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ABSTRACT 

The propagation symmetry of electromagnetic fields is affected by encounters with 

material systems. The effects of such interactions, for example, modifications of intensity, phase, 

polarization, angular spectrum, frequency, etc. can be used to obtain information about the 

material system.  However, the propagation of electromagnetic waves imposes a fundamental 

limit to the length scales over which the material properties can be observed.  In the realm of 

near-field optics, this limitation is overcome only through a secondary interaction that couples 

the high-spatial-frequency (but non-propagating) field components to propagating waves that can 

be detected.  The available information depends intrinsically on this secondary interaction, which 

constitutes the topic of this study. Quantitative measurements of material properties can be 

performed only by controlling the subtle characteristics of these processes.  

This dissertation discusses situations where the effects of near-field interactions can be (i) 

neglected in certain passive testing techniques, (ii) exploited for active probing of static or 

dynamic systems, or (iii) statistically isolated when considering optically inhomogeneous 

materials.  This dissertation presents novel theoretical developments, experimental 

measurements, and numerical results that elucidate the vectorial aspects of the interaction 

between light and nano-structured material for use in sensing applications. 
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û    Unit vector notation 
u    Tensor notation 
CDA   Coupled Dipole Approximation 
CDA SLAB  Coupled Dipole Approximation with 2D periodic boundary conditions 
LAP   Local Anisotropic Polarizability 
MMC   Metropolis Monte Carlo 
NSOM   Near-field Scanning Optical Microscope 
OAM   Orbital Angular Momentum 
OB   Optical Binding or Optically Bound 
PDF   Probability Density Function 
SAM   Spin Angular Momentum 
SHESS  Spin Hall Effect in Scattering from Spheres 
SOI   Spin-Orbit Interaction   
 
 



 

x 

LIST OF FIGURES 

Figure 2-1 An incident wave impinging on a scatterer of some volume pV and permittivity  p r 9 

Figure 2-2 Sphere of size a  excited by radiation of wavelength  . The different radiation zones 
are (i) near-field region  d r   , (ii) the intermediate-field ~d r  , and (iii) the far-
field d r  . ......................................................................................................................... 12 

Figure 2-3 Plots of the normalized electric field magnitude of a small scatterer (electric dipole) 
polarized in the x direction at distances of 0.1λ (A), 0.37λ and 10λ (C). ..................................... 13 

Figure 2-4 Coupling evanescent fields to propagating one in a second medium. ........................ 18 

Figure 2-5 Schematic of detection of evanescent waves by diffraction or scattering .................. 19 

Figure 2-6 Schematic of tapered optical fiber probe.  (A) shows a cartoon representation of the 
path the light travels.  (B) shows a tapered cantilevered fiber probe used for a beam bounce 
method of monitoring the amplitude of vibration for feedback (Image from www.nanonics.co.il/)  
(C) shows a probe mounted to a tuning fork, (Image from www.azonano.com) another method 
for monitoring feedback................................................................................................................ 22 

Figure 2-7 Schematic of Nanonics NSOM -100, where all three measurement modalities of 
emission (transmission or reflection far-field detection), collection (transmission or reflection 
far-field illumination), and dual (emission and collection) are available. .................................... 24 

Figure 2-8 Coupled dipole approximation of a sphere by an array of dipoles (small scatterers) . 29 

Figure 2-9  Intensity PDF for large number of random waves interfering having a uniform phase 
distribution. ................................................................................................................................... 36 

Figure 3-1 Intensity distributions in the plane (blue) and perpendicular to the plane (red) of a 
linear polarized excitation for three different observation distances 0.25r  (A), 1.5r   (B) 
and 10r  (C). ............................................................................................................................ 40 

Figure 3-2  Angular intensity distributions in the plane (blue) and perpendicular to the plane 
(red) of a linear polarized excitation for three different observation distances 0.25r  (A), 

1.5r   (B) and 10r  (C)........................................................................................................ 41 



 

xi 

 

Figure 3-3 Polarization state of the scattered field measured at a distance r from a scatterer 
excited with a field linearly polarized along x. The observation distances are 0.25r  (A), 

1.5r   (B) and 10r  (C)........................................................................................................ 43 

Figure 3-4  Polarization state of the scattered field measured at a distance r from a scatterer 
excited with a circularly polarized field. The observation distances are 0.25r  (A), 1.5r   
(B) and 10r  (C)....................................................................................................................... 44 

Figure 3-5  Distribution of Poynting vector in the x-z plane (A), y-z plane (B) and x-y plane 
(transverse to the direction of excitation) for a 100nm radius sphere for the case of linear 
polarization along the x direction with a wavelength λ=532nm................................................... 46 

Figure 3-6  Distribution of Poynting vector in the x-z plane (A), y-z plane (B) and x-y plane 
(transverse to the direction of excitation) for a 100nm radius sphere for the case of circular 
polarization with a wavelength λ=532nm..................................................................................... 47 

Figure 3-7 (A) In the far field, the perceived location of the volume of the interaction is shifted 
by an about Δ.  The shift is in opposite directions for the different circularly polarized excitations 
states (blue and red curves) and is equal to 0 for any linearly polarized excitation state (green 
curve).  This transversal shift Δ occurs in any plane ∑ and its absolute value depends on the 
angle θ with respect to the forward scattering direction. .............................................................. 48 

Figure 3-8 Poynting vector field lines projected on the plane perpendicular to the direction of 
excitation and containing the center of the scattering sphere.  Different size spheres, (a) smaller 
than the wavelength λ and (b) larger than λ, exhibit a spiraling of the flow of energy in the 
intermediate region.  Most interesting is the winding of Poynting vector field lines in (b) due to 
the complex process of scattering from large spheres (Results are presented using an adaptation 
of the Matlab vector field visualization toolbox []). ..................................................................... 50 

Figure 3-9 Schematic of the experimental setup using a single mode optical fiber as a means for 
sensing local power flow direction. .............................................................................................. 51 

Figure 3-10 Comparison between the analytical prediction (a) and the experimental results (b) 
for the coupled power through a single mode fiber scanned across a polystyrene sphere of 4.6μm 
diameter. The graphs depict the difference between the scattered intensities corresponding to 
pure states of excitation plotted as a function of fiber’s position with respect to   the center of the 
sphere. ........................................................................................................................................... 52 

