplanar (𝜃, 𝜙, 𝜆1, 𝑑1, 𝑑8) for three
selected combinations of the parameters 𝜆1, 𝑑1 and 𝑑8. Representation
of non-smooth functions by Fourier series require an infinite number
of non-vanishing Fourier coefficients. For any given planar FODF, the
transition from non-vanishing values in the plane spanned by v1 and v2,
to vanishing values outside this plane is not smooth. In consequence, this
transition is inadequately represented by the truncated spherical Fourier
series 𝜓Nplanar

. As a result, planarity of a given fiber orientation tensor in
a three-dimensional framework does not imply that derived quantities,
such as reconstructed FODF, are planar as well. Following Bauer and
Böhlke (2022c, Equation (59)), any fourth-order fiber orientation tensor
in three dimensions can be expressed by two deviators dev (N) and
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5 Fiber Orientation Distributions Based on Planar Fiber Orientation Tensors

dev (N) fulfilling

N = Niso + 6
7sym (dev (N [I]) ⊗ I) + dev (N) . (5.34)

Vanishing deviators, i.e., dev (N) = 0 and dev (N) = 0 describe the
isotropic state Niso = 7

35 sym (I ⊗ I) which corresponds to the FODF
𝜓

(︀
n,Niso

)︀
= 1

4𝜋 and which is not planar. For Nplanar the deviators from
the isotropic state which are also utilized in Equation (5.31) read as

dev
(︁

Nplanar
)︁

=

⎡⎢⎣ 𝜆1 − 1/3 0 0
2/3 − 𝜆1 0

sym −1/3

⎤⎥⎦ v𝑖 ⊗ v𝑗 , (5.35)

dev
(︁
Nplanar

)︁
= (5.36)⎡⎢⎢⎢⎣

𝜆1/7 − 𝑑1 − 1
35 𝑑1 1/35 − 𝜆1/7 0 0

√
2 𝑑8

(1 − 𝜆1) /7 − 𝑑1 − 1/35 1/35 − (1 − 𝜆1)/7 0 0 −
√

2 𝑑8
3/35 0 0 0

completely symmetric

⎤⎥⎥⎥⎦
Bv
𝜉 ⊗ Bv

𝜁

and demonstrate the drawbacks of expressing planar fiber orientation
tensors in a three-dimensional framework since the planarity has to be
enforced by deviation from the isotropic state. Note that the fourth-order
deviator depends on the parameter 𝜆1 which defines the second-order
fiber orientation tensor.

5.4.1 Transition from 3D into 2D

Motivated by the previous section and following Kanatani (1984); Bli-
nowski et al. (1996); Vianello (1997); Desmorat and Desmorat (2015);
Vannucci (2018), planar quantities are expressed in a two-dimensional
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5.4 Reconstructed fiber orientation distribution functions

framework with representations

a =
2∑︁
𝑖=1

𝑎𝑖e𝑖 = 𝑎1e1 + 𝑎2e2 + 0 e3, (5.37)

A =
2∑︁
𝑖=1

2∑︁
𝑗=1

𝐴𝑖𝑗e𝑖 ⊗ e𝑗 (5.38)

=
2∑︁
𝑖=1

2∑︁
𝑗=1

𝐴𝑖𝑗e𝑖 ⊗ e𝑗 +
3∑︁
𝑖=1

0 e𝑖 ⊗ e3 +
3∑︁
𝑗=1

0 e3 ⊗ e𝑗 ,

A =
3∑︁
𝜉=1

3∑︁
𝜁=1

𝐴𝜉𝜁B𝜉 ⊗ B𝜁 =
3∑︁

𝜉∈[1, 2, 4]

3∑︁
𝜁∈[1, 2, 4]

𝐴𝜉𝜁B𝜉 ⊗ B𝜁 (5.39)

with generic tensors a, A, A. This notation directly connects objects
in R2 and R3 and requires the reader to select the appropriate two or
three dimensional view onto the planar physical quantity of interest,
which is part of the three-dimensional reality. For the two-dimensional
Kelvin-Mandel bases B1 = B1, B2 = B2 and B3 = B4 holds. To be
explicit, for indices of tensor components in the 2D-framework 𝑖, 𝑗 ∈
[1, 2] and 𝜉, 𝜁 ∈ [1, 2, 3] holds in contrast to 𝑖, 𝑗 ∈ [1, 2, 3] and 𝜉, 𝜁 ∈
[1, 2, 3, 4, 5, 6] in the 3D-framework.

If planar orientation tensors are derived from a two-dimensional frame-
work, naturally no out-of-plane tensor components exist. Basic planar
isotropic tensors in the 2D framework are given by

I = 𝛿𝑖𝑗 e𝑖 ⊗ e𝑗 =
[︃

1 0
sym 1

]︃
e𝑖 ⊗ e𝑗 , (5.40)

I𝑆 = 𝛿𝜉𝜁 B𝜉 ⊗ B𝜁 =

⎡⎢⎣ 1 0 0
1 0

sym 1

⎤⎥⎦ B𝜉 ⊗ B𝜁 , (5.41)
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and

P1 = 1
2 I ⊗ I, P2 = I𝑆 − P1 (5.42)

following Blinowski et al. (1996, Equation (2.3)), Aßmus et al. (2017,
Equation (38)). Deviator operators are defined by

dev (A) = A − 1
2 (A · I) I, (5.43)

dev (A) = sym (A) − sym (sym (A) [I] ⊗ I) (5.44)

+ 1
8sym (I ⊗ I) (I · A [I])

following Kanatani (1984, (7.13)) and Vianello (1997, section 3). The
central fiber orientation tensor in the two-dimensional framework is
identified as

Npiso =
(︂

P1
‖P1‖ · n⊗4

)︂
P1 +

(︂
P2

‖P2‖ · n⊗4
)︂
P2 = 1

2 P1 + 1
4 P2 (5.45)

= 1
8

⎡⎢⎣ 3 1 0
3 0

compl. sym.

⎤⎥⎦ B𝜉 ⊗ B𝜁

= Nplanar(𝜆1 = 1/2, 𝑑1 = 0, 𝑑8 = 0)

and is called planar isotropic fiber orientation tensor of fourth order. It
should be noted that this is not the only fourth-order fiber orientation
tensor which contracts to the planar isotropic second-order fiber orienta-
tion tensor. Deploying harmonic decomposition in the 2D-framework
following Blinowski et al. (1996, Equation (2.25)) or Desmorat and
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Desmorat (2015, Equation (18)) with

A =
(︂

P1
‖P1‖ · A

)︂
P1 +

(︂
P2

‖P2‖ · A
)︂
P2 + sym (dev (A [I]) ⊗ I) (5.46)

+ dev (A)

and knowledge on irreducible tensors, any fourth-order fiber orientation
tensor is parameterized by

N (𝜆1, 𝑝1, 𝑝2) = Npiso + sym (F (𝜆1) ⊗ I) + F ( 𝑝1, 𝑝2) (5.47)

with

F (𝜆1) = (𝜆1 − 1/2)
[︃

1 0
sym −1

]︃
v𝑖 ⊗ v𝑗 , (5.48)

F (𝑝1, 𝑝2) = 𝑝1

⎡⎢⎣ −1 1 0
−1 0

compl. sym.

⎤⎥⎦ Bv
𝜉 ⊗ Bv

𝜁 (5.49)

+ 𝑝2

⎡⎢⎣ 0 0
√

2
0 −

√
2

compl. sym.

⎤⎥⎦ Bv
𝜉 ⊗ Bv

𝜁 .

Coincidence with the parameterization in the 3D-framework is given
by the prefactor in Equation (5.48) and the specific choice of the factors
𝑝1 = 𝑑1 − 3/280 and 𝑝2 = 𝑑8 leading to

N (𝜆1, 𝑑1, 𝑑8) = (5.50)⎡⎢⎣ 𝜆1 − 𝑑1 − 4/35 𝑑1 + 4/35
√

2𝑑8

(1 − 𝜆1) − 𝑑1 − 4/35 −
√

2𝑑8

compl. sym.

⎤⎥⎦ Bv
𝜉 ⊗ Bv

𝜁 .
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The shift by 3/280 is required due to the different expansion points in 2D
and 3D. As the point of expansion in Equation (5.47), i.e., Npiso, is planar
itself, the deviators are compact and formatted into the 3D-framework
read as

dev (N) =

⎡⎢⎣ 𝜆1 − 1/2 0 0
1/2 − 𝜆1 0

sym 0

⎤⎥⎦ v𝑖 ⊗ v𝑗 , (5.51)

dev (N) = (5.52)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
280 − 𝑑1 −

(︀ 3
280 − 𝑑1

)︀
0 0 0

√
2 𝑑8

3
280 − 𝑑1 0 0 0 −

√
2 𝑑8

0 0 0 0

completely symmetric

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Bv
𝜉 ⊗ Bv

𝜁 .

The deviators specified in Equations (5.35), (5.36), (5.51) and (5.52)
directly enter approximations of the FODF in terms of truncated Fourier
series.

5.4.2 Truncated fiber orientation distribution function in
a 2D-framework

In analogy to the three-dimensional case in Equation (5.13), FODF can
be reconstructed in a two-dimensional framework. A FODF is given in
terms of fiber orientation tensors by a tensorial Fourier series (Kanatani,
1984, page 158)

𝜓 (n) = 1
2𝜋

∞∑︁
𝑘=0

2𝑘dev
(︁
N⟨𝑘⟩

)︁
· n⊗𝑘 (5.53)
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with a unit tensor of first order n and fiber orientation tensors of k-th
order in two dimensions N⟨𝑘⟩. An approximation of the FODF 𝜓 (n) by
leading fiber orientation tensors up to fourth order is given by

�̂� (n,N) = 1
2𝜋

[︀
1 + 4 dev (N) · n⊗2 + 16 dev (N) · n⊗4]︀

, (5.54)

and combined with N (𝜆1, 𝑝1, 𝑝2) and n(𝜙) = cos(𝜙) v1 +sin(𝜙) v2 leads
to

�̂� (𝜙, 𝜆1, 𝑝1, 𝑝2) = 1
2𝜋

[︁
1 + (4 𝜆1 − 2) cos (2𝜙) (5.55)

− 16 𝑝1 cos (4𝜙) + 16 𝑝2 sin (4𝜙)
]︁
.

Introducing the coordinate transformation

𝑝1 = ^̂𝑟 sin
(︁

^̂𝛽
)︁
, 𝑝2 = ^̂𝑟 cos

(︁
^̂𝛽
)︁

(5.56)

yields the following formulation

�̂�
(︁
𝜙, 𝜆1, ^̂𝑟, ^̂𝛽

)︁
= 1

2𝜋

[︁
1 + 4

(︂
𝜆1 − 1

2

)︂
cos (2𝜙) (5.57)

− 16𝑟 sin
(︁
𝛽 − 4𝜙

)︁]︁
.

The parameterization of �̂� in Equation (5.57) separates second and
fourth-order contributions into one trigonometric summand each. The
cosinus-contribution of the second-order fiber orientation tensor is al-
ways aligned with the coordinate axes of the orientation coordinate
system and its amplitude scales with 𝜆1, being zero for the planar
isotropic case, i.e., 𝜆1 = 1/2 and the frequency is two in the interval
𝜙 ∈ [0, 2𝜋). The fourth-order summand is a sinusoidal function of
double the frequency of the second-order term, with phase shift ^̂𝛽
and an amplitude which scales with ^̂𝑟. The frequency implies that
this fourth-order term has four maxima and four minima within the
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parameter range of 𝜙 ∈ [0, 2𝜋). In consequence, in the planar isotropic
case, Equation (5.57) degenerates to

�̂�

(︂
𝜙, 𝜆1 = 1

2 ,
^̂𝑟, ^̂𝛽

)︂
= 1

2𝜋

[︁
1 − 16𝑟 sin

(︁
𝛽 − 4𝜙

)︁]︁
(5.58)

which directly indicates, that the parameter ^̂𝛽 implies a rotation of �̂� by

an angle of ^̂𝛽/4 around the axis v3 of the 3D-framework pointing out
of the 2D-plane. If 𝜆1 ̸= 1/2, the interference of the second- and fourth-
order summands, which have different frequencies, leads to the variety
of �̂�. The structure of Equation (5.57) shows, that �̂� may be represented
by circular harmonics. Further details on harmonic representations of
planar tensors of fourth order can be found, e.g., in Vannucci (2018,
chapter 4) and Forte and Vianello (2014).

5.4.3 Maximum entropy reconstruction

Identification of a representative FODF based on a given leading fiber
orientation tensor is of importance for several applications, e.g., numeri-
cal calculation of orientation averages of direction dependent mechanical
properties (Hessman et al., 2021; Schemmann et al., 2018b; Brylka, 2017).
Truncated Fourier series are used in the literature to identify an FODF
based on fiber orientation tensors (Schöttl et al., 2020; Jack and Smith,
2004; Eik et al., 2016) although the identified functions do not meet the
non-negativity requirement of a FODF. Naive averaging with partly
negative FODF leads to non-physical results. Müller and Böhlke (2016)
give a solution to the reconstruction problem and identify FODF based
on leading fiber orientation tensors by maximizing the information-
theoretic entropy fulfilling normalization and non-negativity constraints.
For limited available information, the entropy principle yields the most
likely FODF fulfilling specified constraints. In this context “most likely”
corresponds to “maximizing entropy”. The procedure of Müller and
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Böhlke (2016) is briefly repeated for the special case of fourth-order fiber
orientation tensors and tailored to planar fiber orientation tensors. The
maximum entropy approximation 𝜓me(n) maximizes the information-
theoretic entropy 𝐸(𝜓)

𝐸(𝜓) = −
∫︁
𝑆𝑛−1

𝜓(n) ln𝜓(n) d𝑆 (5.59)

and fulfills the constraints

𝐺 = G<0> =
∫︁
𝑆𝑛−1

𝜓(n) d𝑆 − 1, (5.60)

G = G<2> =
∫︁
𝑆𝑛−1

𝜓(n) dev
(︀
n⊗2)︀

d𝑆 − dev (N) , (5.61)

G = G<4> =
∫︁
𝑆𝑛−1

𝜓(n) dev
(︀
n⊗4)︀

d𝑆 − dev (N) (5.62)

where the constraint 𝐺 ensures the normalization and G and G ensure
that the solution 𝜓me(n) meets the given orientation tensors. The domain
of the integral depends on the dimensionality of the given orientation
tensor and is either the surface of the unit sphere 𝑆2 for planar 3D tensors
or the circumference of the unit circle 𝑆1 for 2D tensors. The problem

max
𝜓

𝐸(𝜓) with G<𝛼> = 0<𝛼> for 𝛼 ∈ [0, 2, 4] (5.63)

corresponds to the Lagrange functional

ℒ(𝜓) = 𝐸(𝜓) −
∑︁

𝛼∈[0, 2, 4]

L<𝛼> · G<𝛼> (5.64)

with Lagrange multipliers 𝐿 = L<0>, L = L<2> and L = L<4>. The
solution is given by the root of the first variation of ℒ, i.e., 𝛿ℒ(𝜓) = 0
and is formulated in the Lagrange multipliers by

𝜓me(n, 𝐿,L,L) = exp(−1 − 𝐿− L · dev(n⊗2) − L · dev(n⊗4)) (5.65)
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(a) Paths and points in the plane 𝜆1 = 3/6
used in Figure 5.8
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(b) Points in the plane 𝜆1 = 4/6 used in
figure 5.9

Figure 5.4: Definition of representative points in the parameter space �̂� planar of planar
fourth-order fiber orientation tensors. The outer points in radial directions do not lie on
the boundary of the admissible region. Parameters of each point are listed in Table B.1.

which fulfills the non-negativity condition identically. The Lagrange
multipliers are obtained by solving the system of equations stated by
the constraints in Equations (5.60) to (5.62) with 𝜓(n) being repaced
by 𝜓me(n, 𝐿,L,L) from Equation (5.65). Due to the projection of the
Lagrange multipliers onto deviators of the moment tensors in Equation
(5.65), the Lagrange multipliers are without of loss generality irreducible,
i.e., completely symmetric and traceless (Rychlewski, 2000; Spencer,
1970). Table 5.1 lists the number of independent components of irre-
ducible tensors which depend on the tensor order and the dimenision-
ality of the vector space. The number of independent components of

Tensor order 2D 3D
2 2 5
4 2 9

Table 5.1: Number of independent component of irreducible tensors depending on order
and dimensionality of the vector space
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the Lagrange multipliers 𝐿, L and L sum up to 1 + 5 + 9 = 15 and
1 + 2 + 2 = 5 in three and two dimensions respectively and correspond
to the fourteen independent components of N and four independent
components of N plus one normalization constraint each. In tensor
notation, Equations (5.60) to (5.62) read as 1+9+81 = 91 scalar equations,
whereas in symmetric Kelvin-Mandel notation the identical equations
yield 1 + 6 + 36 scalar equations. These naive views on the set of equa-
tions illustrate that a minimal and redundancy-free parameterization
deploying index symmetry of the Lagrange multipliers is required. Such
a parameterization is necessary to reduce the dimensionality of the
system of equations to at most 15 or 5 depending on the dimensionality
of used tensor framework. Three out of five independent components
of N in 3D and one out of two independent components of N in 2D
define the orientation coordinate system. In the orientation coordinate
system, the second-order orientation tensor has diagonal structure. Off-
diagonal components of the second order Lagrange multiplier ensure
that the orientation coordinate systems of the reconstructed FODF and
the original fiber orientation tensors coincide. Based on the orientation
coordinate system, a generic representation of the Lagrange multipliers
of order two and four in three dimensions is given by

L(𝑏1, ..., 𝑏5) =

⎡⎢⎣ 𝑏1 𝑏5 𝑏4

𝑏2 𝑏3

sym −(𝑏1 + 𝑏2)

⎤⎥⎦ v𝑖 ⊗ v𝑗 , (5.66)

L(𝑐1, ..., 𝑐9) = (5.67)⎡⎢⎣
−(𝑐1 + 𝑐2) 𝑐1 𝑐2 −

√
2 (𝑐4 + 𝑐5)

√
2 𝑐6

√
2 𝑐8

−(𝑐1 + 𝑐3) 𝑐3
√

2 𝑐4 −
√

2 (𝑐6 + 𝑐7)
√

2 𝑐9
−(𝑐2 + 𝑐3)

√
2 𝑐5

√
2 𝑐7 −

√
2 (𝑐8 + 𝑐9)

completely symmetric

⎤⎥⎦
Bv
𝜉 ⊗ Bv

𝜁 .