Figure 3-11. (A) A beam of light incident on a planar refractive index gradient, (B) beam shifts 
observed in far-field corresponding to incidence in pure states of polarization (right circular, left 
circular), and (C) the observable result corresponding to an incident beam in a mixed state. (D) A 
plane wave incident on a planar refractive index gradient, (E) the far-field shifts corresponding to 
incidence in pure states of polarization, and (F) the result of an incident plane wave in a mixed 
state of polarization. (G) A plane wave scattering from a sphere, (H) the transversal shifts in the 
perceived sphere center as observed in far-field for pure incident states, and (I) the result of 
scattering for incident wave in a mixed state................................................................................ 54 

Figure 4-1 Schematic of two coupled sphere geometry................................................................ 58 



 

xii 

Figure 4-2 Plot of extinction cross section for two 10nm polystyrene interacting spheres 
normalized to the extinction cross section for independent spheres when the exciting polarization 
is along the direction of separation (blue) and perpendicular to the separation (red) with a 
wavelength of 532nm.................................................................................................................... 61 

Figure 4-3 Extinction cross section for two interacting spheres normalized by extinction cross 
section for independent spheres varying the angle of the applied linear polarization state to the 
separation vector (A) keeping one sphere fixed and varying the location of the other (B) a 
comparative plot with collinear to the separation (blue) and perpendicular to the separation (red).
....................................................................................................................................................... 62 

Figure 4-4 Computational space of two sphere system as modeled with the conventional coupled 
dipole formalism. .......................................................................................................................... 64 

Figure 4-5 Comparison of analytical results (solid lines) and numerical results (dots) for 
extinction cross section of two 10nm polystyrene interacting spheres normalized by extinction 
cross section for independent spheres when the exciting polarization is along the direction of 
separation (blue) and perpendicular to the separation (red) with a wavelength of 532nm........... 66 

Figure 4-6  (A) Plot of extinction cross section for two 475nm radius polystyrene spheres 
interacting spheres normalized by extinction cross section for independent spheres when the 
exciting polarization is along the direction of separation (blue) and perpendicular to the 
separation (red) with a wavelength of 532nm.  (B) Keeping one sphere fixed at the origin, a map 
of the normalized extinction cross section as the function of the position of a second sphere for 
an applied linear exciting field...................................................................................................... 67 

Figure 4-7  Optical binding in elliptically polarized light EI. Apart from the binding force FR, 
interacting particles experience tangential forces FT. Note the existence of differential forces �F 
leading to individual spinning in addition to common orbiting of particles around the system’s 
center of mass. .............................................................................................................................. 71 

Figure 4-8 (A) Plot of the potential energy for a 100nm polystyrene sphere of refractive index 
1.59 in water excited with linear states along the separation direction x (blue curve), at 45 
degrees (green curve) and orthogonal (red curve) with an incident power of 0.1W per square 
micron.  The wavelength was 632nm.  (B) shows the corresponding forces for the same system 
for the three different polarization states normalized to the unitless quantity Const= 
(4πεo|Eo|2(10-23m2)) -1.  The dots in B correspond to a numerical simulation of the same 
scattering situation using CDA to calculate the forces. ................................................................ 73 

Figure 4-9  Contours of constant intensity for an x-polarized excitation of a 2 dipole system, 
keeping one dipole at the origin and varying the location of the other (contours are linear with 
log(log(I)).  The black line correspond to the positions of optical binding (if a second sphere was 
near by, it would travel along the black line until it was along the y axis (vertical)) ................... 74 

Figure 4-10  Contours of constant phase an x-polarized excitation of a 2 dipole system, keeping 
one dipole at the origin and varying the location of the other.  The black line correspond to the 



 

xiii 

 

positions of optical binding (if a second sphere was near by, it would travel along the black line 
until it was along the y axis (vertical)).......................................................................................... 75 

Figure 4-11. Torques in an optically bound system of silica spheres of radius 0.1 ma   solid 

lines, 0.2 ma  dashed lines, 0.4 ma   dot-dashed lines: (A) orbital torque about the system’s 

center of mass and (B) spin torque of a sphere about its own axis. The spheres are in water and 
are excited with a field polarized linearly at an angle θ with respect to the optical binding vector. 

The torques are normalized to 
24 4

0 10 I a   E ....................................................................... 77 

Figure 4-12. Magnitude of orbital torque as a function of the radius of interacting spheres for the 
first (curve 1, blue) and second (curve 2, red) stationary orbits. The plus symbols indicate regions 
where the torque has opposite sign.  The dashed lines indicate the analytical predictions based on 
Eq.(4.19) for Rayleigh particles.  The calculations are for silica spheres in water excited with a 
plane wave of intensity 250mW m  and wavelength in vacuum 532  nm.  The black line 
shows the magnitude of torque due to Brownian force at 290K in the first stationary orbit.  The 
inset depicts the symmetric potential energy landscape and the trajectory of a bound particle due 
to nonconservative orbital torques. ............................................................................................... 80 

Figure 4-13  Magnitude of spin torque s  as a function of the radius of interacting spheres for 

the first (curve 1, blue) and second (curve 2, red) stationary orbits. The plus symbols indicate 
regions where the torque has opposite sign.  The calculations are for silica spheres in water 
excited with a plane wave of intensity 250mW m  and wavelength in vacuum 532  nm. The 
black line shows the magnitude of absorption-induced spin torque of one silica sphere with 
refractive index 71.59 10in i  . ................................................................................................. 81 

Figure 4-14 Schematic of modeling 2 sphere system excited locally with a single dipole acting as 
the local excitation (NSOM probe),  using the separation of local and distant fields for the 
compression of the computational system. ................................................................................... 83 

Figure 4-15  (A) Plot of integrated intensity scattered from two 475nm radius polystyrene 
spheres interacting spheres normalized by extinction cross section for independent spheres 
locally excited with a small sphere with the polarization along the direction of separation (blue) 
and perpendicular to the separation (red) with a wavelength of 532nm.  (B) Map of extinction 
cross section as the function of the orientation for an applied linear exciting field of the single 
sphere exciting the coupled system............................................................................................... 83 

Figure 4-16 (A) AFM topographical image of monolayer of silicon spheres compared to near-
field intensity (B) distribution, and the selection of inner and outer spheres to analyze.............. 84 