Starting from the triclinic case in Equations (5.66) and (5.67), material
symmetries may be deployed to further reduce the number of indepen-
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dent components of the Lagrange multipliers, as the fiber orientation
tensors and the reconstructed FODF share their symmetry group, i.e.,
𝒮𝜓 = 𝒮N with

𝜓(Q ⋆ n) = 𝜓(n) ∀ Q ∈ 𝒮𝜓, (5.68)

Q ⋆ N = N ∀ Q ∈ 𝒮N (5.69)

which follows directly from the definition of N in Equation (5.7). Similar
to the FODF reconstruction by truncated Fourier series, the ansatz 𝜓me

in Equation (5.65) contains deviators from a central state, which in 3D is
the isotropic state. In order to reconstruct planar FODF based on planar
fiber orientation tensors, it is beneficial to deploy a two-dimensional
framework with deviators deviating from the planar isotropic state. In
the orientation coordinate system the Lagrange multipliers of order two
and four read as

L (𝑓1, 𝑓2) =
[︃
𝑓1 𝑓2

sym −𝑓1

]︃
v𝑖 ⊗ v𝑗 , (5.70)

L (𝑔1, 𝑔2) =

⎡⎢⎣ −𝑔1 𝑔1
√

2 𝑔2

−𝑔1 −
√

2 𝑔2

compl. sym.

⎤⎥⎦ Bv
𝜉 ⊗ Bv

𝜁 . (5.71)

In consequence, combination of Equations (5.70) and (5.71) leads to

𝜓
me(𝜙,𝐿, 𝑓1, 𝑓2, 𝑔1, 𝑔2) = exp

(︁
− 1 − 𝐿− 𝑓1 cos (2𝜙) (5.72)

− 𝑓2 sin (2𝜙) + 𝑔1 cos (4𝜙) − 𝑔2 sin (4𝜙)
)︁
.

For a given N(𝜆1, 𝑑1, 𝑑8) following Equation (5.50) and a specific se-
lection of independent tensor components, the resulting five scalar

116



5.4 Reconstructed fiber orientation distribution functions

equations are∫︁
𝑆1
𝜓(n, 𝐿, 𝑓1, 𝑓2, 𝑔1, 𝑔2) d𝑆 − 1 = 0, (5.73)∫︁

𝑆1
𝜓(n, 𝐿, 𝑓1, 𝑓2, 𝑔1, 𝑔2)

(︂
1
2 cos (2𝜙)

)︂
d𝑆 −

(︂
𝜆1 − 1

2

)︂
= 0, (5.74)∫︁

𝑆1
𝜓(n, 𝐿, 𝑓1, 𝑓2, 𝑔1, 𝑔2)

(︂
1
2 sin (2𝜙)

)︂
d𝑆 − 0 = 0, (5.75)∫︁

𝑆1
𝜓(n, 𝐿, 𝑓1, 𝑓2, 𝑔1, 𝑔2)

(︂
−1

8 cos (4𝜙)
)︂

d𝑆 −
(︂
𝑑1 − 3

280

)︂
= 0, (5.76)∫︁

𝑆1
𝜓(n, 𝐿, 𝑓1, 𝑓2, 𝑔1, 𝑔2)

(︂√
2

8 sin (4𝜙)
)︂

d𝑆 −
√

2 𝑑8 = 0. (5.77)

The equations are solved numerically for a given tripled (𝜆1, 𝑑1, 𝑑8).
Numerical integration on the unit circle is done with nschloe (2021)
based on Krylov and Stroud (2006).

5.4.4 Visualization of reconstructed planar fiber orienta-
tion distribution functions

Fiber orientation tensors represent averaged properties of an underlying
FODF. In consequence, a complete reconstruction of the underlying
FODF is not possible. It is of interest to visualize possible shapes of
reconstructed FODFs based on admissible mean values. The admissi-
ble mean values are given by the set of distinct and admissible fiber
orientation tensors of fourth order 𝒩 planar which can be combined with
the developed reconstruction methods 𝜓 and 𝜓

me
. The parameter space

𝒩 planar is discretized and for selected points in 𝒩 planar, i.e., for selected
N, reconstructed FODFs are visualized. The discretization is based on
several slices through 𝒩 planar which are given in Figures 5.4 and 5.5.
The arrangement of the visualizations of the reconstructed FODFs in
figures 5.7, 5.8, 5.9 and 5.10 mimic the position of the points on the slices
and reuse the color coding of the overview plots. In consequence, the
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(a) Points in the plane
𝜆1 = 5/6 used in figure 5.10
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(b) Ten points in the plane of planar orthotropic fiber
orientation tensors of fourth order being a slice of
𝒩 planar. The points are used in figure 5.7

Figure 5.5: Definition of additional representative points, see also Figure 5.4

influence of the position inside 𝒩 planar on the shape of the reconstructed
FODF is obtained. The developed visualizations directly show the
variety of reconstructed FODFs and as a side effect act as an intuitive
view on fiber orientation tensors of fourth order. As the truncated FODF
reconstruction does not fulfill the non-negativity constraint, negative
values of 𝜓 are highlighted in red, as defined in the shared legend in
Figure 5.6. Parameters of the utilized orientation tensors are listed in
Table B.1. The scaling of all polar plots of FODFs in Figures 5.7, 5.8, 5.9
and 5.10 is homogeneous with the lower radial limit being zero and the
upper radial limit 0.9.

A slice containing orthotropic (Bauer and Böhlke, 2022c) fiber orientation
tensors is shown in Figure 5.5b and the corresponding FODFs are given
in Figure 5.7. The transition from the planar isotropic state in Figure

Positive values of �̂�(𝜙) Negative values of �̂�(𝜙)
�̂�me(𝜙)

Figure 5.6: Shared legend for figures 5.7, 5.9, 5.9 and 5.10. �̂�(𝜙) and �̂�me(𝜙) are defined in
Equations (5.54) and (5.72) respectively.
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5.4 Reconstructed fiber orientation distribution functions

5.7(4) towards the unidirectional state in Figure 5.7(10) demonstrates
the degeneration of the variety of fourth-order fiber orientation tensors
towards the unidirectional state, which is defined completely by 𝜆1 = 1.
Figures 5.7(1) to 5.7(3) correspond to orientation states represented
by orange points in Figure 5.5b. These points keep a distance in the
𝑑1-direction from the boundary of the admissible body, as orientation
states at the boundary itself, correspond to Dirac distributions into two
directions each (see Bauer and Böhlke (2022c, Figure 9)). In analogy,
Figures 5.7(7) to 5.7(9) correspond to points highlighted in magenta in
Figure 5.5b and are also located off the boundary of the admissible region.
Figure 9 in Bauer and Böhlke (2022c) contains FODF approximations
based on a limited number of discrete fibers aligned along the axes of
the orientation coordinate system which correspond to points on the
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Figure 5.7: Reconstructed FODF at specific points which are defined in Figure 5.5b. A
legend is given in Figure 5.6
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Figure 5.8: Reconstructed FODF at specific points along paths defined in Figure 5.4a. The
radial spacing of the plots along the green and blue paths are not to true scale to allow for
larger plots A legend is given in Figure 5.6
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Figure 5.9: Reconstructed FODF along several paths. The radial spacing of the plots along
the green and blue paths are not to true scale to allow for larger plots. A legend is given
in Figure 5.6 and parameters of the points in 𝒩 planar, i.e., Nplanar, are listed in Table B.1.
Paths are defined in Figure 5.4b.
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Figure 5.10: Reconstructed FODF along several paths. The radial spacing of the plots along
the green and blue paths are not to true scale to allow for larger plots. A legend is given
in Figure 5.6 and parameters of the points in 𝒩 planar, i.e., Nplanar, are listed in Table B.1.
Paths are defined in Figure 5.5a.
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boundary of the admissible region specified by the line 𝑑1 = −4/35
and 𝑑8 = 0 in Figure 5.5b. Planar fiber orientation tensors at the
boundary of the admissible region directly correspond to orientation
states of a limited number of Dirac distributions. This observation
explains why experimentally identified fiber orientation tensors obtained
from comparably large fiber arrangements may not fill the complete
admissible region but fill only a (equally shaped) subregion within
the admissible region. In a comparably large fiber arrangement, Dirac
distributions are unlikely. The entropy reconstruction scheme contains
a basis function involving a direction depended exponential function.
Although the slope of an exponential function is rather steep, extreme
values of the Lagrange multipliers are necessary to approximate Dirac
distributions. Therefore, the entropy reconstruction scheme, which
includes numerical integration and a numerical solver, is not completely
stable when operating on orientation states at the boundary of the
admissible region. As the unidirectional case in Figure 5.7(10) lies
on the radial boundary of the admissible orientation states, the cor-
responding entropy-based reconstruction FODF degenerates to a single
Dirac distribution. The approximation 𝜓

me
in this figure is localized, i.e.,

vanishes for all angles except those pointing along axes of the orientation
coordinate system.

The slices defined in Figures 5.4, 5.5a and the corresponding FODF
approximations in figures 5.8, 5.9 and 5.10 visualize the variety of
reconstructed FODF among fourth-order fiber orientation tensors which
contract to identical second-order fiber orientation tensors. Any FODF
in Figure 5.8 leads to the planar isotropic second-order fiber orientation
tensor N(𝜆1 = 1/2). In analogy, any FODF in Figure 5.9 has an identical
second-order fiber orientation tensor being N(𝜆1 = 2/3). From this
viewpoint, the figures in any of the figures 5.8, 5.9 or 5.10 visualize
the variety of planar fourth-order fiber orientation tensors for a fixed
second-order orientation tensor. Figure 5.8 shows the redundancy inside
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Figure 5.11: Influence of 𝜆1 on reconstructed FODF for selected reconstruction methods
based on second-order fiber orientation tensors. For 𝜆1 = 1/2 all approximations coincide.

𝒩 planar identified in Equation (5.27) as FODFs with identical radial
distance to the centered Figure 5.8(x) only differ by a rotation. In contrast,
interference of the non-vanishing second-order contribution with the
fourth-order contribution in figures 5.9 and 5.10 leads to a variety of
FODF approximations. The developed views on 𝒩 planar based on slices
and selected points can be reused to analyse and visualize any quantity
which depends on planar fourth-order fiber orientation tensors.

5.4.5 Reconstruction solely based on second-order fiber
orientation tensors

If fourth-order fiber orientation information is not available, the param-
eter space of reconstructed FODFs degenerates to one parameter, e.g.,
1/2 ≤ 𝜆1 ≤ 1, which defines the second-order fiber orientation tensor.
Missing fourth-order fiber orientation information implies vanishing
fourth-order deviators and therefore leads to FODF reconstructions with
�̂� (𝜙, 𝜆1, 𝑝1 = 0, 𝑝2 = 0) in Equation (5.53) and 𝜓

me(𝜙,𝐿, 𝑓1, 𝑓2, 𝑔1 =
0, 𝑔2 = 0) in Equation (5.72). Figure 5.11 shows the influence of 𝜆1

on reconstructed FODFs for the methods used in the previous section
and in addition for the FODF approximation obtained by the exact
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closure approximation (Montgomery-Smith et al., 2011a). The exact
closure approximation is frequently used, e.g., in Goldberg et al. (2017);
Schneider (2017); Hessman et al. (2021); Görthofer et al. (2020) and
postulates a one-to-one correspondence between a given second-order
fiber orientation tensor and an a priori unknown FODF 𝜓exact closure of
special shape. In the general three-dimensional case this FODF can be
identified by solving elliptic integrals (Montgomery-Smith et al., 2011a).
For the planar case, Görthofer et al. (2020) gives explicit formulas which,
combined with Equation (5.14), lead to

𝜓
exact closure(𝜙, 𝜆1) = 1

2𝜋
(1 − 𝜆1)𝜆1

𝜆2
1 + (1 − 2𝜆1) cos (𝜙)2 . (5.78)

Visualization of Equation (5.78) for five values of 𝜆1 is given in Figure
5.11. If missing fourth-order orientation information is compensated by
deploying closure approximations, the variety of resulting FODFs shown
in Figures 5.7, 5.9 and 5.10 is not reachable. Instead, the parameter space
of structurally differing resulting FODFs degenerates to the parameter
space of the second-order orientation tensor within the orientation
coordinate system. If closure approximations are used in the context
of planar fiber orientations, the complete orientation information is
contained within two scalar parameters. One scalar parameters specifies
the orientation coordinate system and the other parameter specifies the
structure of the second-order fiber orientation tensor. In contrast, if the
discrete orientation of each single fiber is known, e.g., based on direct
fiber simulation (Meyer et al., 2020b), the variety of resulting FODF is
generic. However, averaged information of such a discrete set of fibers
expressed by fiber orientation tensors is still limited.
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5.5 Summary and conclusion

Planar fourth-order fiber orientation tensors describe the fiber orienta-
tion in many sheet-like fiber reinforced composites. The variety of these
tensors is known (Bauer and Böhlke, 2022c). The variety of reconstructed
fiber orientation distribution functions (FODFs) based on planar fourth-
order fiber orientation tensors is studied in this work leading to the
following insights:

1. Based on the set of admissible planar fiber orientation tensors in
Bauer and Böhlke (2022c), a minimal set of admissible and distinct
planar fiber orientation tensors of fourth order �̂� planar is derived
and given in Equation (5.28). This set is the basis for studies on the
influence of planar fourth-order fiber orientation tensors on any
physical quantity or material function which is formulated in this
directional measure.

2. The variety of reconstructed FODF is visualized by an arrangement
of polar plots which mimics the shape of the admissible and
distinct parameter space. This arrangement or view is generic
and may be applied to study the dependence of other quantities
on planar fourth-order fiber orientation tensors.

3. Reconstructed FODF based on truncated series expansion within a
three-dimensional framework are identified to be not planar as the
central state in three dimensions is isotropic.

4. A two-dimensional formulation of planar fiber orientation tensors
is introduced and linked to parameterizations of planar fiber ori-
entation tensors in three dimensions. The central, i.e., “isotropic”,
state in two dimensions is planar isotropic.

5. Within the two dimensional framework it is shown that interfer-
ence of second and fourth-order contributions leads to the variety
of reconstructed FODF based on truncated Fourier series.

6. Visualizations of truncated FODF reconstructions in Figures 5.7, 5.9
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and 5.10 highlight their limitations and motivate more advanced
reconstruction methods. The maximum entropy reconstruction
of Müller and Böhlke (2016) is explicitly formulated for the gen-
eral three-dimensional case and recast for the planar case in a
two-dimensional framework which leads to a low-dimensional
optimization problem. Resulting FODF approximations are nor-
malized and non negative.

7. For given reconstruction methods, the structural variety of re-
constructed FODF based on planar fourth-order fiber orientation
tensors is limited. Throughout this work, separation of rigid-body
rotations, and thus orientation in space, from structural properties
of represented FODFs is accomplished by representations in the
orientation coordinate system.

8. Visualization of reconstructed FODFs solely based on second-order
fiber orientation tensors, including a reconstruction method based
on the exact closure (Montgomery-Smith et al., 2011a; Görthofer
et al., 2020), close this paper and motivate higher order directional
measures.
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Chapter 6

On the Dependence of Orientation
Averaging Mean Field
Homogenization on Planar
Fourth-Order Fiber Orientation
Tensors 1

6.1 Introduction

The effective mechanical properties of fiber reinforced composites highly
depend on the microstructure. The microstructure descriptors fiber
volume content and fiber orientation tensors are commonly used in
homogenization techniques for two-phase composites (Buck et al., 2015;
Brylka, 2017; Hessman et al., 2021; Schemmann et al., 2018b; Kehrer
et al., 2020). Experimental or numerical identification and subsequent
use of second-order fiber orientation tensors is well established in pro-
cess chains (Görthofer et al., 2019) and commercial software. The use
of higher-order fiber orientation tensors or the direct use of a fiber

1 This chapter reproduces (Bauer and Böhlke, 2022b), i.e., Bauer, J. K., Böhlke, T.,
2022. On the dependence of orientation-averaging mean field homogenization on
planar fourth-order fiber orientation tensors. Mechanics of Materials 170, 104307,
10.1016/j.mechmat.2022.104307. Reproduced with permission. ©2022 The Authors.
Published by Elsevier Ltd under CC BY 4.0
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orientation distribution function, is progressing (Meyer et al., 2020b).
Nevertheless, closure approximations, which identify higher-order
orientation information based on assumptions instead of information,
are still used in material modeling. For the special case of linear elasticity,
mean field homogenization is popular due to its simplicity (Kehrer
et al., 2020). A unified formulation of several mean field approxi-
mations is given in Hessman et al. (2021). The influence of model
parameters, the fiber volume content or the aspect ratio of either the
fiber’s shape or the two-point correlation functions, on the predicted
effective mechanical properties obtained by mean field homogenization,
is studied extensively, e.g., in Kehrer et al. (2020); Buck et al. (2015);
Brylka (2017); Hessman et al. (2021); Müller (2016); Trauth et al. (2021);
Kehrer (2019). However, the influence of fiber orientation distributions
on the effective properties has not been studied systematically. In this
work, the influence of fiber orientation distributions on the effective
properties of long-fiber-reinforced composites with large aspect ratios,
such as sheet molding compound (SMC), is studied. Fiber distributions
of SMC are identified to be in most cases approximately planar and
therefore correspond to fiber orientation tensors which are planar as
well. A set of all admissible and structurally differing planar fiber
orientation tensors of fourth order is identified by Bauer and Böhlke
(2022c;a) within a three-dimensional framework. This set is the basis for
a complete study on the influence of the fiber orientation distribution
on the effective mechanical properties for selected orientation-averaging
mean field homogenizations within this work. This complete study is
new and of high relevance as it visualizes all possible effective stiffness
tensors which can be obtained for planar distributions and selected
homogenizations. The methodology may be applied to any other ho-
mogenization or any effective quantity, which is a function of a planar
fourth-order fiber orientation tensor. As a side effect, the limitations
of the use of second-order orientation tensors only are visualized. The
developed visualization method may be adopted to higher-dimensional
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parameter spaces of fourth-order fiber orientation tensors with lower
symmetry.

This paper starts with definitions of fiber orientation tensors before
orientation states of SMC specimen obtained by computer tomography
(Pinter et al., 2018; Schöttl et al., 2020) are identified to be approximately
planar. In consequence, the microstructure of SMC can be parameterized
in the three-dimensional space of admissible planar fourth-order fiber
orientation tensors. A parameterization of this space is obtained in
Bauer and Böhlke (2022c) and combined with a minimal parameter
set of structurally distinct planar fourth-order fiber orientation tensors
given in Bauer and Böhlke (2022a). As the Advani-Tucker orientation
average (Advani and Tucker III, 1987) is an essential building block of
various mean field schemes, but the implication of its linearity in both
the orientation tensor and the averaged quantity is seldom addressed
explicitly, a reformulation based on the harmonic decomposition (lin-
ear invariant decomposition) is given. A new numerical variant of
the Advani-Tucker orientation average based on reconstructed FODF
following the maximum entropy method, developed in Müller and
Böhlke (2016); Bauer and Böhlke (2022a), is given and shown to have
a good convergence for non-localized orientation states. In a next
step, four mean field homogenization approximations (Kehrer et al.,
2020; Walpole, 1966a;b; Benveniste, 1987) are reviewed, partially re-
formulated and investigated. Implementations are made available at
Bauer (2022). The first approximations are orientation-averaging Mori-
Tanaka following Benveniste (1987) and a two step Hashin-Shtrikman
homogenization scheme (Kehrer et al., 2020) both in formulations based
on the orientation average following Advani and Tucker III (1987). The
remaining two approximations are direct Advani-Tucker orientation
averages of either a unidirectional stiffness or compliance obtained
by the Mori-Tanaka approximation (Mori and Tanaka, 1973). Views
on the effective stiffnesses obtained by the selected schemes are given
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based on Young’s modulus and generalized bulk modulus following
Böhlke and Brüggemann (2001). Observations on structural differences
of the effective stiffnesses obtained by schemes averaging stiffness- or
compliance-like quantities close this work.

6.2 Sheet molding compound and planar mi-
crostructures

Sheet molding compound (SMC) is a material class with a thermoset
polymer matrix enforced by long glass fibers and is of special interest
in this work. Due to the manufacturing process (Böhlke et al., 2019),
components made from SMC are shell-shaped, i.e., at each point of the
component, the thickness is significantly smaller than the remaining two
dimensions of the component. As the fiber length exceeds the component
thickness, alignment of fibers perpendicular to the local plane of the
shell is limited to local fiber bending. In consequence, local directional
measures which describe the orientation of fibers in SMC components
are approximately planar. In order to elaborate the consequences of this
planarity, directional measures are introduced, closely following a more
comprehensive discussion in Bauer and Böhlke (2022c, sections 2.1 and
2.2).

A fiber orientation density function (FODF) is an established directional
measure for the orientation of axisymmetric fibers contained inside a
reference volume. Such a reference volume can be interpreted as a
section of a structural component of specified size. The size of the
reference volume influences the directional measurement and represents
a scaling parameter in measurement algorithms, e.g., in Görthofer et al.
(2019, Figure 4) or Schöttl et al. (2020). The FODF

𝜓 : 𝒮2 → R, with 𝒮2 =
{︀

n ∈ R3 | ‖n‖ = 1
}︀

(6.1)
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at a given position inside a component maps any direction n, being
part of the two-dimensional surface of a unit sphere in three dimen-
sions 𝒮2, onto a scalar value 𝜓 (n). The function 𝜓 (n) is non-negative,
normalized and symmetric (see Advani and Tucker III (1987); Bauer
and Böhlke (2022c); Görthofer et al. (2020); Bauer and Böhlke (2022a)).
The FODF contains the complete directional information, which can be
contained in a one-point correlation function, but is usually unknown. In
contrast, orientation tensors only contain a limited amount of averaged
information but can be obtained by computer tomography scans or flow
simulations (Görthofer et al., 2019) and fit into the tensor framework of
continuum mechanics. In this work, fiber orientation tensors of Kanatani
first kind (Kanatani, 1984) of second N and fourth order N are used and
defined by

N =
∫︁

𝒮2
𝜓 (n) n ⊗ n d𝑛, (6.2)

N =
∫︁

𝒮2
𝜓 (n) n ⊗ n ⊗ n ⊗ n d𝑛. (6.3)

The fiber orientation tensors represent averaged directional measures
and are coefficients of a three-dimensional tensorial Fourier series repre-
sentation of the FODF

𝜓 (n) = 1
4𝜋

∞∑︁
𝑘=0

2𝑘 + 1
2𝑘

(︂
2𝑘
𝑘

)︂
dev

(︀
N⟨𝑘⟩

)︀
· n⊗𝑘 (6.4)

called spherical harmonic expansion (Kanatani, 1984, page 154), with the
operator dev(·) extracting the deviatoric part, see Spencer (1970). Higher
order fiber orientation tensors contain all tensors of lower order which
implies N = N [I] for the tensors orders two and four, with the identity
on second-order tensors I = 𝛿𝑖𝑗 e𝑖 ⊗ e𝑗 .
In order to define planarity of the directional measures, the basic prop-
erties of the second-order orientation tensor N are briefly summarized
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following Bauer and Böhlke (2022c). As N is symmetric and positive
semi-definite, it can be diagonalized, i.e., pairs of eigenvalues 𝜆𝑖 with
𝜆𝑖 ≥ 0 and orthonormal eigenvectors v𝑖 for 𝑖 ∈ [1, 2, 3] exist, such that

N = 𝑁
(2)
𝑖𝑗 e𝑖 ⊗ e𝑗 =

3∑︁
𝑖=1

𝜆𝑖v𝑖 ⊗ v𝑖 (6.5)

=

⎡⎢⎣ 𝜆1 0 0
𝜆2 0

sym 𝜆3

⎤⎥⎦ v𝑖 ⊗ v𝑗

holds with the ordering convention 𝜆3 ≤ 𝜆2 ≤ 𝜆1 and there exists a
rotation defined by an orthogonal tensor

Q = v𝑖 ⊗ e𝑖 (6.6)

mapping the arbitrary but fixed basis {e𝑖} onto the basis {v𝑖}. A visual
classification of structurally differing orientation tensors is given by the
so called orientation triangle (Cintra Jr and Tucker III, 1995; Chung and
Kwon, 2002; Goldberg et al., 2017; Köbler et al., 2018). As 𝜆3 = 1−𝜆1 −𝜆2

holds due to the normalization of 𝜓, any second-order orientation tensor
can be represented by a pair (𝜆1, 𝜆2), which is connected to a point
inside the orientation triangle and by a mapping Q which defines the
orthonormal basis {v𝑖} spanned by the eigenvectors. This basis is called
orientation coordinate system (Bauer and Böhlke, 2022c) and can be used
to define the term planarity for FODF and fiber orientation tensors. A
FODF is planar, if

𝜓(n(𝜙, 𝜃)) = 0 ∀𝜙, ∀ 𝜃 ̸= 𝜋

2 (6.7)

holds with a unit vector parameterized in two spherical angles in the
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(b) Visualization of the set of admissible
and distinct planar fourth-order fiber
orientation tensors �̂� planar in the
parameter space

{︀
𝜆1, 𝑑1, 𝑑8

}︀
using the

parametrization of Nplanar in Equation
(6.11). A derivation of this space is given in
Bauer and Böhlke (2022a)

Figure 6.1

orientation coordinate system

n(𝜙, 𝜃) = sin(𝜃) cos(𝜙)v1 + sin(𝜃) sin(𝜙)v2 + cos(𝜃)v3. (6.8)

A fiber orientation tensor of arbitrary order is planar if its successive
contraction yields a second-order fiber orientation tensor with vanishing
third eigenvalue.

The assumption of the planarity of SMC microstructures is assessed by
inspection of a biaxial tensile specimen made of SMC. Second-order fiber
orientation tensors following equation (6.5) at several locations inside
this specimen are obtained by computer tomography following (Schöttl
et al., 2020) and are referenced as 𝒩 CT

SMC . The obtained fiber orientation
tensors are visualized as points inside an orientation triangle in Figure
6.1a. The orientation states along the upper right border of the triangle
in Figure 6.1a represent perfectly planar orientations, as the third eigen-
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value 𝜆3 = 1 − 𝜆1 − 𝜆2 vanishes. The measured fiber orientation tensors
align well onto the planar border of the orientation triangle in Figure 6.1a
and therefore confirm the planarity assumption. However, the spatial
resolution of CT images as well as the choice of algorithm parameters for
the processing of the CT images, influence the planarity of the resulting
fiber orientation tensors. Not all fiber orientation tensors obtained for
SMC in the literature are perfectly planar. As an example, Kehrer et al.
(2020, Figure 5) contains non-planar fiber orientation states, obtained by
CT scans, indicating a high spatial resolution of the corresponding CT
images combined with small extraction cylinders (see Görthofer et al.
(2019, Figure 4)) in the post-processing of the CT images. Visualizations
of SMC microstructure data obtained by computer tomography (CT)
are, e.g., given in Trauth et al. (2021, Figure 2). Artificially generated
SMC microstructures can be found in Görthofer et al. (2020, Figure 3b
and 5). The algorithm, which Görthofer et al. (2020) used to generate
artificial microstructures, hints towards the planarity of the resulting
directional measures. Throughout this work, fiber orientation tensors
of SMC are assumed to be perfectly planar and hence, the dependence
of the mechanical response of shell-like SMC structures on a varying
microstructure can be investigated based on planar fiber orientation
tensors. In this work, the SMC-specific bundle structure which is, e.g.,
considered in Schöttl et al. (2021); Görthofer et al. (2020), is not taken
into account.
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6.3 Planar fourth-order fiber orientation tensors

6.3 Planar fourth-order fiber orientation ten-
sors

A parameterization of planar fiber orientation tensors of second-order
Nplanar is given by

Nplanar (𝜆1) = 𝜆1 v1 ⊗ v1 + (1 − 𝜆1) v2 ⊗ v2 (6.9)

=

⎡⎢⎣ 𝜆1 0 0
1 − 𝜆1 0

sym 0

⎤⎥⎦ v𝑖 ⊗ v𝑗

in the orientation coordinate system {v𝑖} which is defined in Equation
(6.6). Positive definiteness and normalization of the trace combined
with the ordering convention of the eigenvalues demand the parameter
range 1/2 ≤ 𝜆1 ≤ 1. Bauer and Böhlke (2022c) discuss that planar
fiber orientation tensors of fourth order only depend on three inde-
pendent parameters and derive admissible ranges of these parameters
demanding positive definiteness of the orientation tensors. Among the
admissible parameters, Bauer and Böhlke (2022a) identify a subset of
parameter combinations which represent all admissible and structurally
distinct planar fourth-order fiber orientation tensors. Following Bauer
and Böhlke (2022a), two tensors A and B are structurally distinct if

∄Q ∈ SO(3) with Q ⋆ A = B (6.10)
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with the special orthogonal group SO(3), which contains all proper
rotations. These results are summarized by the parameterization

Nplanar
(︁
𝜆1, 𝑟, 𝛽

)︁
= (6.11)⎡⎢⎢⎢⎢⎣

−𝑟 sin
(︀
𝛽
)︀

− �̂�(𝜆1) + 𝜆1 𝑟 sin
(︀
𝛽
)︀

+ �̂�(𝜆1) 0 0 0
√

2 𝑟 cos
(︀
𝛽
)︀

−𝑟 sin
(︀
𝛽
)︀

− �̂�(𝜆1) + (1 − 𝜆1) 0 0 0 −
√

2 𝑟 cos
(︀
𝛽
)︀

0 0 0 0

completely symmetric

⎤⎥⎥⎥⎥⎦
Bv
𝜉 ⊗ Bv

𝜁

which follows from Bauer and Böhlke (2022a, Equation (22)) with

�̂�(𝜆1) = (𝜆1 − 𝜆2
1)/2 (6.12)

and is represented in Kelvin-Mandel notation (Thomson, 1856; Mandel,
1965; Mehrabadi and Cowin, 1990). This notation is explained in detail
in Appendix B.1 and the basis Bv

𝜉 ⊗ Bv
𝜁 is spanned in the orientation

coordinate system {v𝑖}, i.e., for example the fifth basis vector in Equation
(6.11) becomes Bv

5 =
√

2
2 (v1 ⊗ v3 + v3 ⊗ v1). The parameterization in

Equation (6.11) can be combined with the set of parameter combinations
which leads to admissible and distinct Nplanar. This set is

�̂� planar =
{︂
Nplanar

(︁
𝜆1, 𝑟, 𝛽

)︁
| 1

2 < 𝜆1 ≤ 1, 0 ≤ 𝑟 ≤ �̂�(𝜆1), (6.13)

−𝜋

2 ≤ 𝛽 ≤ 𝜋

2

}︂
∪

{︂
Nplanar

(︁
𝜆1, 𝑟, 𝛽

)︁
| 𝜆1 = 1

2 , 0 ≤ 𝑟 ≤ 1
8 , 𝛽 = −𝜋

2

}︂
following Bauer and Böhlke (2022a, Equation (28)). A visualization of the
body of admissible and distinct orientation tensors �̂� planar in Cartesian

138



6.4 Planar fourth-order fiber orientation tensors

coordinates

𝑑1 = 𝑟 sin
(︁
𝛽

)︁
, 𝑑8 = 𝑟 cos

(︁
𝛽

)︁
(6.14)

is given in Figure 6.1b. The data set 𝒩 CT
SMC of fiber orientation tensors

obtained by CT, which second-order information is visualized in Figure
6.1a, is represented in the parameter space �̂� planar in Figure 6.2. The
data points are preferably concentrated around the axis of vanishing
values of 𝑑1 and 𝑑8. This observation supports the statement of Hine
et al. (2004), that real fiber orientations preferably scatter around orienta-
tion states with maximum entropy, i.e., those which are approximately
isotropic. Analysis of additional data sets reveals, that the size of the
reference volume associated with each discrete fiber orientation tensor
significantly determines the resulting distribution inside the admissible
region. However, quantitative investigations on the dependence of fiber
orientation states on processing and CT settings is moved to a follow-up
publication. Based on the parameterization Nplanar(𝜆1, 𝑟, 𝛽) and the set
�̂� planar, a visualization method, motivated by Bauer and Böhlke (2022a),
can be used to study the influence of planar fourth-order fiber orientation
tensors on the mechanical properties predicted by orientation-averaging
mean field homogenization techniques.

Although the planar fiber orientation tensors given in Equations (6.9)
and (6.11) fit into a two-dimensional framework, e.g., used in Bauer
and Böhlke (2022a), a three-dimensional tensor framework is deployed
within this work, as the mechanical behavior of real materials is defined
by the laws of physics of the three-dimensional world. Boundary condi-
tion into the out-of-plane direction influence the mechanical response of
planar structures, see Nordmann et al. (2020).
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6.4 Orientation averages

Orientation-averaging mean field homogenization demands analytical
or numerical schemes which yield averages of direction-dependent
tensorial quantities over orientations. Advani and Tucker III (1987)
define the orientation average of a tensorial quantity A by

⟨A ⟩AT =
∫︁
𝑆2
𝜓(n)A(n) d𝑆, (6.15)

i.e., as a weighted summation with weights defined by the FODF. Sev-
eral formulations and approxmiations of Equation (6.15) exist in the
literature. An exact formulation given in the original paper Advani
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Figure 6.2: Fourth-order orientation tensors 𝒩 CT
SMC obtained by computer tomography

(CT) scans at several positions of a SMC specimen, represented by points inside the
admissible and distinct planar parameter space �̂� planar. The size of the reference volume
associated with each discrete fiber orientation tensor significantly determines the resulting
distribution inside the admissible region.
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and Tucker III (1987, Equation (28)), frequently used in, e.g., Lielens
et al. (1998); Jack and Smith (2008); Camacho et al. (1990); Brylka (2017);
Kehrer et al. (2020); Hessman et al. (2021) is labeled ⟨· ⟩ATN in this
work. This formulation is given directly in terms of fiber orientation
tensors of second and fourth-order Kanatani first kind (Kanatani, 1984)
, and in its original formulation is restricted to transversely isotropic
elasticity tensors H = 𝐻𝑖𝑗𝑘𝑙 e𝑖 ⊗ e𝑗 ⊗ e𝑘 ⊗ e𝑙, i.e., stiffness or compliance-
like quantities with major and both minor symmetries which may be
specified in index notation by 𝐻𝑖𝑗𝑘𝑙 = 𝐻𝑗𝑖𝑘𝑙 = 𝐻𝑖𝑗𝑙𝑘. However, the
original formulation in Advani and Tucker III (1987), which is repeated in
slightly varying notation in, e.g., Kehrer et al. (2020); Brylka (2017); Heller
et al. (2016), can be extended to transversely isotropic tensors which
lack the majory symmetry of an elasticity tensor. Such a generalization
is given in Appendix C.4 based on the formulation introduced in the
next section. The explicit formulation of ⟨· ⟩ATN in orientation tensors is
simple and efficient, but complicates adaption of empirical fiber dam-
age (Schemmann et al., 2018b) or incorporation of direction-dependent
fiber length distributions (Brylka, 2017). A reformulation based on the
harmonic decomposition Rychlewski (2000); Forte and Vianello (1996);
Olive et al. (2018); Böhlke and Brüggemann (2001) explicitly revealing
the structure of the scheme is given in the next section.

6.4.1 Reformulation of the explicit Advani-Tucker orien-
tation average

A transversely isotropic elasticity tensor is completely defined by five
independent parameters and a direction, i.e., a normal vector q, and can
be written as Ctransv (ℎ1, ℎ2, ℎ3, ℎ4, ℎ5, q) following Equation (C.3) in
C.2. The orientation average ⟨· ⟩ATN of a transversely isotropic elasticity
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tensor is independent of q and given by

⟨Ctransv (ℎ1, ℎ2, ℎ3, ℎ4, ℎ5, q) ⟩ATN (N) (6.16)

= ℎ1 P1 + ℎ2 P2 + ℎ3 J3 [dev(N)] + ℎ4 J4 [dev(N)] + ℎ5 dev(N)

with the irreducible parts of N

dev(N) = N − Niso (6.17)

dev(N) = N − 6
7sym (dev(N) ⊗ I) − Niso (6.18)

and the isotropic parts of the second- and fourth-order fiber orientation
tensors of Kanatani first kind (Kanatani, 1984)

Niso = 1
3 I, Niso = 7

35sym (I ⊗ I) (6.19)

following Bauer and Böhlke (2022c). The isotropic sixth order tensors
J3 and J4 are defined in Equations (C.6) and (C.7). The operator sym(·)
extracts the totally symmetric part with respect to symmetry following
Spencer (1970) and the operator dev(·) extracts the deviatoric part also
discussed in Spencer (1970). Linearity of the harmonic decomposition in
Equation (6.16) implies that the orientation average following Advani
and Tucker III (1987) is linear in both Ctransv and N. This implication
might be obvious to some authors, as the only source of orientation
dependent structural information is N. However, the original formu-
lation in Advani and Tucker III (1987) does not directly reveal, that
the isotropic part of the averaged elasticity tensor is unaffected, as one
would expect from a physical point of view. In addition, the first and
second deviatoric parts of the orientation average in Equation (6.16), i.e.,
ℎ3 dev(N) and ℎ4 dev(N), only differ by a scaling factor and share the
tensor structure of dev(N). As N is completely symmetric, its first and
second deviatoric parts coincide, see Bauer and Böhlke (2022c). As the
manual derivation of Equation (6.16) is lengthy, listing C.1 combined

142



6.4 Orientation averages

with code in Bauer (2022) is used to validate the representation of the
orientation average. Any material model which contains the Advani-
Tucker orientation average, implicitly contains a linearity assumption
of at least an intermediate quantity in the fiber orientation or fabric
tensor. For reference, some authors Schemmann et al. (2018a;b); Karl
et al. (2021b) explicitly postulate linearity of an effective stiffness or
viscosity in fiber orientation or fabric tensors. In contrast, a material
model of a porous, anisotropic, linear elastic material being non-linear
in a fabric tensor is given in Cowin (1985).