Figure 4-17  Individual images of topography and intensity distribution for inner and outer 
spheres analyzed over an area with near equal slope. (A), inner topography , (B) inner intensity, 
(C) outer topography, (D) outer intensity, .................................................................................... 85 

Figure 5-1 (A) Example of a Gaussian distributed surface profiled with varying observation 
scales corresponding to the microscopic, mesoscopic, or macroscopic averaging.  (B) An 



 

xiv 

optically inhomogeneous medium with refractive index variations due to inclusions and the 
corresponding scale lengths determined by the material properties (see text). ............................ 90 

Figure 5-2 (A) Distributions observed considering n  sampling points.  (B) Convergence of the 
contrast to the global distribution contrast as a function of the number of sampling points n .... 92 

Figure 5-3 Plot of von Mises probability density function for varying ν ..................................... 94 

Figure 5-4 Plot of phase distribution (A) and corresponding contrast (B) as a function of  N , for 
different values of  ..................................................................................................................... 96 

Figure 5-5 NSOM scan of optical coating consisting of 100 parts latex and 25 parts TiO2 
particulates. (A) is AFM topography, (B) Intensity distribution .................................................. 98 

Figure 5-6 Typical histogram of an NSOM scan.  The solid curve corresponds to the Fresnel 
reflection predicted for the corresponding effective index of the inhomogeneous sample. ......... 99 

Figure 5-7 Variation of detected interaction volume as a function of incident intensity 
   2 1I red I green ................................................................................................................... 101 

Figure 5-8 (Left) PDF of phase distribution used to fit experimental data. (Right) Plot of 
experimental and random walk model........................................................................................ 102 

Figure 5-9. (A) An inhomogeneous material system probed at mesoscopic scales through a local 
excitation provided by a near-field optical probe.  (B) The observed far field response of the 
material system may be interpreted as being determined by a discrete array of anisotropic 
Rayleigh scatterers with different local magnitudes and orientations.  (C) An inhomogeneous 
material system where the physical dimensions of the object limit the extents of the field material 
interaction and the effective anisotropic Rayleigh scatterer (D) producing an equivalent scattered 
field. ............................................................................................................................................ 105 

Figure 5-10. Probability density functions of ordered (see text) diagonal elements of the 
reconstructed polarizability tensor. The volume of interaction corresponds to a sphere of 50 nm 
in diameter having a host refractive index of 1.33 and a) inclusions with a refractive index of 2 
and a volume fraction of 0.27 and b) inclusions with a refractive index of 2.4 and a volume 
fraction of 0.18. The dots are the results of the numerical simulations while the solid lines are 
guessed ‘best fit’ of numerical data. ........................................................................................... 109 

Figure 5-11.  Effective anisotropy factor Δ as a function of excitation volume R  normalized by 
inclusion diameter d  for spherical inclusions with a refractive index of 1.5 randomly distributed 
in vacuum.  The continuous lines correspond to inclusions with diameter 32  while the dashed 

lines correspond to inclusions of diameter 64 . Curves 1 to 4 correspond to a volume fractions 
of inclusions of 0.3, 0.2, 0.1, and 0.025, respectively................................................................. 112 

Figure 5-12.  Maximum anisotropy length () normalized by the diameter of inclusions d  
versus the volume fraction of inclusions f .  Open circles and crosses represent MAL values 



 

xv 

 

corresponding to inhomogeneous media with inclusions of diameters of 64 , 32  
respectively. The solid line corresponds to the volume containing on average 3 inclusions. .... 113 

Figure 5-13. Maximum of anisotropy factor max  as a function of volume fraction f  of 

inclusions with 50nm in diameter and having different refractive index contrasts. ................... 113 

Figure 6-1.  A generic scattering process where a scatterer with unknown polarizability α  is 
illuminated by a constant, arbitrarily polarized field incE . An intensity  measurement is 

performed in the far-field through a polarizer P  oriented in the plane xy ................................ 118 

Figure 6-2 The geometry of  near-field scattering polarimetry. The probe of near-field 
microscope P scans the heterogeneous  sample having regions  dV  with uniformly oriented 

polarizability. .............................................................................................................................. 131 

Figure 6-3  Reconstructed polarizability (the c-component of diagonalized polarizability tensor) 
as a function of normalized domain volume /d mV V  where dV  is the volume of uniform 

orientation of anisotropic polarizability and mV  is the volume of interaction (solid line). Dashed 

line shows the exact value of polarizability. The parameters of CDA simulations are: tip-sample 
separation 10nm, modeling cube of 0.8 wavelength in size with 34 10  dipoles........................ 133 

Figure 6-4Error in reconstructing the polarizability tensor components, a (dashed green line), 

b  (solid red line), and c (dotted blue line), as a function of concentration of inclusions within 

the sphere of interaction. The number of inclusions is constant in (A) and it varies in (B) (see 
text). The calculations are performed for a host sphere with radius 0.16sr   and refractive 

index 1.33sn   which contains inclusions of radii 0.05ir   and refractive index 2.9in  . .. 141 

Figure 6-5  Error in reconstructing the polarizability tensor components, a (dashed green line), 

b  (solid red line), and c (dotted blue line), using the two polarimetric measurements method. 

The number of inclusions is constant in (A) and varies in (B); the parameters for the calculations 
are the same as in Figure 6-4. ..................................................................................................... 145 

Figure 6-6  AFM measured topography (top) and NSOM measured intensity (bottom) for two 
optical coatings A (left) and B (right)......................................................................................... 147 

Figure 6-7 Normalized intensity distributions for samples A (blue) and B (red)....................... 148 

Figure 6-8 Polarimetric intensity distributions normalized by the average of the total intensity for 
samples A (A) and B (B). ........................................................................................................... 148 

Figure 6-9 Plot of measured polarization states for samples A (A) and B (B) on the Poincare 
sphere .......................................................................................................................................... 149 



 

xvi 

Figure 6-10 Polarimetric intensity distributions normalized by the average of the total intensity 
measured (solid lines) for samples A (A) and B (B) compared to the fixed anisotropic 
polarizability reconstructed distributions (dashed lines). ........................................................... 151 

Figure A-1  Schematic of simple two lens imaging system........................................................ 166 

Figure A-2 Plot of incoherent and coherent illumination of 2 point objects separated by λ/2 ... 170 

Figure A-3 Plot of coherent illumination of 2 point objects separated by 0.711λ ...................... 171 

Figure A-4 Plot of incoherent and coherent illumination of 2 point objects separated by λ/2 ... 173 

Figure A-5  Plot of coherent illumination of 2 point objects separated by 0.82λ ....................... 174 

Figure C-1  Schematic of an electric dipole as two equal and opposite point charges.  These two 
point chares, q+ and q- give rise to a dipole moment p. ............................................................. 180 

Figure E-1 Plot of magnitude of field for different models of field generated by diffraction from 
a small aperture.  Bouwkamp, magnetic dipole, magnetic + crossed electric dipole, and the 
solutions found from evaluating numerically Eq.(E.17) – Eq.(E.19) ......................................... 196 

 



 

xvii 

 

LIST OF TABLES 

Table 2-1 Comparison of analytical Mie theory calculation of extinction cross section vs. the 
numerical calculation using the coupled dipole approximation for varying numbers of dipoles in 
the modeling volume..................................................................................................................... 32 

Table 6-1 Percentage error of reconstructed polarizability for different shapes of particles, 
different field orientations, and different number of realizations for the case of an elliptically 
polarized excitation field, 0, 0    . ..................................................................................... 127 

Table 6-2 Percentage error of reconstructed polarizability for different shapes of particles, 
different field orientations, and different number of realizations for the case of a linearly 
polarized excitation field ( 0, 0    ). .................................................................................... 129 

 



 

 2

CHAPTER 1: OUTLINE – SCOPE OF THESIS 

Electromagnetic fields provide noninvasive means for probing material systems.  The 

interaction with particles, surfaces, or any other material modifications, breaks the symmetry of 

propagation for electromagnetic fields, and the resulting field properties will manifest some 

memory of the interaction, i.e. modifications of intensity, phase, polarization, angular spectrum, 

frequency, etc.  However, the propagation of electromagnetic fields away from the material 

system imposes a fundamental limit regarding the length scales over which the material 

properties can be recovered.  Information about higher spatial frequencies is made available only 

through a secondary interaction that couples the non-propagating fields confined to the surface to 

the wave components that can be detected away from the object.  In reality, this so-called high 

resolution information intrinsically depends on a secondary interaction. It is only through an 

understanding of the subtleties of this optical interaction, inherently vectorial in nature, that the 

primary information may be correctly identified.  Through theoretical developments, 

measurements, and numerical modeling, this dissertation will focus on specific vectorial aspects 

of light interaction with material nano-structures. 

In the context of information retrieval, one can identify two type of sensing processes:  

passive and active.  In the case of passive sensing, the presence of the second medium (the 

probe) does not influence the field distribution to be measured.  Passive probing provides the 

simplest relationship between the detected propagating signal and the local field distribution, as 

the material and probe may be treated as separate components of a linear system.  In this 

interaction regime, one is only required to characterize the transfer function of the probe in order 
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to determine how the material modifies the field structure and how this modification depends on 

the polarization state of the excitation field.  This information is of relevant not only for material 

characterization purposes but also for understanding and controlling the properties of intricate 

photonic structures. Even in the most symmetric case of a single sphere excited by a plane wave, 

the light interaction with the material manifests in a complex polarization structure in the vicinity 

of surface.  This complicated redistribution of energy from a scattering process can lead to rather 

intriguing results, such as a polarization dependent shift in the observed interaction volume as 

will be discussed in Chapter 3. 

In active sensing on the other hand, the probe not only couples the non-propagating fields 

to the far-field, but it also changes the field to be probed. Naturally, this is a more complex 

situation and the sensing procedure cannot be treated anymore as a separable linear system; 

rather, a self consistent effective field distribution must be accounted for.  To deal with this 

complication, specialized analytical and numerical methods are necessary to decouple the 

complicated resultant information.  This is also true when dealing with complex, inhomogeneous 

materials; numerical models are necessary to further understand the near-field measurements 

performed by scanning a small probe in the system’s proximity. Another important example of 

near-field interactions is the situation of two pieces of material that are close to one another. This 

coupled scattering occurs also in the case of local excitation with a small probe; it leads to 

morphology dependent response in the near-field scan of a complex system such as a monolayer 

of spheres as will be seen in Chapter 4. 

In all cases mentioned so far, the material systems were assumed to be mechanically rigid 

with respect to the local field. However, the interaction of light with matter may also change the 

structural properties of a material system (laser damage, optical trapping, etc.).  The so-called 
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“optical trapping” is one example where the location of a particle may be manipulated by means 

of an interaction with an external electromagnetic field.  When actively probing the local field 

distribution surrounding a dynamic material system, the interaction with the field will change the 

materials response.  Probing a local field distribution actively may also be accomplished through 

the observation of the dynamics of a coupled system.  For instance, in the situation where a two 

sphere system is excited with a plane wave, due to their mutual optical interaction, the spheres 

will move to some stationary location in space as dictated by the forces induced by the scattered 

field.  The interaction between an electromagnetic field and a material system is polarization 

sensitive and, therefore, the interaction between material objects mediated by an electromagnetic 

field will also depend on the exciting polarization as will be discussed in detail in Chapter 4. 

In many practical situations one is faced with the task of characterizing complex media 

that are optically inhomogeneous. In this case, one single wave-matter interaction does not yield 

much valuable information and a statistical treatment of the entire process is necessary. One 

must obtain ensembles of measurements, and then relate the statistical descriptors such as the 

moments of measured distributions to the material properties of interest.  Although local field is 

altered due to the active interaction with the probe, some statistical properties of the tested 

medium may still be related to the stochastic properties of scattered fields.  In certain conditions, 

a statistical treatment of the scattered fields may even permit decoupling between contributions 

to the far-field signal, such as variations in topography and dielectric properties as will be 

demonstrated in Chapter 5.  Moreover, the use of a localized excitation for the probing of 

optically inhomogeneous properties can sometimes result in an insufficient averaging of the 

microscopic properties, leading to a volume-dependent response. As discussed in Chapter 5, 

when examining the material at different levels of spatial averaging, a characteristic length scale 
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can be identified which relates to material’s responsivity to the specific polarization of the 

exciting electromagnetic field. 