6.4.2 Direct numerical integration and the adaptive
scheme based on angular central Gaussian distribu-
tions

Direct numerical integration of Equation (6.15) requires both a given
FODF and a large number of integration points on the two-dimensional
area of integration 𝑆2, but leads to insufficient accuracy despite high
numerical effort, especially in the case of strongly localized FODF. This
performance and accuracy issue motivates a recently developed nu-
merical scheme (Goldberg et al., 2017) denoted by ⟨· ⟩ATGOS which is
based on a special class of FODF basis functions called angular central
Gaussian. Although this scheme is not used within this work, it is
shortly introduced as a comparison. The scheme ⟨· ⟩ATGOS leads to an
approximation resulting in a weighted summation of the quantity of
interest pointing into a number of 𝑁GOS discrete directions

⟨A ⟩AT ≈ ⟨A ⟩ATGOS (N) =
𝑁GOS∑︁
𝑖

𝑤GOS
𝑖 (N)A(n𝑖) (6.20)

with the weights being a function of the second-order fiber orientation
tensor. The weights can be pre-calculated and stored in efficient look-up
structures. Implementation details are given for the three-dimensional
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case in Goldberg et al. (2017); Hessman et al. (2021) and for the two-
dimensional case in Görthofer et al. (2020). This formulation yields
reasonable accuracy even for localized FODF with a limited number of
integration points (Goldberg et al., 2017), e.g., 𝑁GOS = 434 in Hessman
et al. (2021). Due to the structure in Equation (6.20), any direction-
dependent quantity can be averaged and the weights may be modeled
for empirical simulation of damage. However, the orientation average
⟨· ⟩ATGOS is solely based on the directional information contained within
a second-order orientation tensor, which is limited to two scalars de-
scribing the half axes of an ellipsoid combined with the definition of a
coordinate system.

6.4.3 Orientation average by reconstructed planar FODF
based on a maximum entropy method

A maximum entropy FODF reconstruction for planar fiber orientations
developed by Bauer and Böhlke (2022a) based on Müller and Böhlke
(2016), can be combined with any numerical integration on 𝑆1 leading
to an approximation of the Advani-Tucker orientation average, which
shares the simple structure of ⟨A ⟩ATGOS, uses fourth-order fiber orien-
tation tensor information and makes use of the reduced dimension of
planar fiber orientation tensors. However, as this scheme uses direct
numerical integration on 𝑆1, it leads to insufficient accuracy for localized
fiber orientation states. Fortunately, the localized orientation states are
known through analysis of the admissible region �̂� planar in Bauer and
Böhlke (2022a) and can be captured in implementations. Following
Bauer and Böhlke (2022a), for any admissible non-localized fiber orienta-

tion tensor of fourth-order, a planar FODF, 𝜓
ME(𝜙,Nplanar) parameterized

in one spherical angle defined in Equation (6.8) with 0 ≤ 𝜙 < 2𝜋 can be
identified. This leads to an approximation of the Advani-Tucker average
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in Equation (6.15) for the planar case by

⟨A ⟩AT(Nplanar) ≈ ⟨A ⟩ME(Nplanar)

=
∫︁ 2𝜋

0
𝜓

ME(𝜙, Nplanar) Q(𝜙) ⋆ Ad𝜙

≈ 2𝜋
𝑁ME∑︁
𝑖=1

𝑤𝑖 𝜓
ME(𝜙𝑖, Nplanar) Q(𝜙𝑖) ⋆ A

= 2𝜋
𝑁ME∑︁
𝑖=1

𝑤ME
𝑖 (Nplanar) Q(𝜙𝑖) ⋆ A (6.21)

with a rotation around the v3 axis Q, evaluated at specified angles which
are defined by any numerical integration scheme on 𝑆1 with weights
𝑤𝑖. Within this work, numerical integration on 𝑆1 with homogeneous
weights 𝑤𝑖 = 1/𝑁ME and equidistant angles 𝑤𝑖 = 2𝜋 𝑖/𝑁ME following
Krylov and Stroud (2006) is used. The weights of the numerical integra-
tion scheme might be combined with the direction specific value of the
FODF in Equation (6.21). The accuracy of the average ⟨· ⟩ME is assessed
by averaging of moment tensors, as

⟨n⊗4 ⟩AT(Nplanar) = Nplanar ≈ ⟨n⊗4 ⟩ME(Nplanar) (6.22)

has to hold. The assessment is done for all fourth-order fiber orientation
tensors specified in Table C.1 except for the unidirectional case notated
as 𝒩 planar

selected, as this localized orientation state is insufficiently handled by
the numerical integration. The deviation is quantified by

Δmax(𝑁ME) = max
Nplanar ∈ 𝒩 planar

selected

‖⟨n⊗4 ⟩ME(𝑁ME,Nplanar) − Nplanar‖
‖Nplanar‖ (6.23)

and given for varying order of the numerical integration 𝑁ME in Figure
6.3. The target precision of 10−7 is reached. Studying the convergence
of the numerical averaging scheme, by averaging a specific, randomly
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Figure 6.3: Influence of the number of integration points on the deviation of ⟨n⊗4 ⟩ME
from ⟨n⊗4 ⟩ATN with Δmax defined in Equation (6.23)

chosen, elasticity tensor instead of the moment tensor in Equation (6.23),
following Hessman et al. (2021), leads to similar convergence.

6.5 Orientation-averaging mean field homoge-
nization

Sheet molding compound is a two-phase composite with glass fibers
embedded irregularly in a thermoset polymer matrix. For isothermal
applications, isotropic linear elasticity states a reasonable assumption
for both the fiber and the matrix behavior, see Kehrer et al. (2020). In
consequence, the local stress-strain relation inside the fiber and matrix
phase at position x is

𝜎(x) = Cf [𝜀(x)] ∀ x ∈ ℬf (6.24)

𝜎(x) = Cm [𝜀(x)] ∀ x ∈ ℬm (6.25)
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6.5 Orientation-averaging mean field homogenization

Young’s mod. Poissons ratio Bulk mod. Shear mod.

Fibers 73.0 GPa 0.22 43.45 GPa 29.92 GPa
Matrix 3.4 GPa 0.385 4.93 GPa 1.23 GPa

Table 6.1: Material parameters of the SMC constituents glass fiber and neat matrix (UPPH,
i.e., unsaturated polyester-polyurethane hybrid) adopted from Kehrer et al. (2020, Table 2)
citing additional references. Bulk and shear modulus are derived from Young’s modulus
and Poisson’s ratio. The volume fractions of the fiber and matrix phases are 𝑐p = 0.256
and 𝑐p = 0.744.

with parts of the representative volume element (RVE) occupied by
the fibers ℬf and the matrix ℬm, respectively. The stiffness of a fiber is
denoted by Cf and Cm represents the stiffness of the matrix. Isotropy
implies that Cf and Cm in Equations (6.24) and (6.25) do not depend on
the spatial orientation and are given by

Cf = 3𝐾f P1 + 2𝐺f P2 (6.26)

Cm = 3𝐾m P1 + 2𝐺m P2 (6.27)

with the first and second isotropic projectors P1 and P2 respectively
and bulk and shear modulus denoted by 𝐾 and 𝐺. Throughout this
work, material parameters are adopted from Kehrer et al. (2020, Table
2) and listed in Table 6.1. Two one-point characteristics describing the
microstructure of a RVE at a material point inside a SMC-component are
considered. The first characteristic is the volume fraction of the fibers 𝑐f,
which implies the volume fraction of the matrix 𝑐m = 1 − 𝑐f. The second
characteristic is a fourth-order fiber orientation tensor N. In the absence
of any non-linearities, such as cracks, the effective elastic stiffness C̄ of
the RVE exists and is of interest. The effective stiffness maps effective
strains �̄� = ⟨𝜀(x) ⟩ onto effective stresses �̄� = ⟨𝜎(x) ⟩ by

�̄� = C̄[�̄�]. (6.28)

The operator ⟨· ⟩ takes the volume average of a spatially varying field
quantity, e.g., 𝜎(x), inside the RVE. Four mean field approximations
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are briefly reviewed and examined for given material parameters and
variable fiber orientation tensors.

6.5.1 Two-step Hashin-Shtrikman

A two-step Hashin-Shtrikman scheme for fiber reinforced composites
following Kehrer et al. (2020), based on Walpole (1966a;b; 1969) and
proposed by Fernández and Böhlke (2019) is used to study the influence
of a fourth-order orientation tensor on the effective stiffness. Detailed
derivations of the Hashin-Shtrikman bounds, based on a variational
principle, are given in Walpole (1966a); Fernández and Böhlke (2019).
In this work only the resulting equations are of interest. Under the
assumption of phase-wise constant stress polarizations, the Green’s
function of a material without long-range order and ellipsoidal two-
point statistics, is constant (Fernández and Böhlke, 2019, section 2.2).
This constant Green’s function is represented by the Hill’s (Hill, 1965a)
polarization tensor P and reflects the ellipsoidal symmetry of the two-
point statistics. Under these assumptions, the effective stiffness of a
material made up of 𝑛 phases with stiffnesses {C𝑖} for 𝑖 ∈ [1, ..., 𝑛] is
given as a function of a comparison stiffness C0 by

C̄HSW (C0, P (C0, 𝑎) , {C𝑖} , ⟨ ⟨· ⟩ ⟩) = C0 − P−1 + [ ⟨ ⟨W (C0, P, C𝑖) ⟩ ⟩]−1

(6.29)

with

W (C0, P, C𝑖) =
[︀
P−1 + C𝑖 − C0

]︀−1
(6.30)

and with P (C0, 𝑎) depending on the symmetry of the two point statistics.
For simplicity, the dependence of P upon the two point statistic is
represented by an aspect ratio 𝑎 with 1/2 ≤ 𝑎 ≤ ∞ reaching from the
isotropic case P0 (C0) = P (C0, 1/2) to the limiting unidirectional case
PUD (C0) = P (C0, ∞). This restriction of P from generally ellipsoidal
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6.5 Orientation-averaging mean field homogenization

shapes to spheroidal shapes is common in the context of fiber reinforced
composites. The operator ⟨ ⟨· ⟩ ⟩ takes the average over the RVE. Al-
ternative formulations of the Hashin-Shtrikman scheme exist, e.g., in
Willis (1977; 1981) and remarks on the different formulations are given in
Fernández and Böhlke (2019). The formulation in Equation (6.29) is not
directly applicable to singular, i.e., non-invertible, polarization tensors.
However, Walpole (1969, page 238) proposes a dual scheme which can
be used to evaluate Equation (6.29) for singular polarization tensors, e.g.,
PUD. If the comparison material with stiffness C0 is selected, such that the
stiffnesses of all phases are smaller (larger) than C0, e.g., using first order
bounds, Equation (6.29) yields a lower (upper) Hashin-Shtrikman bound.
As SMC is a two-phase composite, for any choice of the comparison
stiffness C0 in between Cm and Cf, Equation (6.29) gives an admissible
effective stiffness in between the Hashin-Shtrikman bounds. Following
Kehrer et al. (2020, Equation (24)), a comparison stiffness as a function
of an interpolation parameter 𝑘 is introduced by

Ĉ0 (𝑘) = [1 − 𝑘]Cm + 𝑘Cf (6.31)

with 0 ≤ 𝑘 ≤ 1. With this notation, the scheme of Kehrer et al. (2020)
is reformulated as a generic two-step Hashin-Shtrikman scheme. In a
first step, the effective stiffness of an artificially pseudo grain C̄UD is
calculated by

C̄UD (𝑘1, 𝑐f, Cf, Cm) = C̄HSW
(︁
C0 = Ĉ0 (𝑘1) , P = PUD (C0) , (6.32)

{C𝑖} = {Cf, Cm} , ⟨ ⟨· ⟩ ⟩ = ⟨· ⟩ (𝑐f)
)︁
.

This pseudo grain contains unidirectional fibers with a volume con-
tent which is equal to the volume content of the fibers in the overall
two-phase composite 𝑐f. To be explicit, the operator ⟨· ⟩ in Equation
(6.32) applied to W (C0, P, C𝑖) with 𝑖 ∈ [m, f] reads as ⟨W (..., C𝑖) ⟩ =
𝑐mW (..., Cm) + 𝑐fW (..., Cf), with the abbreviation “...” for additional
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6 On the Dependence of Orientation Averaging Mean Field Homogenization

function arguments. The stiffness C̄UD obtained by Equation (6.32) is
transversely isotropic. As the Hill polarization P in Equations (6.30) and
(6.32) reflects the shape of the two-point statistics, the specific choice
of PUD for a single grain implies a laminate-like two-point statistic. It
should be noted, that the inclusion shape is not specified. However,
specification of the two-point statistic is not independent of the inclusion
shape. In the second step, the stiffness obtained in step one is orientation
averaged based on the Hashin-Shtrikman scheme in Equation (6.29),
where the average over the RVE ⟨ ⟨· ⟩ ⟩ is transferred into an average over
orientations. The operator ⟨· ⟩ATN defined in Equation (6.16) represents
a commonly used Lielens et al. (1998); Jack and Smith (2008); Camacho
et al. (1990) average over orientations, based on a fourth-order fiber ori-
entation tensor N, following Advani and Tucker III (1987). As the pseudo
grain is artificial, the two-point statistics in the second step are assumed
to be isotropic and are therefore reflected by the Hill polarization tensor
for spherical inclusions P0. This leads to the approximation C̄HSW2 of the
effective overall stiffness with

C̄HSW2 (𝑘1, 𝑘2, N, 𝑐f, Cf, Cm) = (6.33)

C̄HSW
(︁
C0 = Ĉ0 (𝑘2) , P = P0 (C0) , {C𝑖} =

{︀
C̄UD (𝑘1, ...)

}︀
,

⟨ ⟨· ⟩ ⟩ = ⟨· ⟩ATN (N)
)︁
.

The connection to the formulas in Kehrer et al. (2020) is given in C.5.
The formulation of ⟨· ⟩ATN in Equation (6.16) shows the linearity of the
orientation average in both arguments.

For the special case of planar fourth-order orientation information, i.e.,
Nplanar and a given transversely isotropic pseudo grain stiffness C̄UD, the
structure of the effective stiffness is given analytically. Starting from a
given transversely isotropic stiffness C̄UD obtained in a first homogeniza-
tion step, e.g., following Equation (6.32), the second homogenization
step in Equation (6.33) for the special case of a planar orientation tensor
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6.5 Orientation-averaging mean field homogenization

Nplanar, is of interest. Omitting functional dependencies, the expansion
of Equation (6.29) reads as

C̄HSW = C0 −
[︀
P0]︀−1 + G (6.34)

with

G =
[︂

⟨
[︁[︀
P0]︀−1 + C̄UD − C0

]︁−1
⟩ATN

]︂−1
(6.35)

=
[︀
⟨A−1 ⟩ATN

]︀−1 = [ ⟨B ⟩ATN]−1 = [E]−1
.

The Hill polarization P0 is isotropic and its inverse is given by[︀
P0]︀−1 = ℎP0-

1 P1 + ℎP0-
2 P2 (6.36)

with

ℎP0-
1 = ℎ0

1 + 2ℎ0
2, ℎP0-

2 =
5
2ℎ

0
2

[︀
ℎ0

1 + 2ℎ0
2
]︀

ℎ0
1 + 3ℎ0

2
(6.37)

and ℎ0
1 = 3𝐾0, ℎ0

2 = 2𝐺0 and the bulk and shear modulus of the isotropic
comparison material 𝐾0 and 𝐺0. As both the Hill polarization and the
stiffness of the comparison material are isotropic, the intermediate quan-
tity A in Equation (6.35) inherits the transversely isotropic symmetry
from the unidirectional stiffness CUD. With the short hand notation of
a transversely isotropic elasticity tensor defined in Equation (C.13) the
tensor A is given by

A =
⌊︁
ℎ1, ℎ2, ℎ3, ℎ4, ℎ5,q = v1

⌋︁
(6.38)
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with

ℎ1 = ℎP0-
1 − ℎ0

1 + ℎUD
1 , ℎ2 = ℎP0-

2 − ℎ0
2 + ℎUD

2 , (6.39)

ℎ3 = ℎUD
3 , ℎ4 = ℎUD

4 , (6.40)

ℎ5 = ℎUD
5 (6.41)

based on

C̄UD =
⌊︁
ℎUD

1 , ℎUD
2 , ℎUD

3 , ℎUD
4 , ℎUD

5 ,q = v1

⌋︁
. (6.42)

As the orientation of the pseudo grain stiffness is arbitrary, without loss
of generality, q = v1 holds in Equations (6.38) and (6.42). The inver-
sion of a transversely isotropic stiffness is discussed in, e.g., Lubarda
and Chen (2008, Equation (31)), and leads to a transversely isotropic
compliance

B = A−1 =
⌊︁
ℎB

1, ℎ
B
2, ℎ

B
3, ℎ

B
4, ℎ

B
5,q = v1

⌋︁
(6.43)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐵11 𝐵12 𝐵12 0 0 0
𝐵22 𝐵23 0 0 0

𝐵22 0 0 0
𝐵22 −𝐵23 0 0

sym 2𝐵55 0
2𝐵55

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
B𝜉 ⊗ B𝜁

with ℎB
𝑖 for 𝑖 ∈ {1, 2, 3, 4, 5} given in C.6 in Equations (C.33) to (C.38).

The general correspondence of stiffness and compliance is discussed in
Rychlewski (1984). Simpler representations of a transversely isotropic
compliance (Lubarda and Chen, 2008; Cowin and Van Buskirk, 1986;
Vannucci, 2018), e.g., in tensor components or engineering notation,
exist. However, Equations (C.33) to (C.38) show the interaction of
the harmonic coefficients ℎ𝑖 with 𝑖 ∈ {1, 2, 3, 4, 5} during the tensor
inversion. Each coefficient of B is a function of all five coefficients of A.
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6.5 Orientation-averaging mean field homogenization

Taking the orientation average (Advani and Tucker III, 1987) of B, e.g.,
using Equation (6.16), leads to

E = ⟨B ⟩ATN =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐸11 𝐸12 𝐸13 0 0 𝐸16

𝐸22 𝐸23 0 0 −𝐸16

𝐸33 0 0 0
𝐸44 0 0

sym 𝐸55 0
𝐸66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
B𝜉 ⊗ B𝜁 . (6.44)

The tensor components in Equation (6.44) are specified in Equations
(C.41) to (C.50) in C.6. The inversion of E leads to

G = [E]−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐺11 𝐺12 𝐺13 0 0 𝐺16

𝐺22 𝐺23 0 0 𝐺26

𝐺33 0 0 𝐺36

𝐺44 0 0
sym 𝐺55 0

𝐺66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
B𝜉 ⊗ B𝜁 (6.45)

with tensor components given in Equations (C.51) to (C.63) in C.6.
Equations (C.51) to (C.63) combined with Equations (C.41) to (C.50)
show that the effective stiffness C̄HSW is nonlinear in the parameters
of the fiber orientation tensor 𝜆1, 𝑑1, 𝑑8. In addition, the structure of
C̄HSW and G differs from that of the intermediate quantity E, as the
tensor component 𝐺36 in Equation (6.45) does not vanish, although 𝐸36

in Equation (6.44) does vanish. C̄HSW inherits the structure from G.