The purpose of many optical measurements is to determine some unknown system 

properties; this means solving some kind of inverse problem.  For inhomogeneous material 

systems, this procedure involves performing an ensemble of measurements and then solving 

stochastic equations for the statistical descriptors of the material properties.  A refined technique 

requires performing polarimetric measurements and using statistical tools based on fluctuations 

of polarimetrically measured intensities to determine the local anisotropic polarizability 

associated with the scattering medium.  As will be discussed in Chapter 6, stochastic equations 

may be developed and inverted such that even in the situation when the incident field is 

unknown, structural information may still be retrieved.  The more knowledge one has about the 

experimental and physical scattering situation, the more efficient the unknown information can 

be found.  For instance, if an inhomogeneous material is probed with a field having a known 

polarization state, the stochastic equation can be inverted using data from one single 

measurement, drastically simplifying the experimental requirements.   

Throughout this dissertation, different physical situations leading to specific 

manifestations of near-field interactions will be discussed In addition to understanding their 

subtle influences on the measurement outcomes, we will demonstrate efficient means for 

observing experimentally the effects of these interactions. In doing so, we will develop efficient 

numerical tools for modeling complex aspects of near-field interactions and we will derive the 

statistical procedures necessary to differentiate between different interaction effects. 
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CHAPTER 2: OPTICAL NEAR-FIELDS - GENERAL CONCEPTS 

The ever growing need in information processing for faster computational speeds and 

higher storage density carries high demands on the reduction of the physical bit size.  The feature 

sizes in ultra large scale integrated electronics circuitry are continually getting smaller reaching 

down to nanometers scale.  The ability to use light to provide real time images of the fabricated 

material structures would be of critical importance to quality control and in line corrections.  

There is also great interest in the functionality of biological molecules and systems. The size of 

sub-cellular biological building blocks is often also in the nm range [1], and light offers a 

noninvasive means of probing this information from a distance.  However, for all this to occur, 

the behavior of light in confined spaces such as very close to a surface must be understood, and 

material responses at dimensions much smaller than the wavelength must be able to be 

manipulated. 

Conventional optical apparatus have been used for centuries to transform the information 

from a distant (object) plane to a more convenient, perhaps magnified, image plane.  The optical 

tool of imaging is by far the most widely used and historically the most researched.  However, 

conventional imaging requires propagation of the electromagnetic fields, which inherently 

imposes a cutoff in terms of the spatial information available in an image.  Thus, the spatial 

resolution in a conventional microscope in the visible is limited to around 200nm [2].  To lower 

the resolution optically down to the nanometer scale requires detecting non-propagating 

(evanescent) fields that carry the information about the high spatial frequency content.  

Evanescent fields however, are confined to the material surface, and their magnitude decays 
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exponentially as one moves away from the material; therefore any detection scheme must either 

be placed in the vicinity of the structure, or provide a means to couple the fields to propagating 

wave in a predetermined manner. 

The quest to obtain information on the nanometer scale has been taken up in many 

different fields, each building from the experience the others.  Many of the mechanical, 

electronic, magnetic, optical, and other techniques that were first successful at micron scales 

evolved toward better resolution in the nano region.  It was generally found that scanning probe 

microscopy (SPM) techniques provide a local response from the material through the use of 

specialized probes.  Scanning probe techniques have been implemented in almost all above fields 

[3]: atomic force microscopy (AFM) for mechanical [4], scanning tunneling microscope (STM) 

for electronic [5], magnetic force microscopy (MFM) for magnetic [6], and near-field scanning 

optical microscopy (NSOM) for optical. Currently, STM and AFM claim a resolution at the 

atomic level [7], in MFM the resolution is a couple nanometers [8], and NSOM in the visible is 

typically about 50nm [9] (although some claim as low as 12nm [10]). 

To complement the experimental methods, certain analytical models for the different 

experimental geometries have been derived.  However, in many situations, the field-material 

interaction results in very complicated field distributions in the vicinity of the volume of 

interaction. For these situations, and when the experiment lays outside the analytical 

approximations, numerical models exist that may be tuned to the materials in question.  

Complications also arise when intense optical fields are used to probe a dynamic material 

system.  In such situations, the electromagnetic force applied by the probing field may contribute 

or change the behavior of the dynamic material.  Also, care must be taken when assessing 

situations when the material system is complicated, i.e. spatially non-uniform or random.  To 
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properly characterize such classes of materials, statistical processing tools must be used in 

addition to any numerical tool, as a single wave matter interaction may not suffice to describe 

how the material ensemble behaves. 

As described in the introduction chapter, depending on the physical situation 

(material/experimental controls) one may select from any number of tools to aid in interpreting 

the results of an experiment.  In this chapter, we review some general near-field concepts and 

tools that we will draw upon throughout this dissertation.  We discuss how a material 

redistributes energy upon interacting with a field, and comment on how such redistribution may 

be analyzed for characterization or manipulated for some other purpose.  We discuss the spatial 

limitations of the information available when observing far away from where the field-material 

interaction occurred, the so called diffraction limit and it’s implications in experiments.  The 

basic experimental geometries for sub-diffraction limited imaging and detection are reviewed.  

Also, as not all field matter interactions may be easily interpreted, for example when dealing 

with complex material systems where a single wave matter interaction does not suffice, we 

discuss some numerical and statistical tools that may be used to provide insight into the 

complicated near-field images one measures. 

2.1. Field-Material Interaction - Scattering 

In the 1850s James Clerk Maxwell summarized the existing knowledge of 

electromagnetism into a set of mathematical equations.  In this set of equations, he unified the 

interaction of electric fields, magnetic fields, electric polarization, magnetization with material 

systems; for both static and dynamic charges.  In general, Maxwell’s equations establish 

relationships between the electromagnetic field at any interface where a change in the material 

properties exist (permittivity or permeability), establishing “boundary conditions”. These 
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boundary conditions link the electron currents inside matter to the external electromagnetic field.  

When excited, (by some internal or external field) oscillating charges induce electromagnetic 

field variations along the surface.  Continuity of electromagnetic field requires that the fields 

near the objects surface be related to the surface currents and field distribution within the object.   

To see how and electromagnetic  field is modified through the interaction with a material, 

let us consider the situation of elastic scattering, where after the interaction with the material, the 

field is merely redistributed, the so-called Rayleigh scattering.  Consider some incident field incE  

impinging on some scatterer with a volume pV and permittivity  p r , as shown below in Figure 

2-1. 