6.5.2 Orientation-averaging Mori-Tanaka following Ben-
veniste (1987)

Various aspects of the orientation-averaging Mori-Tanaka approximation
are discussed in Brylka (2017); Weng (1990); Qiu and Weng (1990).
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6 On the Dependence of Orientation Averaging Mean Field Homogenization

Nevertheless, a comprehensive summary of the basic equations for the
special case of homogeneous fiber lengths, i.e., an isotropic fiber length
distribution, is given hereafter. The RVE is denoted by ℬ and any point
inside the RVE is identifiable by a position x ∈ ℬ. Introducing a field of
strain localization tensors A(x) mapping the effective strain of the RVE,
�̄�, onto the local strain 𝜀(x) with

𝜀(x) = A(x)[�̄�] (6.46)

yields an exact representation of the effective stiffness by

C̄ = ⟨C(x)A(x) ⟩ (6.47)

due to

�̄� = ⟨𝜎(x) ⟩ = ⟨C(x)[𝜀(x)] ⟩
= ⟨C(x)A(x)[�̄�] ⟩ = ⟨C(x)A(x) ⟩[�̄�]. (6.48)

If the exact strain localization field A(x) for an RVE is known, the
effective stiffness C̄ is given by Equation (6.47). The volume average of
Equation (6.47) implies ⟨A(x) ⟩ = Is with Is being the identity acting on
the space of symmetric second-order tensors. An exact decomposition
of the volume average over the RVE into volume averages over the
different phases in the special case of a two phase composite yields

⟨A ⟩ = Is = 𝑐m ⟨A ⟩m + 𝑐f ⟨A ⟩f (6.49)

with the volume fraction 𝑐𝛼 of phase 𝛼 ∈ [f,m] and therefore

⟨A ⟩m = 1
𝑐m

[Is − 𝑐f ⟨A ⟩f] . (6.50)
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For a two-phase material with piece-wise constant stiffnesses, Equation
(6.47) combined with Equation (6.50) leads to

C̄ = 𝑐m ⟨C(x)A(x) ⟩m + 𝑐f ⟨C(x)A(x) ⟩f (6.51)

= 𝑐m Cm ⟨A(x) ⟩m + 𝑐f Cf ⟨A(x) ⟩f (6.52)

= 𝑐m Cm
1
𝑐m

[Is − 𝑐f ⟨A ⟩f] + 𝑐f Cf ⟨A(x) ⟩f (6.53)

= Cm + 𝑐f ΔC ⟨A ⟩f (6.54)

introducing the short hand notation for the material contrast ΔC =
Cf−Cm. The strain localization tensor of the Mori-Tanaka approximation
(Mori and Tanaka, 1973) for a two-phase composite reads as

⟨A ⟩f ≈ ⟨A ⟩MT
f = ASI

f

[︀
𝑐m Is + 𝑐f ASI

f

]︀−1

=
[︁
𝑐m

[︀
ASI

f

]︀−1 + 𝑐f Is
]︁−1

(6.55)

with the strain localization tensor of the inclusion (fiber) phase in the
single inclusion problem ASI

f (Eshelby, 1957) given by

ASI
f = [P (Cm, 𝑎) [Cf − Cm] + Is]−1

. (6.56)

The Hill polarization tensor P(Cm, 𝑎) for spheroidal inclusion shapes is
parameterized by an aspect ratio 𝑎. Inserting the approximated strain
localization tensor of Equation (6.55) into Equation (6.54) leads to the
effective stiffness of the Mori-Tanaka approximation for a two-phase
composite

C̄MT (𝑐𝑓 , Cf, Cm, P) = Cm + 𝑐f ΔC ⟨A ⟩MT
f . (6.57)

The Hill polarization P in the single inclusion problem reflects the shape
of the inclusion. A study on the influence of the inclusion shape onto the
effective stiffness is given in Müller (2016). The large aspect ratio of SMC
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fibers motivates the use of PUD, e.g., in Kehrer et al. (2020). Orientation-
averaging Mori-Tanaka for two-phase composites with anisotropic con-
stituents and an inclusion phase consisting of aligned or randomly
orientated ellipsoidal particles following Benveniste (1987) combined
with an orientation-averaging scheme following Advani and Tucker III
(1987), depicted by ⟨· ⟩ATN, reads as

⟨A ⟩f ≈ ⟨A ⟩MTOAB
f (N, 𝑐f, Cf, Cm) (6.58)

=
[︂
𝑐m

[︁
[ΔC]−1 ⟨ΔCASI

f ⟩ATN (N)
]︁−1

+ 𝑐f Is
]︂−1

leading to the Mori-Tanaka orientation averaged approximation follow-
ing Benveniste (1987) with

C̄MTOAB (N, 𝑐f, Cf, Cm) = Cm + 𝑐f ΔC ⟨A ⟩MTOAB
f (N, 𝑐f, Cf, Cm) . (6.59)

Orientation-averaging Mori-Tanaka following Benveniste (1987) is used
in Brylka (2017); Schemmann et al. (2018b) and limitations are discussed
in, e.g., Benveniste et al. (1991). As the orientation-averaging scheme
⟨· ⟩ATN in its original formulation is limited to elasticity tensors, i.e.,
any tensor C = 𝐶𝑖𝑗𝑘𝑙 e𝑖 ⊗ e𝑗 ⊗ e𝑘 ⊗ e𝑙 with both minor and the major
symmetries 𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑗𝑖𝑘𝑙 = 𝐶𝑖𝑗𝑙𝑘 = 𝐶𝑘𝑙𝑖𝑗 , but strain localization tensors
may lack the main symmetry, an intermediate elasticity tensor ΔCASI

f =[︀
P + ΔC−1]︀−1 is averaged in Equation (6.58) before the effect of ΔC is

removed by ΔC−1. This step could be avoided using the generalization
of the orientation average ⟨· ⟩ATN in Appendix C.4. The unity of all
fibers is treated as one phase.
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6.5.3 Direct orientation average of a transversely isotropic
stiffness

Some authors (Iorga et al., 2008; Schjødt-Thomsen and Pyrz, 2001) iden-
tify the linear orientation average of transversely isotropic stiffness
(Advani and Tucker III, 1987) as an approximation for the effective
stiffness with

C̄MTlinearStiffness (N, ...) = ⟨C̄MT (...) ⟩ATN (N) (6.60)

which is based on the Mori-Tanaka approximation in Equation (6.57)
and is used in commercial software (Smith, 2019).

6.5.4 Direct orientation average of a transversely isotropic
compliance

In analogy to the approximation defined in Equation (6.60), another
approximation is given by the orientation average of an unidirectional
compliance obtained by the Mori-Tanaka approximation

C̄MTlinearCompliance (N, ...) =
[︁

⟨
[︀
C̄MT (...)

]︀−1 ⟩ATN (N)
]︁−1

. (6.61)

6.6 Graphical representation of elasticity ten-
sors

The last building block for the systematic investigation of the depen-
dence of linear elastic effective stiffness tensors on planar fiber orienta-
tion tensors, is a compact, preferably two-dimensional, visualization of
effective stiffness tensors. Following Böhlke and Brüggemann (2001),
two scalar functions 𝐸 (C,n) and 𝐾 (C,n), equivalently describe an
anisotropic stiffness C. The direction-dependent Young’s modulus
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𝐸 (C,n) defined by

𝐸 (C,n) = 𝜎 (n)
𝜀 (n) =

[︂
𝜀 (n)
𝜎 (n)

]︂−1
=

[︂
n⊗2 · 𝜀 (n)
𝜎 (n)

]︂−1

(6.62)

=
[︂

n⊗2 · C−1 [𝜎 (n)]
𝜎 (n)

]︂−1

=
[︀
C−1 · n⊗4]︀−1

represents the ratio of the tensile stress 𝜎 (n) and the tensile strain 𝜀 (n)
during a tensile test in direction n. The tensile stress caused by a virtual
unidirectional tensile test into direction n, is related to the stress tensor
𝜎 (n) by 𝜎 (n) = 𝜎 n⊗2 = 𝜎n ⊗ n. The tensile strain 𝜀 (n) is obtained by
a projection of the infinitesimal strain tensor 𝜀 onto the direction n, i.e.,
𝜀 = 𝜀 · n⊗2. Following He and Curnier (1995); Böhlke and Brüggemann
(2001), the generalized bulk modulus 𝐾 (C,n) is defined by

3 𝐾 (C,n) =
[︂

I · 𝜀 (n)
𝜎 (n)

]︂−1
=

[︂
I · C−1 [𝜎 (n)]

𝜎 (n)

]︂−1

(6.63)

=
[︀
I · C−1 [︀

n⊗2]︀]︀−1

and measures the relative change of volume I · 𝜀 = [ d𝑉 − d𝑉0] /d𝑉0

caused by uniaxial tension in direction n, i.e., 𝜎 = 𝜎 n⊗2. For a given
stiffness C, both 𝐸 (C,n) and 𝐾 (C,n) are functions on the unit sphere.
The influence of Nplanar on the mechanical properties in the v1-v2-plane
is investigated by

𝐸planar (C, 𝜙) = 𝐸 (C, n (𝜙, 𝜃 = 𝜋/2)) (6.64)

𝐾planar (C, 𝜙) = 𝐾 (C, n (𝜙, 𝜃 = 𝜋/2)) (6.65)

with the unit vector n (𝜙, 𝜃) specified in Equation (6.8). The two quan-
tities 𝐸planar (C, 𝜙) and 𝐾planar (C, 𝜙) uniquely define the mechanical
response of the effective stiffness in the plane spanned by v1 and v2.
Alternative representations of three-dimensional fourth-order tensors
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6.6 Graphical representation of elasticity tensors

−1/8

−1/16

0

1/16

1/8

3/6 4/6 5/6 6/6

0
1/16

1/8

(1)
(2)

(3)

(4) (5) (6) (10)

(7)
(8)

(9)

𝜆1

𝑑8

𝑑1

Figure 6.4: Ten points in the plane of planar orthotropic fiber orientation tensors of fourth-
order used in Figures 6.7a and 6.7b

are, e.g., given in Vannucci (2018, p. 62).
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(a) Points in the plane 𝜆1 = 3/6 used in
Figures 6.8a, 6.8b
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C̄HSW2 (𝑘1 = 1, 𝑘2 = 1, N, ...)
C̄MTOAB (N, ...)
C̄MTlinearStiffness (N, ...)
C̄MTlinearCompliance (N, ...)

(b) Shared legend for Figures 6.7, 6.8, 6.9,
6.10, 6.11 and 6.12.

Figure 6.5: Definition of representative points in the parameter space �̂� planar in the plane
𝜆1 = 3/6 and shared legend for mean field approximations.
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Figure 6.6: Definition of representative points in the parameter space �̂� planar of planar
fourth-order fiber orientation tensors. Parameters of each point are listed in Table C.1.

6.7 Effective stiffnesses: Polar plots and the
dependence on planar fourth-order fiber
orientations

In this section, the building blocks developed in the previous sections are
combined to study the dependence of linear elastic effective stiffnesses
obtained by mean field homogenization on fourth-order fiber orientation
tensors. As the dimensionality of the study is already high due to the
flexible orientation, the material parameters of the constituents are fixed
and specified in Table 6.1.

6.7.1 Visualization setup

The space of admissible and distinct planar fourth-order fiber orienta-
tions 𝒩 planar is discretized by a small number of representative fiber
orientations. Slices through the three-dimensional body 𝒩 planar are
defined in Figures 6.4 to 6.6b. On each slice, a small number of points,
each representing a specific fourth-order fiber orientation tensor Nplanar,
are selected. For each point, effective stiffnesses are calculated using the
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6.7 Effective stiffnesses: Polar plots
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Figure 6.7: Polar plots for selected N specified in Figure 6.4 and Table C.1 and mean field
approximations specified in the legend in Figure 6.5b
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orientation-averaging homogenization schemes listed in Figure 6.5b and
described in Section 6.5. The planar properties of each effective stiffness
can be visualized by the planar projection of the direction dependent
Young’s modulus and generalized bulk modulus, introduced in Section
6.6. In consequence, for each point, two sets of polar plots representing
Young’s modulus on the one hand and generalized bulk modulus on
the other hand, are obtained for a selection of homogenization schemes.
Each set of polar plots is combined into one sub-Figure which is arranged
according to the position of the point inside the slice of 𝒩 planar. This way,
a graphical representation of the influence of the fiber orientation on
effective stiffnesses is generated. The first slice, visualized in Figure 6.4,
contains ten points, each representing one planar orthotropic (Bauer and
Böhlke, 2022c, Equation (84)) fiber orientation tensor Nplanar(𝜆1, 𝑑1, 𝑑8)
with vanishing parameter 𝑑8 defined in Equation (6.14). For each point,
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(a) Young’s modulus 𝐸planar
(︀
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(b) Generalized bulk modulus 𝐾planar
(︀
C̄ (N) , 𝜙

)︀
Figure 6.8: Polar plots for selected N with 𝜆1 = 3/6 specified in Figure 6.5a and Table C.1
and mean field approximations specified in the legend in Figure 6.5b. The order along the
path in Figure 6.5a is given from left to right.
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Figure 6.9: Young’s modulus 𝐸planar
(︀
C̄ (N) , 𝜙

)︀
for mean field approximations specified

in Figure 6.5b. The arrangement of the polar plots follows the arrangement of points in the
parameter space of Nplanar with 𝜆1 = 4/6 in Figure 6.6a listed in Table C.1.
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Figure 6.10: Young’s modulus 𝐸planar
(︀
C̄ (N) , 𝜙

)︀
for mean field approximations specified

in Figure 6.5b. The arrangement of the polar plots follows the arrangement of points in the
parameter space of Nplanar with 𝜆1 = 5/6 in Figure 6.6b listed in Table C.1.
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Figure 6.11: Generalized bulk modulus 𝐾planar
(︀
C̄ (N) , 𝜙

)︀
for mean field approximations

specified in Figure 6.5b. The arrangement of the polar plots follows the arrangement of
points in the parameter space of Nplanar with 𝜆1 = 4/6 in Figure 6.6a listed in Table C.1.
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Figure 6.12: Generalized bulk modulus 𝐾planar
(︀
C̄ (N) , 𝜙

)︀
for mean field approximations

specified in Figure 6.5b. The arrangement of the polar plots follows the arrangement of
points in the parameter space of Nplanar with 𝜆1 = 5/6 in Figure 6.6b listed in Table C.1.

166



6.7 Effective stiffnesses: Polar plots

a polar plot of 𝐸planar
(︀
C̄(N), 𝜙

)︀
is given in Figure 6.7a and a polar plot

of 𝐾planar
(︀
C̄(N), 𝜙

)︀
is given in Figure 6.7b. The arrangements of the

polar plots in Figures 6.7a and 6.7b mimic the position of the points in
the overview Figure 6.4 and the correspondence is stressed by the color
of the thick dashed circles around the polar plots. The line colors of the
polar plots indicate the mean field approximation which are specified in
the shared legend in Figure 6.5b. Parameters of each point are given in
Table C.1 in C.7.

Similar visualizations based on slices in Figures 6.5a to 6.6b are given in
Figures 6.8 to 6.12. Each of the slices in Figures 6.5a to 6.6b represents
the variety of planar fourth-order fiber orientation tensors for a fixed
second-order fiber orientation tensor, as the parameter 𝜆1 is constant.

The limits of all plots of 𝐸planar are homogeneous and given by 0 GPa
and 22 GPa. The limits of all plots of 𝐾planar are also homogeneous and
given by 0 GPa and 24 GPa.

6.7.2 Observations on bounds

In the unidirectional case, visualized in polar plot (10) in Figure 6.7a,
all approximations except C̄HSW2(1, 1) coincide (Weng, 1990). Young’s
modulus 𝐸planar(C, 𝜙) obtained for the approximations C̄MTOAB and
C̄MTlinearStiffness are between the values obtained for C̄HSW2(0, 0) and
C̄HSW2(1, 1). This does not hold for the approximation C̄MTlinearCompliance.
The limiting two-step Hashin-Shtrikman homogenizations are bounds
on the energy of the effective material. Both Youngs’s modulus and
the generalized bulk modulus are material characteristics related to
uniaxial tensile tests. Motivated by Figure 6.7b(10), the complementary
energy density (Bertram and Glüge, 2013) induced by a virtual direction-
dependent unidirectional tensile test starting from a stress-free initial
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6 On the Dependence of Orientation Averaging Mean Field Homogenization

configuration

𝑤⋆(C, 𝜎,n) = 1
2 𝜎(𝜎,n) · C−1 [𝜎(𝜎,n)] = 1

2 𝜎
2 C−1 · n⊗4 (6.66)

is plotted in Figure C.1, C.2 and C.3 in C.8 for a unit stress 𝜎 = 1 and for
all views defined in Figures 6.4 to 6.6b. The energies of the approxima-
tions C̄MTOAB and C̄MTlinearStiffness are within the bounds for all inspected
orientation tensors whereas the approximation C̄MTlinearCompliance violates
the bounds and therefore is non-physical.

6.7.3 Observations on the shape of the Young’s modulus

The maximum number of extrema of the Young’s modulus𝐸planar within
the v1-v2-plane is four, as this quantity is obtained by contraction of the
effective compliance with a fourth-order moment. The maximum values
of the Young’s modulus for all mean field approximations point into the
directions of maximum fiber content, which are visualized in Bauer and
Böhlke (2022a). For example, polar plots with 𝛽 = −𝜋/2, i.e., 𝑑8 = 0 and
𝑑1 ≤ 0, have their maxima aligned with the axes v1 or v2, see Figures
6.9 and 6.10.

6.7.4 Observations on the shape of the generalized bulk
modulus

In contrast to the Young’s modulus, the number of maxima of the
generalized bulk modulus 𝐾planar and the resulting shapes are strongly
limited, as the highest moment of n which enters 𝐾planar is of second
order, see Böhlke and Brüggemann (2001). The changes in 𝐾planar for
fixed second-order fiber orientation tensor contribution, i.e., fixed values
of 𝜆1, but different fourth-order fiber orientation tensor contribution,
i.e., values of 𝑑1 and 𝑑8 defining dev(Nplanar), are marginal for the
selected approximations C̄HSW2(𝑘1, 𝑘2) and C̄MTlinearCompliance. These
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three approximations take the orientation average on compliance-like
quantities. In contrast, the influence of both 𝑑1 and 𝑑8 on the remain-
ing approximations C̄MTOAB and C̄MTlinearStiffness is clearly visible. The
latter two approximations take the orientation average on stiffness-like
quantities. For these approximations, increase of 𝑑8 induces a clock-wise
rotation of the 𝐾planar-body whereas increase of 𝑑1 leads to a stretch
of this body. In Figure 6.8b, no stretch is induced by increase of 𝑑1.
It is noted, that 𝐸planar and 𝐾planar are obtained by contraction of the
effective compliance. The strong influence of the fourth-order fiber
orientation contribution dev(Nplanar) on the shape of the bulk modulus
for the approximations C̄MTOAB and C̄MTlinearStiffness is subject of further
research.

6.7.5 Implications of closure approximations based on
second-order fiber orientation tensors

Closure approximations (Advani and Tucker III, 1990; Han and Im, 1999;
Cintra Jr and Tucker III, 1995; Chung and Kwon, 2002; Montgomery-
Smith et al., 2011a) identify a fourth-order fiber orientation tensor which
corresponds to a given second-order fiber orientation tensor. As any
second-order orientation tensor is orthotropic or has even stronger
material symmetry, closure approximations based on a second-order
orientation tensor lead to orthotropic fourth-order fiber orientation
tensors. In consequence, any virtual process chain which involves a
closure approximation is limited to orthotropic effective stiffnesses. The
planar orthotropic subspace is discretized in Fig. 6.4 and discussed in
Bauer and Böhlke (2022c). Among the discrete stiffnesses represented in
Figures 6.9 to 6.12 only the left column, i.e., those stiffnesses labeled (y2),
(y1), (x), (o1), (o2), are orthotropic.
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6.8 Summary and conclusions

Computer tomography scans combined with knowledge on the variety
of fiber orientation tensors and experience in process simulation, reveal
that fiber architectures of sheet molding compound specimen are ap-
proximately planar. The planarity assumption significantly reduces the
dimensionality of the space of fiber orientation tensors from eleven to
three in the orientation coordinate system (Bauer and Böhlke, 2022c). An
invariant and redundancy-free parameter set of structurally differing
fiber orientation tensors following Bauer and Böhlke (2022a) states
the main building block for investigations on the influence of fiber
orientation tensors on effective mechanical properties.

The orientation average of transversely isotropic elasticity tensors follow-
ing Advani and Tucker III (1987) formulated directly in fiber orientation
tensors, is explicitly recast as linear invariant composition in the fiber
orientation tensors of second- and fourth-order Kanatani third kind
(Kanatani, 1984) . To the best of the authors knowledge, this essential as-
sumption of the popular orientation average is not mentioned explicitly
in the literature. It should be noted, that, e.g., in the field of biomechanics,
material models being non-linear in fabric tensors (Cowin, 1985; Turner
and Cowin, 1987; Biegler and Mehrabadi, 1995; Cowin and Cardoso,
2011), are established. Such models are based on isotropic tensor func-
tions, i.e., representation theory. A numerical orientation-averaging
scheme restricted to the special class of planar fiber orientations based
on a maximum entropy reconstruction of fiber orientation distribution
functions following Bauer and Böhlke (2022a) is proposed. The new
scheme shows fast converges against the exact formulation of Advani
and Tucker III (1987) for non-localized fiber orientation tensors which
are dominant in sufficient large fiber arrangements.

Four mean field homogenization approximations are reviewed and in-
vestigated. The first two approximations are orientation-averaging Mori-
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6.8 Summary and conclusions

Tanaka following Benveniste (1987) and a two step Hashin-Shtrikman
homogenization scheme (Kehrer et al., 2020) both in formulations based
on the Advani-Tucker orientation average (Advani and Tucker III, 1987).
The remaining two approximations are direct Advani-Tucker orientation
averages of either a unidirectional stiffness or compliance obtained
by the Mori-Tanaka approximation (Mori and Tanaka, 1973). Effec-
tive stiffnesses obtained by the approximations, are visualized by two-
dimensional polar plots of Young’s and generalized bulk modulus
(Böhlke and Brüggemann, 2001). Plots are generated for specific points
in the three-dimensional body of structurally differing planar fiber
orientation tensors. The developed views establish a new methodology
for studies and visualizations of the dependence of material models
on planar fourth-order fiber orientation tensors. Inspection of polar
plots of the generalized bulk modulus reveals clear structural differ-
ences between effective stiffnesses obtained by mean field schemes
taking the orientation average in the stiffness or compliance domain.
Those stiffnesses averaged in the compliance domain, hardly show a
dependence of the generalized bulk modulus on dev(Nplanar) whereas
this dependence is pronounced for stiffnesses averaged in the stiffness
domain. The reason for this observation and the physical interpretation
of the pronounced dependence is subject of further research. Lack of
fourth-order contribution to the generalized bulk modulus (Böhlke and
Brüggemann, 2001) restricts the possible shapes of its contour plots.
Bauer and Böhlke (2022a, Figure 7) visualize reconstructions of fiber
orientation distribution functions based on leading fiber orientation
tensors up to fourth order. The resulting plots visualize the direct
connection between the causing orientation measure and the effected
mechanical behavior, e.g., visualized by the effective Young’s modulus
in Figures 6.9 and 6.10.

The main conclusions of this work are

• Fiber orientations of sheet molding compound are approximately
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planar, leading to a reduction of the independent components of
fourth-order fiber orientation tensors from eleven to three in the
orientation coordinate system.

• An invariant and redundancy-free set of structurally differing fiber
orientation tensors of fourth order can be used to investigate the de-
pendence of effective material properties on fiber orientation tensors.

• The orientation average of an elasticity tensor based on an fiber
orientation tensor following Advani and Tucker III (1987) is linear in
both the elasticity tensor and the fourth-order fiber orientation tensor.

• A new numerical formulation of the Advani-Tucker orientation av-
erage in fiber orientation tensors (Advani and Tucker III, 1987) for
the special class of planar fiber orientations is proposed based on
a maximum entropy reconstruction of fiber orientation distribution
functions following Bauer and Böhlke (2022a).

• The orientation dependence of the generalized bulk modulus differs
significantly for homogenizations which take the orientation average
in the stiffness domain and those which take the average in the
compliance domain. In contrast, the direction of maxima of the
orientation-dependent Young’s modulus is homogeneous for both
groups of homogenizations and the difference on the size of the
Young’s modulus is barely influenced by the fiber orientation tensor.

• The orientation dependence of the effective anisotropic material re-
sponse, e.g., described by orientation-dependent Young’s and general-
ized bulk modulus, is restricted. Restrictions are caused by the limited
averaged information given by fourth-order fiber orientation tensors
and due to the constraints of linear elasticity. Possible directional
dependencies of the elastic response for Advani-Tucker averaged
two-phase materials of isotropic constituents and planar orientation
measures are comprehensively presented. This presentation is com-
plete and it’s methodology states the main contribution of this work.
The methodology can be used to express the orientation dependence
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of any quantity which is a function of planar fiber orientation tensors
up to fourth order.

• Orthotropy of closure approximations, which are based on second-
order fiber orientation tensors, is shown to be a major restriction on
the effective anisotropic material response.

The methodology developed for the low-dimensional subspace of planar
fourth-order fiber orientation tensors may be applied to sub spaces of
fiber orientation tensors with less symmetry.
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Chapter 7

Conclusions and Outlook

7.1 Conclusions

Combination of the detailed summaries in Sections 4.8, 5.5 and 6.8, leads
to the following insights and conclusions.

Significant progress has been made in the search for a complete de-
scription of the phase space of fourth-order fiber orientation tensors.
A complete description is obtained for selected subspaces. A natural
parameterization of generic fourth-order fiber orientation tensors is
given by a linear invariant composition of the isotropic reference state
and one second- and one fourth-order deviator in an eigensystem of the
corresponding second-order FOT. The use of the eigensystem separates
structural properties represented by deviators and superposed rotations.
In addition, the parameterization naturally separates second- and fourth-
order contributions and can be refined according to material symmetries,
thereby reducing the number of independent components significantly.
A similar parameterization of second-order FOTs based on an isotropic
central state and deviators increases the knowledge, e.g., on trans-
versely isotropic states inside the commonly used orientation triangle.
Demanding positive semi-definiteness of fourth-order FOTs, defines
admissible parameter ranges. These ranges are given in closed form for
transversely isotropic as well as planar orientation states. For weaker
constraints, admissible parameter ranges can be obtained numerically
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and are visualized for the important orthotropic case. The use of material
symmetries artificially reduces the complexity of problems and realizes
solvability.

A compact and natural description of admissible fiber orientation tensors
allows systematic investigations of processes and methods which use
fiber orientation tensors either as input or result. The combination
of simple and mathematically motivated parameterizations with the
condition of positive semi-definiteness appears trivial, but holds great
potential. For example, closure approximations which lead to fourth-
order FOTs outside the admissible region, e.g., visualized in Fig. 4.3,
can be easily discarded. Algebraic constraints on admissible parameter
ranges are connected with intuitive limiting fiber arrangements by the
following observation. Orientation states at the boundary of admissible
parameter regions for transversely isotropic and planar states, can be
represented by a minimal number of Dirac distributions in particu-
lar directions, which might be called localized. For measured data,
depending on the resolution of the measurement and the size of the
reference volume, associated with a single measured FOT, these localized
states are not obtained. This observation is explained by the localized
character of such orientation states, which is in contrast to the white
noise induced by a large number of fibers within the particular reference
volume. Furthermore, the structure of admissible regions demonstrates
the pronounced role of the isotropic, unidirectional or planar-isotropic
orientation states and shows links between these special states.

A deep understanding of the variety of FOTs is crucial for the assessment
of closure approximations and demonstrates the ill-posed character of
closure problems, postulating an artificial one-to-one mapping between
second- and fourth-order FOTs.

The transition from analytical investigations on admissible FOTs to
mechanical properties of SMC within this work is guided by a detailed
inspection of planar FOTs and corresponding FODF. Therefore, the
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connection between FODF and FOT for the planar subspace is inves-
tigated. Due to symmetry-induced ambiguities of the eigensystem,
admissible parameter sets do not necessarily lead to distinct FOTs. This
observation leads to a refinement of the admissible region into a set
of admissible and distinct planar FOT of fourth order by removing
redundancies. The observed redundancies are two-fold. On the one
hand, full isotropy or partial isotropy in the case of transversely isotropic
states, induce a continuous randomness of the eigensystem, which leads
to a degeneration of the corresponding part of admissible ranges. On the
other hand, indefiniteness or ambiguity of the eigensystem of positive
definite second-order tensors (Bro et al., 2008), due to their inherent
orthotropy, induces a discrete ambiguity which can be handled by a
sign convention in a suitable parameterization. Three reconstruction
methods of FODF by leading planar FOT lead to fundamentally different
results. Deploying a generic truncated Fourier series in a 3D-framework
leads to non-planar and non-positive semi-definite FODF. Truncated
Fourier series in a 2D-framework ensure planarity, but not positive
semi-definiteness. Maximum entropy reconstruction in a 2D-framework
leads to reasonable reconstructions which fulfill algebraic constraints.
The proposed explicit and minimal formulation of the maximum entropy
method represents a valuable tool for non-linear applications which
might require numerical integration of tensorial quantities weighted by
FODF based on leading FOTs. The reconstruction methods associate a
given FOT with the intuitive FODF which is directly associated with
fiber distributions, and is more general than ensembles of discrete Dirac
distributions.

In order to represent reconstructed FODFs based on distinct planar
FOTs, an innovative visualization method is developed in this work.
This method can be used to visualize any direction-dependent scalar
quantity, which is a function of distinct planar FOT. The method deploys
a discretization strategy and consists of overview plots as well as polar
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plot ensembles. The overview plots slice the admissible and distinct
parameter space and define points on these slices. For each slice, an
polar plot ensemble consisting of one polar plot for each point on the
slice is given. The views on reconstructed FODFs directly associate FOTs
with fiber alignments.

In a subsequent step, the visualization method is applied to effective
stiffnesses obtained by several mean field homogenizations which are
popular in both academia and industry. The obtained views on the
stiffnesses directly associate mechanical properties with FOTs, which
are associated with fiber alignment through the views on reconstructed
FODFs. In consequence, a complete study of the influence of fiber
orientation tensors on effective stiffnesses of SMC, based on the selected
homogenizations, is given.

Again, consequences of deploying closure approximations to gain seem-
ingly fourth-order information can be presented. Any reasonable closure
approximation is orthotropic and the left most columns in Figures 6.9 to
6.12 represent orthotropic orientation states. In consequence, only one
third of the visualized stiffnesses can be obtained, if closure approxi-
mations are contained within a virtual process chain. Observations on
the algebraic structure of the selected homogenizations complete these
investigations.

In summary, the present work provides comprehensive contributions to
the understanding of the variety of FOT, being a widely used directional
measure. Interaction of this variety with fiber orientation density distri-
butions as well as consequences for derived effective mechanical proper-
ties are presented. These findings are seminal to the understanding and
design of fiber reinforced plastics in a wide variety of applications.
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7.2 Outlook

Departing from this work’s conclusions, the following statements pro-
vide starting points for future research questions.

• The parameterization of triclinic fourth-order FOTs implies a classifi-
cation scheme, which can be applied to study fields of FOTs.

• Closure approximations can be systematically assessed by their abil-
ity to remain within the admissible parameter region and maintain
symmetry.

• The parameterizations based on deviators from the isotropic state
naturally induces an interpolation scheme for fourth-order FOTs.

• Advanced material models, e.g., including damage or failure surfaces,
can be defined based on the developed parameterizations.

• The planarity assumption with respect to SMC combined with the de-
rived variety of effective stiffnesses offers great potential for efficient
clustering techniques for mechanical properties within a virtual pro-
cess chain. Similar to Goldberg et al. (2017), the admissible parameter
space could be discretized.

• The visualization method presenting the dependence of effective me-
chanical properties on planar FOTs offers the possibility to study and
compare additional analytical as well as numerical homogenization
schemes.

• The investigations on the dependence of material models on FOTs can
be extended to thermo-mechanical models.
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Appendices to Chapter 4 1

A.1 Material symmetries of second-order ten-
sors

Following Cowin (1985), any symmetric tensor of second order A is
either isotropic, transversely isotropic or orthotropic. This means, for
symmetric second-order tensors, three material symmetry classes exist
and representations of A in its material coordinate system {v𝑖} are given
for the case of isotropy Aiso, transversely isotropy Atransv and orthotropy

1 This appendix reproduces the appendix of (Bauer and Böhlke, 2022c), i.e., Bauer, J. K.,
Böhlke, T., 2022. Variety of fiber orientation tensors. Mathematics and Mechanics of
Solids 27 (7), 1185–1211, 10.1177/10812865211057602. Reproduced with permission.
©2021 The Authors. Published by SAGE Publications Ltd under CC BY-NC 4.0
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Aortho by

Aiso = 𝑎1

⎡⎢⎣1 0 0
0 1 0
0 0 1

⎤⎥⎦ v𝑖 ⊗ v𝑗 , (A.1)

Atransv =

⎡⎢⎣𝑎1 0 0
0 𝑎2 0
0 0 𝑎2

⎤⎥⎦ v𝑖 ⊗ v𝑗 , (A.2)

Aortho =

⎡⎢⎣𝑎1 0 0
0 𝑎2 0
0 0 𝑎3

⎤⎥⎦ v𝑖 ⊗ v𝑗 . (A.3)

The principle direction of the transversely isotropic case is randomly
chosen to be the first axis. The number of independent coefficients is
one, two and three respectively and is indicated by the number of 𝑎𝑖.

A.2 Parameter sets of specific second-order
orientation tensors

Table A.1 contains arguments of parameterizations given in Equations
(4.25), (4.29) and (4.31) leading to special orientation states.

N(𝜆1, 𝜆2) N(𝛼1, 𝛼3) N(�̂�, 𝑐) N(�̂�1, �̂�2, �̂�2)
𝜆1 𝜆2 𝛼1 𝛼3 �̂� 𝑐 �̂�1 �̂�2 �̂�3

isotropic 1/3 1/3 0 0 0 0 𝑎 𝑎 𝑎
unidirectional v1 1 0 2/3 0 2/3 −1/3 𝑎 0 0
planar isotropic v1 0 1/2 −1/3 0 −1/3 1/6 0 𝑎 𝑎
planar isotropic v3 1/2 1/2 0 −1/3 1/6 −1/3 𝑎 𝑎 0

Table A.1: Arguments of parameterizations of N for special orientation states with 𝑎 ∈ ℛ+
* ,

i.e., 𝑎 > 0. Note: The orientation states labeled by planar isotropic v1 and planar isotropic
v3, differ only by ordering convention of the eigenvalues and describe the same physical
state.
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A.3 Coefficient-wise extrema of moment ten-
sors

Given a triangulation which divides the unit sphere into 𝑚 surfaces ℱ𝛾
with centered normal vectors n𝛾 for 𝛾 ∈ [1, ..., 𝑚]. The integration over
𝒮2 in Equation (4.10) can be interpreted as a weighted summation with
discrete weights 𝑤𝛾 derived by the FODF by

𝑤𝛾 =
∫︁

ℱ𝛾

𝜓 (n) d𝑛. (A.4)

The properties of 𝜓 (n) imply non-negative and normalized weights, i.e.,
0 ≤ 𝑤𝛾 and

∑︀𝑚
𝛾 𝑤𝛾 = 1 holds. Definition of N in Equation (4.10) is the

limiting case

N = lim
𝑚→∞

𝑚∑︁
𝛾

𝑤𝛾n⊗4
𝛾 . (A.5)

Defining coefficients of the 𝛾-th moment tensor by n⊗4
𝛾 =

(︀
𝑛⊗4
𝛾

)︀
𝜉𝜁

B𝜉 ⊗
B𝜁 , Equation (A.5) reads

𝑁
(4)
𝜉𝜁 = lim

𝑚→∞

𝑚∑︁
𝛾

𝑤𝛾
(︀
𝑛⊗4
𝛾

)︀
𝜉𝜁
. (A.6)

The set of weights
{︁
𝑤𝛾 : 0 ≤ 𝑤𝛾 ,

∑︀𝑚
𝛾 𝑤𝛾 = 1

}︁
describes an𝑚-dimensional

region 𝒲 and N is linear in these weights. Due to the linearity, the
extreme values of N arise at the boundary of 𝒲 , especially at points
where only one weight equals one and the remaining weights are zero.
Such points are corners of the boundary of 𝒲 . As

𝑚∑︁
𝛾

𝑤𝛾

[︁(︀
𝑛⊗4
𝛾

)︀
𝜉𝜁

−
(︀
𝑛⊗4

min

)︀
𝜉𝜁

]︁
≥ 0 (A.7)
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is valid it follows from

𝑚∑︁
𝛾

𝑤𝛾
(︀
𝑛⊗4
𝛾

)︀
𝜉𝜁

−
(︀
𝑛⊗4

min

)︀
𝜉𝜁

≥ 0 (A.8)

𝑚∑︁
𝛾

𝑤𝛾
(︀
𝑛⊗4
𝛾

)︀
𝜉𝜁

≥
(︀
𝑛⊗4

min

)︀
𝜉𝜁

(A.9)

that the minimum of a coefficient of a moment tensor
(︀
𝑛⊗4

min

)︀
𝜉𝜁

is a lower
bound for the corresponding coefficient of the fourth-order orientation
tensor 𝑁 (4)