 

 

  

 

 

  

 

 ,p pV  r
incE

sE

 

Figure 2-1 An incident wave impinging on a scatterer of some volume pV and permittivity  p r  

From Maxwell’s equations, on may construct and integral equation for the field at some 

arbitrary point as: 

            2 ' ' ' 1 '
p

inc r

V

k d    E r E r r G r r r E r  (2.1)

Where here r is the relative permittivity with respect to the surrounding space 

( r p   ), k c  is the wave number, and a sinusoidal time dependence of  exp i t  is 



 

 10

assumed; we can also recognize the presence of the susceptibility     1r  r r .  Also, in 

Eq.(2.1) is the dyadic Green’s function  'G r r defined in terms of the scalar Green’s function 

as:  

  
   2

' 'g
k

     
 

G r r I r r . (2.2)

where the scalar Green’s function is  

  
   exp '

'
4 '

ik
g




 


r r
r r

r r
. (2.3)

As can be seen in Eq.(2.3), before any volume integration may be performed, one must 

account for the singularity.  To take into account the singularity of the dyadic Green’s function, 

one may make use of the three-dimensional Dirac delta function and the principal value of the 

integral: 

  
     

2

'
' 'PV k

 
   

L r r
G r r G r r . (2.4)

Here,  'PV G r r  represents the principal value of the integral neglecting some infinitesimal 

volume V , and the tensor L is related to the shape of the exclusion volume.  Substituting 

Eq.(2.4) back into the total field expression, yields: 

               2 ' ' ' '
p

inc

V V

k d


 


   E r E r r G r r r E r L r E r  (2.5)

If the object V  is small, we can assume that the field inside is uniform, therefore the field inside 

V is the same as the local field at V ; solving (2.5) for the field inside, we find: 

  
   

 
0

0
01

inc





E r

E r
r

 (2.6)
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When the particles composition is homogeneous: 

  
  0

0
pV

else





 


r
r , (2.7)

and the object is very small compared to the location where the field is calculated, the field 

outside the particle is: 

         2
0 0 0inc pk V   E r E r G r r E r  (2.8)

Upon substituting in the expression for the local field  0E r  in terms of the incident field, one 

can readily identify the presence of the polarizability: 

  0

01pV
L







α , (2.9)

giving the scattered field: 

         2
0 0inc inck  E r E r G r r αE r  (2.10)

With the polarizability and the local field, we can express the scattered field for this small 

scattering object in terms of its dipole moment,  

     2
s kE r G r p  (2.11)

Eq.(2.11) is simply the field of an electric dipole oriented along p .  The scattered electric and 

magnetic fields scattered from a small object in terms of the dipole moment p  are found to be: 

         2
3 2

0

ˆ ˆ ˆ ˆ ˆ ˆexp 3 3

4s

ikr
ik k

r r r
      

   
 

r r p p r r p p r r p p
E  

     2

2

ˆ ˆ
exp

4s

kc
ikr ik

r r
  

  
 

r p r p
H . 

(2.12)

The above expressions represent the electric and magnetic field generated by a single oscillating 

electric dipole [11].   
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One can readily identify three different regions where the field is decaying at different 

rates.  If the spatial size of a scatterer is denoted as d  and the wavelength is 2 c   ,  the 

three different regions are qualitatively shown below in Figure 2-2.   



d

 rd

r



d

 rd

r

 

Figure 2-2 Sphere of size a  excited by radiation of wavelength  . The different radiation zones 
are (i) near-field region  d r   , (ii) the intermediate-field ~d r  , and (iii) the far-

field d r  . 

The three regions shown in Figure 2-2 are commonly described as:   

The near-field (static zone)       d r    

The intermediate-field (induction zone)    ~d r   

The far-field (radiation or wave zone)       d r   

The behavior of the field in these three regions have significantly different properties.  In 

the near-field, ( kr  ), the scattered field decays rapidly, where as in the far-field zone where 

r  , it is adequate to approximate ˆ' '   r r r n r . The field appears as that of an outgoing 

spherical wave, and the electric and magnetic fields in the far-field are transverse to the radius 

vector and have an amplitude falling as 1 r .  

From Eq.(2.12), it can be seen that the magnetic field is transverse to the radius vector at 

all distances. The electric field on the other hand has components both parallel and perpendicular 
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to r  and, moreover, these components depend on the distance away from the interaction site.  

What is most important is that the field distributions look very different, depending on the 

observation point.   

A CB
PPP

A CBA CB
PPP

 

Figure 2-3 Plots of the normalized electric field magnitude of a small scatterer (electric dipole) 
polarized in the x direction at distances of 0.1λ (A), 0.37λ and 10λ (C). 

Figure 2-3 shows the magnitude of the electric field at different distances from a small 

sphere excited with light polarized along the x axis  At ten wavelengths away from the source 

(Figure 2-3 C), the field magnitude has the familiar  “donut” shape that is commonly attributed 

to dipolar radiation(field is zero along the polarization axis).  However, in the vicinity of the 

sphere, the near-field, the magnitude along the polarization axis dominates the intensity 

distribution and the field tends to zero perpendicular to the polarization direction (Figure 2-3 A).  

In other words, the field magnitude is dominant along the dipole moment in the near-field, where 

as the field along the excitation dipole moment becomes zero in the far-field.   

In the transition from near to far-field, there should be a distance where the field 

magnitudes along and perpendicular to the polarization direction are equal as illustrated in 

(Figure 2-3 B). This situation occurs at a distance of  2 5 37 2 0.3747r k    .  At this 

distance, the distribution of field’s magnitude is spherical regardless of the excitation 
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polarization.  In the near- and intermediate- regions, one can expect rather unusual properties of 

the scattered field that depend on both location and polarization.   

In the case where the scattering object is a sphere, the polarizability tensor is diagonal; 

moreover it is constant on the diagonal and can be represented as a scalar.  Of course, not all 

small objects are spherical in shape, which is where the depolarization factor L  of Eq.(2.9) 

becomes important, leading to an anisotropic polarizability.  The polarizability, isotropic or 

anisotropic relates the material information to the scattered field.  Specifically when the 

polarizability is anisotropic, there may be significant differences in the field strength for different 

orientations of the exciting field. 

As we will describe later in Chapters 5 and 6, the general expression for Rayleigh 

scattering in terms of an anisotropic polarizability can be very useful in understanding how 

variations in intensity from subwavelength volumes are determined by the material.  Also, the 

scattering from a subwavelength volume may be treated as some effective polarizability when 

considering an ensemble of Rayleigh scatterers.  In this case, as we will discuss in Chapter 6, the 

material properties are scale dependent, meaning they vary depending on what volume they are 

observed. 

2.2. The Resolution Limit 

As apparent from Eq.(2.12), the scattering from a single dipole results in fields oscillating 

both parallel and perpendicular to the radial vector.  However, as is evident from the wave 

equation, only those fields oscillating perpendicular to the direction of propagation propagate; 

therefore the information in the longitudinal waves does not reach the far-field.  Losing this 

information means that there is a limit in the resolution in the far-field.  One simple classical 

example of the limits of resolution in far-field optics is describing the imaging of a grating.  
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Essentially, any material system may be thought of as a summation of gratings with appropriate 

periods, phase relation, and orientation. One can say that the entire information concerning the 

structure of a grating is contained in the different diffracted orders it produces and, therefore, 

detecting all or some of the diffracted orders can be interpreted as having the object more or less 

resolved. The expression for the angles of different propagating diffracted orders is given in the 

simple grating equation [2] 

  
sin sini

m

d

   , (2.13)

where   and i  describe the diffracted and incident angle respectively, λ is the wavelength in 

the region, d is the period of the structure, and m is the integer diffracted order.  It can be 

immediately seen that for a period of 2d  , there are no angles   and i  that will result in a 

propagating diffracted order.  Therefore, in this case, the information about the structure must be 

embedded in waves that are bound to the surface, the so called evanescent waves.  This limit λ/2 

of resolution for conventional far-field systems is the well known Abbe-Rayleigh limit.  A 

derivation of this limit for a two slits object for both coherent and incoherent illumination for two 

common apertures can be found in Appendix  and the results of which are shown below in 

Eq.(2.14).  Eq.(2.14) provides the incoherent (a) and coherent (b) limits in resolution for an ideal 

system with a rectangular aperture.  Also shown are the limits in resolution for an ideal system 

with a circular aperture for both incoherent (c) and coherent (d) illumination [12]. 

 
a.) 0.5000

sino
o


 

   ,          b.) 0.7110
sino


 

  , 

c.) 0.6098
sino


 

   ,            d.) 0.8190
sino


 

  . 

(2.14)
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According to the Rayleigh criterion, two images are regarded as being resolved when the 

principal maximum of one coincides with the first minimum of the other.  This definition is 

independent on the threshold in intensity that one may place (for the situation of an incoherent 

illumination and a rectangular aperture, the intensity between the two maxima is 81% of the 

maximum); as detectors improve, this concept of resolution may need to be revised.  However, 

for now we can consider that the best possible resolution of a conventional far-field imaging 

microscope, assuming a perfect imaging system with no aberrations and the highest possible 

numerical aperture of one, is still only half the wavelength of the exciting light.  This is the same 

resolution found when we considered the imaging of a grating.  What is interesting is that the 

resolution limit (as found from the grating example with no aperture and coherent light) of half 

the wavelength of a two slit object is valid only for a rectangular aperture and incoherent 

illumination.  From Eq.(2.14) one could infer that it is possible to decrease the resolution limit by 

immersing an object in some higher index material, thus obtaining information about the smaller 

features.  This is the basic concept of the immersion microscope [13].  This technique leads to an 

improvement of resolution inversely proportional to the refractive index of the second material 

and is thus limited by the concepts of more exotic materials.  

One such instrument that achieves the diffraction limited resolution is laser scanning 

confocal microscopy.  In the simplest form, a confocal microscope involves using high NA 

objective lenses (usually oil or water immersion lenses) to probe the material with the diffraction 

limited focal spot.  The focal spot is typically raster scanned on the surface by two scanning 

mirrors, one for each lateral axis.  After scattering, the back scattered radiation from the surface 

is used to generate an image of the surface by plotting intensity bit by bit on each scan point. An 

aperture of appropriate diameter is overlapped exactly with the image position of the focal 
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volume.  The aperture in the collected beam path serves in addition as a spatial-filter for the 

vertical direction, discrimination signals coming from different heights in the optical axis around 

the focal volume.  Higher axial resolution is made available utilizing point spread function 

engineering via 4π confocal microscopy and stimulated emission depletion  [14,15]. 

2.2.1. Beyond the Resolution Limit 

It is evident that in order to obtain information about a sample with a resolution beyond 

those described in Eq.(2.14), it is necessary to detect the information stored in the high spatial 

frequency evanescent waves.  The first demonstration was achieved by Newton using two prisms 

where the evanescent fields were generated by total internal reflection in one prism.  A second 

prism with a slightly curved surface was then brought into contact with the first.  It was observed 

that the spot size of the light exiting the second prism was larger than the area of contact.  Thus 

some of the evanescent waves that were confined to the surface were converted to propagating in 

the second prism, see Figure 2-4.  Total internal reflection creates waves at the surface that do 

not satisfy the conditions for propagation, however when refracted into the second prism, the 

conditions for propagation are met.  Due to the exponential decay in intensity of these surface 

waves, the prisms must be within a fraction of the wavelength of one another.  This technique is 

known as frustrated total internal reflection, and leads to an increase in resolution similar to that 

of the immersion microscope.     
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Figure 2-4 Coupling evanescent fields to propagating one in a second medium.   

This method relies on refraction to couple non-propagating waves to propagating, but a 

similar treatment can be applied in terms of diffraction.  On the other hand, diffraction or 

scattering from an object results in the creation of both propagating and non-propagating waves.  