𝜉𝜁 . Note, that for a fixed coordinate system, there exists a
singular FODF 𝜓min (n) of shape

𝜓min (n) = 1
2 (𝛿 (n − n*) + 𝛿 (n + n*)) (A.10)

leading to 𝑁 (4)
𝜉𝜁 =

(︀
𝑛⊗4

min

)︀
𝜉𝜁

. Similar reasoning leads to coefficient-wise

upper limits of 𝑁 (4)
𝜉𝜁 defined by maximum coefficients of a moment

tensor
(︀
𝑛⊗4

max
)︀
𝜉𝜁

corresponding to a singular FODF. As a consequence,
extreme values of tensor coefficients of N can be derived from the mo-
ment tensor n⊗4. However, this coefficient-wise consideration neglects
the interaction of the coefficients of N and the procedure defining the ori-
entation coordinate system {v𝑖}. Tensor coefficients of a representation
in a coordinate system, which depends, e.g., on the eigenvectors of N,
may not reach the extreme values reachable in a fixed coordinate system.
Another consequence is that the norm of N is bound by the value one,
which is reached for a singular FODF. Parameterization of n⊗4 in two
angles with

n (𝜃, 𝜙) = sin(𝜃) cos(𝜙)e1 + sin(𝜃) sin(𝜙)e2 + cos(𝜃)e3 (A.11)
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leads to a representation of the moment tensor by n⊗4 = 𝑛⊗4
𝜉𝜁 B𝜉 ⊗ B𝜁

with

𝑛⊗4
𝜉𝜁 = (A.12)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑠4
𝜃𝑐

4
𝜙 𝑠

2
𝜙𝑠

4
𝜃𝑐

2
𝜙 𝑠

2
𝜃𝑐

2
𝜙𝑐

2
𝜃

√
2𝑠𝜙𝑠3

𝜃𝑐
2
𝜙𝑐𝜃

√
2𝑠3
𝜃𝑐

3
𝜙𝑐𝜃

√
2𝑠𝜙𝑠4

𝜃𝑐
3
𝜙

𝑠4
𝜙𝑠

4
𝜃 𝑠2

𝜙𝑠
2
𝜃𝑐

2
𝜃

√
2𝑠3
𝜙𝑠

3
𝜃𝑐𝜃

√
2𝑠2
𝜙𝑠

3
𝜃𝑐𝜙𝑐𝜃

√
2𝑠3
𝜙𝑠

4
𝜃𝑐𝜙

𝑐4
𝜃

√
2𝑠𝜙𝑠𝜃𝑐3

𝜃

√
2𝑠𝜃𝑐𝜙𝑐3

𝜃

√
2𝑠𝜙𝑠2

𝜃𝑐𝜙𝑐
2
𝜃

completely symmetric

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
using the short hand notation

𝑠𝜃 = sin (𝜃), 𝑐𝜃 = cos (𝜃), 𝑠𝜙 = sin (𝜙), 𝑐𝜙 = cos (𝜙). (A.13)

The moment tensor has extreme coefficient-wise values⎡⎢⎢⎢⎢⎢⎣
0 0 0 −𝑏 −𝑎 −𝑎

0 0 −𝑎 −𝑏 −𝑎
0 −𝑎 −𝑎 −𝑏

completely symmetric

⎤⎥⎥⎥⎥⎥⎦
=min

𝜑,𝜃
𝑛⊗4

𝜉𝜁

≤ 𝑛⊗4
𝜉𝜁 ≤

⎡⎢⎢⎢⎢⎢⎣
1 1/4 1/4 𝑏 𝑎 𝑎

1 1/4 𝑎 𝑏 𝑎

1 𝑎 𝑎 𝑏

completely symmetric

⎤⎥⎥⎥⎥⎥⎦
=max

𝜑,𝜃
𝑛⊗4

𝜉𝜁

(A.14)

with 𝑎 =
√

2 3
√

3
16 and 𝑏 =

√
2

8 . Exemplary application of the coefficient-
wise limits on transversely isotropic fourth-order orientation tensors
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defined in Equation (4.66), leads to the set

𝒩 transv
linear =

{︂
Ntransv | min

𝜑,𝜃
𝑛⊗4
𝜉𝜁 ≤ 𝑁

(4)
𝜉𝜁 ≤ max

𝜑,𝜃
𝑛⊗4
𝜉𝜁

}︂
(A.15)

=
{︂
Ntransv (𝛼, 𝜌) | −1

3 ≤ 𝛼 ≤ 2
3 ,

max
(︂

1
280 (−30𝛼− 7) , 1

105 (15𝛼− 7)
)︂

≤ 𝜌 ≤
1

840 (15𝛼+ 14)
}︂

which is visualized in Figure 4.3.

A.4 Parameterization of admissible Northo with
Isotropic N

Explicit parameterization of those fourth-order orientation tensors which
contract to the isotropic second-order orientation tensor is given by the
set {︂

Northo (︀
Niso, 𝑑1, 𝑑2, 𝑑3

)︀
| (A.16)

− 1
15 ≤ 𝑑1 ≤ 1

10 ,

− 1
15 ≤ 𝑑2 ≤ 7

45 + 5
9 (45 𝑑1 − 7) ,

− 1
15 ≤ 𝑑3 ≤ 4 − 60 𝑑1 − 60 𝑑2 + 675 𝑑1 𝑑2

60 − 675 𝑑1 − 675 𝑑2

}︂
⊂ 𝒩 ortho.

186



Appendix B

Appendices to Chapter 5 1

B.1 Kelvin-Mandel notation and completely
symmetric tensors of fourth order

This appendix directly follows Bauer and Böhlke (2022c;a) for the current
work to be self-contained. Kelvin-Mandel notation, explicitly intro-
duced in Mandel (1965), originating from Thomson (1856), discussed
in Mehrabadi and Cowin (1990); Cowin and Mehrabadi (1992); Böhlke
(2001) and also known as normalized Voigt notation, enables compact
two-dimensional representations of fourth-order tensors with at least
minor symmetry. A fourth-order tensor A = 𝐴𝑖𝑗𝑘𝑙 e𝑖 ⊗ e𝑗 ⊗ e𝑘 ⊗ e𝑙 is
minor symmetric if it has both minor symmetries, i.e., 𝐴𝑖𝑗𝑘𝑙 = 𝐴𝑗𝑖𝑘𝑙 =
𝐴𝑖𝑗𝑙𝑘 holds. Introducing base tensors in an arbitrary Cartesian basis {e𝑖}

1 This appendix reproduces the appendix of (Bauer and Böhlke, 2022a), i.e., Bauer,
J. K., Böhlke, T., 2022. Fiber orientation distributions based on planar fiber orien-
tation tensors of fourth order. Mathematics and Mechanics of Solids, online first,
10.1177/10812865221093958. Reproduced with permission. ©2022 The Authors.
Published by SAGE Publications Ltd under CC BY-NC 4.0
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by

𝐵1 = 𝑒1 ⊗ 𝑒1, 𝐵4 =
√

2
2 [𝑒2 ⊗ 𝑒3 + 𝑒3 ⊗ 𝑒2] ,

𝐵2 = 𝑒2 ⊗ 𝑒2, 𝐵5 =
√

2
2 [𝑒1 ⊗ 𝑒3 + 𝑒3 ⊗ 𝑒1] , (B.1)

𝐵3 = 𝑒3 ⊗ 𝑒3, 𝐵6 =
√

2
2 [𝑒2 ⊗ 𝑒1 + 𝑒1 ⊗ 𝑒2] ,

any minor symmetric tensor A is represented by a six by six matrix of
coefficients 𝐴𝜉𝜁

A = 𝐴𝑖𝑗𝑘𝑙 e𝑖 ⊗ e𝑗 ⊗ e𝑘 ⊗ e𝑙 = 𝐴𝜉𝜁 B𝜉 ⊗ B𝜁 (B.2)

with 𝜉 and 𝜁 summing from 1 to 6. Complete index symmetry of a tensor
N implies the structure

N = (B.3)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑁
(4)
11 𝑁

(4)
12 𝑁

(4)
13

√
2𝑁 (4)

14
√

2𝑁 (4)
15

√
2𝑁 (4)

16
𝑁

(4)
22 𝑁

(4)
23

√
2𝑁 (4)

24
√

2𝑁 (4)
25

√
2𝑁 (4)

26
𝑁

(4)
33

√
2𝑁 (4)

34
√

2𝑁 (4)
35

√
2𝑁 (4)

36

2𝑁 (4)
23 2𝑁 (4)

36 2𝑁 (4)
25

major symmetric 2𝑁 (4)
13 2𝑁 (4)

14
2𝑁 (4)

12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
B𝜉 ⊗ B𝜁 .

As complete index symmetry implies major index symmetry, the coeffi-
cient matrix in Equation (B.3) is symmetric. In Equation (B.3) indices of
redundant tensor coefficients are colored. The redundancy implies that
six coefficients in the upper left quadrant and nine coefficients in the
upper right quadrant of the coefficients in Kelvin-Mandel representation
define a completely symmetric tensor. This motivates a short hand
notation „completely symmetric“, see, e.g., Equation (5.15).
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B.2 Parameter sets in polar plots

Table B.1 contains parameter combinations leading to selected fourth-
order fiber orientation tensors, which are used to generate polar plots
in figures 5.7, 5.8, 5.9 and 5.10. Numerical values of the Lagrange
multipliers in Equation (5.72) are given with limited precision and
absolute values smaller than 10−5 = 1E−5 set to zero.
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Appendix C

Appendices to Chapter 6 1

C.1 Kelvin-Mandel notation and completely
symmetric tensors of fourth order

This appendix is shared with Chapter 5 and contained in Appendix B.1.

C.2 Harmonic decomposition of transversely
isotropic elasticity tensors

Following Spencer (1982); Lubarda and Chen (2008); Walpole (1969),
any transversely isotropic elasticity tensor can be parameterized by five
scalars and a direction q. For any choice of a non-unique orthonormal
coordinate system m𝑖 with m1 = q, there exists a mapping

Q̂ (q) = m𝑖 ⊗ e𝑖 (C.1)

1 This appendix reproduces the appendix of (Bauer and Böhlke, 2022b), i.e., Bauer,
J. K., Böhlke, T., 2022. On the dependence of orientation-averaging mean field
homogenization on planar fourth-order fiber orientation tensors. Mechanics of Materials
170, 104307, 10.1016/j.mechmat.2022.104307. Reproduced with permission. ©2022 The
Authors. Published by Elsevier Ltd under CC BY 4.0
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C Appendices to Chapter 6

and enables the following representation of a transversely isotropic
stiffness

Ctransv (ℎ1, ℎ2, ℎ3, ℎ4, ℎ5, q)

= Q̂ (q) ⋆

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣
𝐶11 𝐶12 𝐶12 0 0 0

𝐶22 𝐶23 0 0 0
𝐶22 0 0 0

𝐶22 − 𝐶23 0 0
sym 2𝐶55 0

2𝐶55

⎤⎥⎥⎥⎦ B𝜉 ⊗ B𝜁

⎞⎟⎟⎟⎠ (C.2)

= ℎ1 P1 + ℎ2 P2 + Q̂ (q) ⋆
[︁
ℎ3 J3

[︀
Ftransvx]︀

(C.3)

+ ℎ4 J4
[︀
Ftransvx]︀

+ ℎ5 Ftransvx
]︁

with transversely isotropic structure tensors (Olive et al., 2018; Müller
and Böhlke, 2016; Bauer and Böhlke, 2022c)

Ftransvx = dev
(︀
NUD)︀

= 2
3

⎡⎢⎣ 1 0 0
−1/2 0

sym −1/2

⎤⎥⎦ e𝑖 ⊗ e𝑗 (C.4)

Ftransvx = dev
(︀
NUD)︀

(C.5)

= 1
35

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

8 −4 −4 0 0 0
3 1 0 0 0

3 0 0 0

completely symmetric

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
B𝜉 ⊗ B𝜁

and isotropic sixth order tensors

J3 = [𝛿𝑖𝑗𝛿𝑘𝑚𝛿𝑙𝑛 + 𝛿𝑘𝑙𝛿𝑖𝑚𝛿𝑗𝑛] e𝑖 ⊗ e𝑗 ⊗ e𝑘 ⊗ e𝑙 ⊗ e𝑚 ⊗ e𝑛 (C.6)
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C.2 Harmonic decomposition of transversely isotropic elasticity tensors

J4 = 1
8 [𝛿𝑖𝑛𝛿𝑗𝑘𝛿𝑙𝑚 + 𝛿𝑖𝑛𝛿𝑗𝑙𝛿𝑘𝑚 + 𝛿𝑖𝑚𝛿𝑗𝑘𝛿𝑙𝑛 (C.7)

+ 𝛿𝑖𝑚𝛿𝑗𝑙𝛿𝑘𝑛 + 𝛿𝑖𝑘𝛿𝑗𝑚𝛿𝑙𝑛 + 𝛿𝑖𝑘𝛿𝑗𝑛𝛿𝑙𝑚

+ 𝛿𝑖𝑙𝛿𝑗𝑚𝛿𝑘𝑛 + 𝛿𝑖𝑙𝛿𝑗𝑛𝛿𝑘𝑚]e𝑖 ⊗ e𝑗 ⊗ e𝑘 ⊗ e𝑙 ⊗ e𝑚 ⊗ e𝑛.

The scaling factors 2/3 and 1/35 of the structure tensors in Equations
(C.4) and (C.5) do not lead to a norm of value one. This is in contrast to
formulations in, e.g., Fernández and Böhlke (2019, Equation (75)), but
leads to a direct connection to unidirectional fiber orientation tensors
NUD = v1 ⊗ v1 and NUD = Bv

1 ⊗ Bv
1 and compact expressions for ℎ𝑖

with 𝑖 ∈ {1, 2, 3, 4, 5} in Equation (C.3) which are related to the tensor
components in Equation (C.2) by

ℎ1 = 3𝐾 = 1
3 [𝐶11 + 4𝐶12 + 2𝐶22 + 2𝐶23] (C.8)

ℎ2 = 2𝐺 = 1
15 [2𝐶11 − 4𝐶12 + 7𝐶22 − 5𝐶23 + 12𝐶55] (C.9)

ℎ3 = 1
7 [𝐶11 + 5𝐶12 + 𝐶22 − 7𝐶23 − 4𝐶55] (C.10)

ℎ4 = 1
14 [2𝐶11 − 4𝐶12 − 5𝐶22 + 7𝐶23 + 6𝐶55] (C.11)

ℎ5 = 1
35 [𝐶11 − 2𝐶12 + 𝐶22 − 4𝐶55] (C.12)

with the bulk modulus 𝐾 and the shear modulus 𝐺. Equations (C.1) to
(C.3) motivate a short hand notation for a transversely isotropic elasticity
tensor using ⌊ · ⌋ with

Ctransv (ℎ1, ℎ2, ℎ3, ℎ4, ℎ5, q) =
⌊︁
ℎ1, ℎ2, ℎ3, ℎ4, ℎ5, q

⌋︁
. (C.13)

Following Rychlewski (2000), Equation (C.3) represents the classical lin-
ear invariant decomposition of a transversely isotropic elasticity tensor
into irreducible parts. The classical linear invariant decomposition is one
out of an infinite number of possible linear invariant decompositions
(Forte and Vianello, 1996; Rychlewski, 2000). Any non-classical linear
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invariant decomposition leads to a representation of Ctransv which differs
from Equation (C.3) by the set of isotropic tensors J3, J4 and the values
of the corresponding coefficients ℎ3 and ℎ4.

C.3 Reformulation of the Advani-Tucker orien-
tation average

Listing C.1 contains symbolic tensor manipulation code to validate
the representation of the Advani-Tucker orientation average in the
formulation given in Equation (6.16) and which is based on the classical
linear invariant decomposition (Rychlewski, 2000).

Listing C.1: Validation of the orientation average following Advani and Tucker III (1987)
given in Equation (6.16)� �

1 import sympy as sp

2 import symbolic as sb

3

4

5 D2 = sb.fabric_tensor.dev2_by_la0_la1()

6 D4 = sb.fabric_tensor.dev4_triclinic_by_d()

7 N4 = sb.special.combine_to_N4(D2=D2, D4=sb.tensorr(D4))

8

9 # Equation (C.3) Transvsely isotropic stiffness

10 stiffness = sb.material_symmetry.

transversely_isotropic_x_minimal_harmonic_normalized(

11 normalization="structure_tensor_multiplicity"

12 )

13

14 print("Orientation tensor fourth-order Kanatani first kind =\n", N4)

15 print("Transversely isotropic stiffness =\n", stiffness)

16

17 averager = sb.orientation_average.AdvaniTucker(N4=N4)

18 average = averager.average(stiffness)

19

20 decomposer_Rych = sb.elasticity.Rychlewski2000()

21 decomposition = decomposer_Rych.decompose_classical_harmonic(

22 stiffness=sb.tensorr(average)

23 )["parts"]

24

25
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26 def test_equality(A, B):

27 return sp.simplify(A) == sp.simplify(B)

28

29

30 assert test_equality(decomposition["h1"], sb.abc.h1)

31 assert test_equality(decomposition["h2"], sb.abc.h2)

32 assert test_equality(decomposition["H1"], D2 * sb.abc.h3)

33 assert test_equality(decomposition["H2"], D2 * sb.abc.h4)

34 assert test_equality(sb.mandel(decomposition["H"]), D4 * sb.abc.h5)� �
C.4 Advani-Tucker Orientation Average of Mi-

nor Symmetric Tensors

A generic transversely isotropic fourth-order tensor, which has both
minor symmetries but lacks major symmetry, i.e., 𝐻𝑖𝑗𝑘𝑙 = 𝐻𝑖𝑗𝑙𝑘 = 𝐻𝑗𝑖𝑘𝑙

but 𝐻𝑖𝑗𝑘𝑙 ̸= 𝐻𝑘𝑙𝑖𝑗 with Htransv = 𝐻𝑖𝑗𝑘𝑙e𝑖 ⊗ e𝑗 ⊗ e𝑘 ⊗ e𝑙, depends on
a direction q and six scalars, see Schröder and Gross (2004); Brannon
(2018). For any choice of a non-unique orthonormal coordinate system
m𝑖 with m1 = q, there exists a mapping

^̂Q (q) = m𝑖 ⊗ e𝑖, (C.14)

which enables the following representation of a transversely isotropic
minor symmetric fourth-order tensor lacking the major symmetry

Htransv (𝐻11, 𝐻22, 𝐻12, 𝐻21, 𝐻23, 𝐻55, q) = (C.15)

^̂Q (q) ⋆

⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝐻11 𝐻12 𝐻12 0 0 0
𝐻21 𝐻22 𝐻23 0 0 0
𝐻21 𝐻23 𝐻22 0 0 0

0 0 0 𝐻22 −𝐻23 0 0
0 0 0 0 2𝐻55 0
0 0 0 0 0 2𝐻55

⎤⎥⎥⎥⎥⎥⎥⎥⎦
B𝜉 ⊗ B𝜁

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.
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In other words, if the transversely isotropic axis is aligned with the
e1-axis of the coordinate system underlying the Kelvin-Mandel basis
B𝜉 ⊗ B𝜁 in Equation (C.15), the matrix representation of Kelvin-Mandel
components has the simplified structure shown in Equation (C.15).
Compared to the representation of Ctransv in Equation (C.2), lack of the
major symmetry of Htransv results in one additional independent tensor
component in Equation (C.15). In order to extend the reformulation
of the Advani-Tucker orientation average in Equation (6.16) to tensors
which lack the major symmetry, harmonic decomposition (Forte and
Vianello, 1996; Rychlewski, 2000) of such tensors is investigated follow-
ing Fernández and Böhlke (2019, Section 2.4) and Lobos et al. (2017,
Appendix A). Lack of major symmetry of a minor symmetric fourth-
order tensor, potentially adds three additional sub spaces of orders one,
two and three, to the sub spaces of its harmonic decomposition. If the
decomposed quantity is major symmetric, the contributions of these
three additional sub spaces are zero (Lobos et al., 2017, Section 2.4). It is
easy to show, that no non-vanishing first-order tensor a fulfills

Q ⋆ a = a ∀ Q ∈ 𝒮 transv (C.16)

with the transversely isotropic symmetry group 𝒮 transv. Following Bran-
non (2018), the same holds for harmonic tensors of third order. In
consequence, the additional degree of freedom of Htransv in Equation
(C.15) compared to Ctransv in Equation (C.2) corresponds to the additional
subspace of second order in the harmonic decomposition of minor
symmetric fourth-order tensors which lack major symmetry. As the
symmetry group of a tensor is the intersection of the symmetry groups
of its harmonic parts (Forte and Vianello, 1996), transversely isotropy of
Htransv demands that this subspace is also transversely isotropic, making
it one-dimensional and being a multiple of a structure tensor Ftransvx

defined in Equation (C.4). Consequently, Htransv can be represented by
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extending Equation (C.3) to

Htransv (ℎ1, ℎ2, ℎ3, ℎ4, ℎ5, ℎ6, q) (C.17)

= ℎ1 P1 + ℎ2 P2 + Q̂ (q) ⋆
[︁
ℎ3 J3

[︀
Ftransvx]︀

+ ℎ4 J4
[︀
Ftransvx]︀

+ ℎ5 Ftransvx + ℎ6 J6
[︀
Ftransvx]︀]︁

with Ftransvx, Ftransvx, J3 and J4 defined in Equations (C.4) to (C.7) and
with the isotropic sixth-order tensor

J6 = [−𝛿𝑖𝑗𝛿𝑘𝑛𝛿𝑙𝑚 + 𝛿𝑖𝑛𝛿𝑗𝑚𝛿𝑘𝑙] e𝑖 ⊗ e𝑗 ⊗ e𝑘 ⊗ e𝑙 ⊗ e𝑚 ⊗ e𝑛 (C.18)

following Fernández and Böhlke (2019), acting as

J6 [H] = −I ⊗ H + H ⊗ I. (C.19)

The connection between ℎ𝑖 for 𝑖 ∈ [1, 2, 3, 4, 5] and components 𝐻𝑖𝑗 in
Equation (C.15) follows the pattern in Equations (C.8) to (C.12) combined
with

ℎ6 = 1
2 (𝐻12 −𝐻21) . (C.20)

Based on the representation of Htransv in Equation (C.17), the Advani-
Tucker orientation average (Advani and Tucker III, 1987) given in equa-
tion (6.16) can be extended to minor symmetric fourth-order tensors
which lack the major symmetry, leading to

⟨Htransv (ℎ1, ℎ2, ℎ3, ℎ4, ℎ5, ℎ6, q) ⟩ATN (N) = ℎ1 P1 + ℎ2 P2 (C.21)

+ ℎ3 J3 [dev(N)] + ℎ4 J4 [dev(N)] + ℎ5 dev(N) + ℎ6 J6 [dev(N)]

with dev(N), dev(N) defined in Equations (6.17) and (6.18). An alterna-
tive representation closely following the original formulation of Advani
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and Tucker III (1987) is given by(︀
⟨Htransv ⟩ATN

)︀
𝑖𝑗𝑘𝑙

= 𝑏1 𝑁
(4)
𝑖𝑗𝑘𝑙 (C.22)

+ 𝑏2 𝑁𝑖𝑗 𝛿𝑘𝑙 + 𝑏6𝑁𝑘𝑙 𝛿𝑖𝑗

+ 𝑏3 (𝑁𝑖𝑗 𝛿𝑗𝑙 +𝑁𝑖𝑙 𝛿𝑗𝑘 +𝑁𝑗𝑙 𝛿𝑖𝑘 +𝑁𝑗𝑘 𝛿𝑖𝑙)
+ 𝑏4 𝛿𝑖𝑗 𝛿𝑘𝑙 + 𝑏5 (𝛿𝑖𝑘 𝛿𝑗𝑙 + 𝛿𝑖𝑙 𝛿𝑗𝑘)

with component representations in an arbitrary coordinate system

N = 𝑁
(4)
𝑖𝑗𝑘𝑙 e𝑖 ⊗ e𝑗 ⊗ e𝑘 ⊗ e𝑙 (C.23)

N = 𝑁𝑖𝑗 e𝑖 ⊗ e𝑗 . (C.24)

The coefficients 𝑏𝑖 for 𝑖 ∈ [1, 2, 3, 4, 5, 6] are defined by

𝑏1 = 𝐻1111 +𝐻2222 −𝐻1122 −𝐻2211 − 4𝐻1212 (C.25)

𝑏2 = 𝐻1122 −𝐻2233 (C.26)

𝑏3 = 𝐻1212 + 1
2 (𝐻2233 −𝐻2222) (C.27)

𝑏4 = 𝐻2233 (C.28)

𝑏5 = 𝐻2222 −𝐻2233 (C.29)

𝑏6 = 𝐻2211 −𝐻2233 (C.30)

based on tensor components of Htransv = 𝐻𝑖𝑗𝑘𝑙 e𝑖 ⊗ e𝑗 ⊗ e𝑘 ⊗ e𝑙 in a
coordinate system with e1 aligned along the transversely isotropic axis
of Htransv, i.e., the tensor components 𝐻𝑖𝑗𝑘𝑙 are directly related to the
Kelvin-Mandel components 𝐻𝑖𝑗 in Equation (C.15). If the quantity to
be averaged is major symmetric, the coefficients in Equations (C.25)
to (C.30) coincide with those for the original formulation Advani and
Tucker III (1987), e.g., given in Brylka (2017, Equation (2.89)) or Kehrer
et al. (2020, Equation (27)).
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C.5 Connection to Notation in Kehrer et al.
(2020)

The two-step scheme in Equations (6.32) and (6.33) simplifies to the
one proposed in Kehrer et al. (2020), if 𝑘1 = 0 or 𝑘1 = 1 and 𝑘 = 𝑘2.
Equations (C.31) and (C.32) connect the notation of this work on the left
hand side and the notation of Kehrer et al. (2020) on the right hand by

C̄HSW2 (𝑘1 = 0, 𝑘2 = 𝑘, ...) =̂ C̄HS- (𝑘) , (C.31)

C̄HSW2 (𝑘1 = 1, 𝑘2 = 𝑘, ...) =̂ C̄HS+ (𝑘) . (C.32)

C.6 Component representations of tensor in-
versions

Explicit representations of components after matrix inversion in Equa-
tion (6.43) are given by

ℎB
1 = 3 (105ℎ2 + 140ℎ4 + 36ℎ5) /𝑏1 (C.33)

ℎB
2 = 105(33075ℎ1ℎ

2
2 + 22050ℎ1ℎ2ℎ4 + 5670ℎ1ℎ2ℎ5 (C.34)

− 17640ℎ1ℎ
2
4 − 3780ℎ1ℎ4ℎ5 − 864ℎ1ℎ

2
5 − 52920ℎ2ℎ

2
3

− 141120ℎ2ℎ3ℎ4 − 94080ℎ2ℎ
2
4 + 17640ℎ2

3ℎ4 + 4536ℎ2
3ℎ5

+ 47040ℎ3ℎ
2
4 + 12096ℎ3ℎ4ℎ5 + 31360ℎ3

4 + 8064ℎ2
4ℎ5)/(𝑏1𝑏2)

ℎB
3 = 45(102900ℎ1ℎ2ℎ4 + 98000ℎ1ℎ

2
4 − 2520ℎ1ℎ4ℎ5 − 3600ℎ1ℎ

2
5 (C.35)

− 77175ℎ2
2ℎ3 − 102900ℎ2

2ℎ4 − 44100ℎ2ℎ
2
3 − 66150ℎ2ℎ3ℎ4

+ 13230ℎ2ℎ3ℎ5 − 9800ℎ2ℎ
2
4 + 17640ℎ2ℎ4ℎ5 − 117600ℎ2

3ℎ4

+ 22680ℎ2
3ℎ5 − 245000ℎ3ℎ

2
4 + 34020ℎ3ℎ4ℎ5 + 1008ℎ3ℎ

2
5

− 117600ℎ3
4 + 5040ℎ2

4ℎ5 + 1344ℎ4ℎ
2
5)/(𝑏1𝑏2) ,
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ℎB
4 = −225(15435ℎ1ℎ2ℎ4 + 14700ℎ1ℎ

2
4 − 378ℎ1ℎ4ℎ5 − 540ℎ1ℎ

2
5 (C.36)

− 6615ℎ2ℎ
2
3 − 17640ℎ2ℎ3ℎ4 − 11760ℎ2ℎ

2
4 − 17640ℎ2

3ℎ4

+ 3402ℎ2
3ℎ5 − 47040ℎ3ℎ

2
4 + 9072ℎ3ℎ4ℎ5

− 31360ℎ3
4 + 6048ℎ2

4ℎ5)/(𝑏1𝑏2)
ℎB

5 = −1575(2205ℎ1ℎ2ℎ5 − 5880ℎ1ℎ
2
4 − 2730ℎ1ℎ4ℎ5 + 216ℎ1ℎ

2
5 (C.37)

− 6615ℎ2ℎ
2
3 − 17640ℎ2ℎ3ℎ4 − 11760ℎ2ℎ

2
4 + 13230ℎ2

3ℎ4

− 1008ℎ2
3ℎ5 + 35280ℎ3ℎ

2
4 − 2688ℎ3ℎ4ℎ5 + 23520ℎ3

4

− 1792ℎ2
4ℎ5)/(𝑏1𝑏2) , (C.38)

with

𝑏1 = 315ℎ1ℎ2 + 420ℎ1ℎ4 + 108ℎ1ℎ5 − 630ℎ2
3 − 1680ℎ3ℎ4 (C.39)

− 1120ℎ2
4

𝑏2 = (105ℎ2 − 140ℎ4 + 6ℎ5) (105ℎ2 + 70ℎ4 − 24ℎ5) , (C.40)

after orientation-averaging in Equation (6.44) by

𝐸11 = − 1
35

[︁
35𝐵11𝑑1 − 35𝐵11𝜆1 + 4𝐵11 − 70𝐵12𝑑1 − 8𝐵12 (C.41)

+ 35𝐵22𝑑1 + 35𝐵22𝜆1 − 31𝐵22 − 140𝐵55𝑑1 − 16𝐵55

]︁
𝐸12 = 1

35

[︁
35𝐵11𝑑1 + 4𝐵11 − 70𝐵12𝑑1 + 27𝐵12 + 35𝐵22𝑑1 (C.42)

+ 4𝐵22 − 140𝐵55𝑑1 − 16𝐵55

]︁
𝐸13 = 𝐵12𝜆1 −𝐵23𝜆1 +𝐵23 (C.43)

𝐸16 =
√

2𝑑8 (𝐵11 − 2𝐵12 +𝐵22 − 4𝐵55) (C.44)

𝐸22 = − 1
35

[︁
35𝐵11𝑑1 + 35𝐵11𝜆1 − 31𝐵11 − 70𝐵12𝑑1 − 8𝐵12 (C.45)

+ 35𝐵22𝑑1 − 35𝐵22𝜆1 + 4𝐵22 − 140𝐵55𝑑1 − 16𝐵55

]︁
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𝐸23 = −𝐵12𝜆1 +𝐵12 +𝐵23𝜆1 (C.46)

𝐸33 = 𝐵22 (C.47)

𝐸44 = 𝐵22𝜆1 −𝐵23𝜆1 − 2𝐵55𝜆1 + 2𝐵55 (C.48)

𝐸55 = −𝐵22𝜆1 +𝐵22 +𝐵23𝜆1 −𝐵23 + 2𝐵55𝜆1 (C.49)

𝐸66 = 2
35

[︁
35𝐵11𝑑1 + 4𝐵11 − 70𝐵12𝑑1 − 8𝐵12 + 35𝐵22𝑑1 (C.50)

+ 4𝐵22 − 140𝐵55𝑑1 + 19𝐵55

]︁
with 𝑑1 = 𝑑1 + ^𝑅(𝜆1) − 4

35 (see Bauer and Böhlke (2022a)) and after
matrix inversion in Equation (6.45) by

𝐺11 = 𝐸2
16𝐸33 − 𝐸22𝐸33𝐸66 + 𝐸2

23𝐸66
𝑏

(C.51)

𝐺12 = 𝐸12𝐸33𝐸66 − 𝐸13𝐸23𝐸66 + 𝐸2
16𝐸33

𝑏
(C.52)

𝐺13 = −𝐸12𝐸23𝐸66 + 𝐸13𝐸
2
16 − 𝐸13𝐸22𝐸66 + 𝐸2

16𝐸23
𝑏

(C.53)

𝐺16 =
𝐸16

(︀
𝐸12𝐸33 − 𝐸13𝐸23 + 𝐸22𝐸33 − 𝐸2

23
)︀

𝑏
(C.54)

𝐺22 = −𝐸11𝐸33𝐸66 − 𝐸2
13𝐸66 − 𝐸2

16𝐸33
𝑏

(C.55)

𝐺23 = 𝐸11𝐸23𝐸66 − 𝐸12𝐸13𝐸66 − 𝐸13𝐸
2
16 − 𝐸2

16𝐸23
𝑏

(C.56)

𝐺26 = −𝐸16
(︀
𝐸11𝐸33 + 𝐸12𝐸33 − 𝐸2

13 − 𝐸13𝐸23
)︀

𝑏
(C.57)

𝐺33 = 𝐸11𝐸
2
16 − 𝐸11𝐸22𝐸66 + 𝐸2

12𝐸66 + 2𝐸12𝐸
2
16 + 𝐸2

16𝐸22
𝑏

(C.58)

𝐺36 = 𝐸16 (𝐸11𝐸23 − 𝐸12𝐸13 + 𝐸12𝐸23 − 𝐸13𝐸22)
𝑏

(C.59)

𝐺44 = 1
𝐸44

. (C.60)
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𝐺55 = 1
𝐸55

(C.61)

𝐺66 = −
[︁
𝐸11𝐸22𝐸33 − 𝐸11𝐸

2
23 − 𝐸2

12𝐸33 + 2𝐸12𝐸13𝐸23 (C.62)

− 𝐸2
13𝐸22

]︁
/𝑏

𝑏 = 𝐸11𝐸
2
16𝐸33 − 𝐸11𝐸22𝐸33𝐸66 + 𝐸11𝐸

2
23𝐸66 + 𝐸2

12𝐸33𝐸66 (C.63)

− 2𝐸12𝐸13𝐸23𝐸66 + 2𝐸12𝐸
2
16𝐸33 − 𝐸2

13𝐸
2
16 + 𝐸2

13𝐸22𝐸66

− 2𝐸13𝐸
2
16𝐸23 + 𝐸2

16𝐸22𝐸33 − 𝐸2
16𝐸

2
23.

C.7 Parameter sets in polar plots

Table C.1 contains parameter combinations leading to selected fourth-
order fiber orientation tensors, which are used to generate polar plots in
Figures 6.7, 6.8, 6.9, 6.10, 6.11 and 6.12. The corresponding parameteriza-
tion Nplanar(𝜆1, 𝑟, 𝛽) is defined in Equation (6.11). Numerical values of

the Lagrange multipliers (𝐿, 𝑓1, 𝑓2, 𝑔1, 𝑔2) specifying 𝜓
ME(𝜙𝑖, Nplanar)

following Bauer and Böhlke (2022a, Equation (71)) are given with abso-
lute values smaller than 10−5 = 1E−5 set to zero.
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C Appendices to Chapter 6

C.8 Effective complementary elastic energy
density

Effective complementary elastic energy density due to uniaxial tension
with unit stress 𝜎 = 1 MPa defined in Equation (6.66) for mean field
homogenizations listed in Figure 6.5b are given in Figures C.1a to C.3.
The bounds of the contour plots in Figures C.1a to C.3 are homogeneous
and given by 0 MJ/m3 and 0.1 MJ/m3.
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(a) Polar plots for selected N specified in Figure 6.4 and Table C.1.
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v1
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(b) Polar plots for selected N specified in Figure 6.5a and Table C.1. The order along the
path in Figure 6.5a is given from left to right.

Figure C.1: Effective complementary elastic energy 𝑤⋆(C, 𝜎 = 1MPa,n) due to uniaxial
tension in varying direction defined in Equation (6.66) for mean field approximations
specified in Figure 6.5b.
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Figure C.2: Effective complementary elastic energy 𝑤⋆(C, 𝜎 = 1MPa,n) due to uniaxial
tension in varying direction defined in Equation (6.66) for mean field approximations
specified in Figure 6.5b. Polar plots for selected N specified in Figure 6.6a and Table C.1
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Figure C.3: Effective complementary elastic energy 𝑤⋆(C, 𝜎 = 1MPa,n) due to uniaxial
tension in varying direction defined in Equation (6.66) for mean field approximations
specified in Figure 6.5b. Polar plots for selected N specified in Figure 6.6b and Table C.1
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nEffective mechanical properties of fiber-reinforced composites strongly depend 

on the microstructure, i.e., the fibers’ alignment within the composite. In this 
work, we study the influence of a fiber orientation distribution on the effective 
properties of long-fiber-reinforced composites such as sheet molding compound 
(SMC). Averaged information of a fiber orientation distribution can be quantified 
by fiber orientation tensors. We identify the variety of fiber orientation tensors 
up to fourth-order, based on a simple and flexible parameterization based on 
irreducible tensors incorporating material symmetry. Admissible parameter ranges 
are identified by demanding positive semi-definiteness. Throughout this work, 
closure approximations are contrasted by the variety of fourth-order fiber orien-
tation tensors. The correspondence of planar fiber distributions and planar fiber 
orientation tensors are presented in detail, deploying tensorial Fourier series in 
2D- and 3D-frameworks as well as maximum entropy reconstruction of fiber 
orientation distributions by leading fiber orientation tensors. An innovative vis-
ualization method, combining overview plots and polar plot ensembles, shows 
the directional dependence of effective linear elastic stiffnesses predicted by 
mean field homogenization.
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