As demonstrated in the case of a grating, when the structural details are very small, information 

about the object is carried in the non-propagating components of the scattered or diffracted 

fields.  Since light propagation is symmetric with respect to changes in both time and space (the 

reciprocity relation) if a small object is placed in an evanescent field, scattering or diffraction 

from this object will result in some of the evanescent fields being converted to propagating.  A 

schematic of such a situation is pictured below in Figure 2-5 .  This concept of a sub-wavelength 

probe or aperture scattering light very near to the surface was first proposed by Synge in 1928 

[16].  Synge proposed that an image can be accumulated by scanning a sub wavelength aperture 

very near to the surface and collecting the light in the far-field.  
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Figure 2-5 Schematic of detection of evanescent waves by diffraction or scattering 

Figure 2-5 is a fundamental picture that can be used to describe most of the different 

modalities of near-field microscopy.  To give a simple demonstration of this concept, let us 

consider the diffraction of a plane wave through a slit of 2L. In the far-field, the problem is 

described via the well-known Rayleigh-Sommerfield equation [17] 

 

       
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

 


    . (2.15)

which is not exact for objects that are smaller than the wavelength; however as a simple 

demonstration of the principles it should suffice.  If the second aperture is placed a very small 

distance away from the first aperture, then it may be assumed that all of the high spatial 

frequencies are being seen by this second aperture.  However, in reality, the higher the spatial 

frequency, the faster the field will decay away from the surface, therefore there should be 

dependence in the limits of integration on the value of ε.  The diffracted fields in the plane z=Z, 

using the limits of integration to account only for propagating waves giving: 
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If one envisions detecting only one spatial frequency at a time, the expressions for far-

field can be greatly simplified using    , 0x xE k z k K   .  It follows that for the situation 

without the small aperture in front of the fist slit the field is 
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while in the case where  the aperture is brought closer to it, one obtains 
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From Eq.(2.17) dealing with the situation of diffraction from a small slit, when K c , 

there is no information about these spatial frequencies in the far-field.  If this delta function in k 

space was generated by a high frequency grating, the image in the far-field would look like a 

polished piece of glass.  However, in the second situation, where a small aperture was placed 

very near to the first, due to the diffraction from the second aperture, fields still contribute to the 

far-field for these high spatial frequencies.  The expression for the second case Eq.(2.18), can be 

interpreted as sort of convolution with a sinc function that depends on the size of the second slit.  

The smaller the aperture dimensions, the larger the width produced for the function 

  sinc xk K l .  Basically, the aperture can detect anything that is larger than itself!  The 

smaller the aperture-object distances the higher the spatial frequency components that can be 
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detected.  As can be sees when examining Eq.(2.18), when the width of the second aperture 

increases significantly, the two expressions become the same. 

The above treatment of diffraction as a means to detect evanescent fields is merely a 

simple scalar treatment of the complicated behavior.  In reality, any diffractive element or 

aperture will depend on the complete vectorial properties of the field.  As such, simple analytical 

expressions for coupling efficiency or observed field distributions are usually used only a guide 

to aid to understanding the underlying structures rather than quantitative analysis.  

However, this coupling of the high spatial frequency evanescent fields to propagating 

waves through scattering is the fundamental high resolution mechanism in near-field 

microscopy.  In Figure 2-5, due the time reversibility of electromagnetic fields, one can envision 

a situation where light is traveling from right to left, and the observation is in the far-field on the 

left.  In this situation, the high spatial frequency components of the field near the object are 

generated by the scattering object (probe).  If this scattering probe is placed near the edge of the 

object’s aperture, the interaction of the evanescent fields with the subwavelength structure will 

couple some of the evanescent fields to propagating waves for far-field detection.  This is exactly 

the situation proposed by Synge in 1928 [16], using a small aperture to image a surface with sub-

wavelength resolution in the visible regime. 

2.3. Experimental Methods 

In his original letter to Einstein, (April 22, 1928) Synge suggested that scattering from a 

small particle could be used to couple the evanescent waves from a subwavelength object to the 

far-field for detection.  A few letters went back and forth discussing the many difficulties with 

practical implementation of such an idea, and although he doubted any experimental realization, 

Einstein convinced him to publish anyways [18].  In his paper, Synge suggested using either a 
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subwavelength pinhole in a metal plate or a quartz cone tapered to a point (on the order of 10nm) 

that is coated with a metal except for the very end.  It wouldn’t be for a couple of decades before 

such an idea was experimentally realized.  The first experimental demonstrations of the concepts 

above were performed in the visible independently by Lewis [19] and Pohl [20] in 1984.  In their 

experiments, the small aperture was replaced with a tapered optical fiber probe.  This optical 

fiber was tapered to have an aperture much smaller than the wavelength of light.  This probe is 

the key feature in NSOM and determines the coupling efficiency of evanescent fields to 

propagating.  The creation of such a probe, seen in Figure 2-6, can be accomplished in a variety 

of different methods: chemical etching, heating and pulling, focused ion beam shaping, etc. [21]. 

Once the desired size of the fiber is obtained, typically around 100nm, the probe is then coated in 

a metal such as aluminum or gold to confine the fields that are no longer propagating in the 

fibers core.   

Glass

||k

k

Metal Coating

2



Transmitted

A B C
Glass

||k

k

Metal Coating

2



Transmitted

Glass

||k

k

Metal Coating

2



Transmitted

A B C

 

Figure 2-6 Schematic of tapered optical fiber probe.  (A) shows a cartoon representation of the 
path the light travels.  (B) shows a tapered cantilevered fiber probe used for a beam bounce 

method of monitoring the amplitude of vibration for feedback (Image from www.nanonics.co.il/)  
(C) shows a probe mounted to a tuning fork, (Image from www.azonano.com) another method 

for monitoring feedback. 

As nanofabrication techniques improve, one would imagine that reproducibility and 

smaller apertured probes will follow.  However, another feature that limits the resolution 

http://www.nanonics.co.il/�
http://www.azonano.com/details.asp?ArticleID=1205�
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available by the scanning aperture technique is the optical throughput.  Essentially, light 

propagating in a fiber has a wave vector defined as 2 2 2
||k k k  , where here k  and ||k  are the 

wave vector components perpendicular and parallel to the optical fiber axis.  The magnitude of 

the wave vector in the material is: 

 
0

2
k k

 


   (2.19)

where µ and ε are the permeability and permittivity of the fiber, and λ is the wavelength of the 

radiation.  The perpendicular component of the wave vector is determined by the diameter of the 

fiber and the refractive index contrast of the core and cladding [22].  When the diameter is small 

enough that 2k     , the fields no longer propagate, and the components parallel to the 

optical fiber become purely imaginary.    Therefore, when the fiber diameter reaches such sizes, 

the optical field along the fiber exhibits an exponentially decreasing evanescent behavior toward 

the tip.  If the taper is too long, most of the power will be reflected back in addition to the metal 

coating around the fiber attenuating the field due to absorption. Because of this absorption, the 

input field amplitude cannot be increased to arbitrarily high values, as at the aperture absorption 

may damage the metal coating with excessive heat generation. The optical transmission 

coefficients in standard SNOM probes are reported to be around 510  [23].  Of course the 

transmission and collection efficiency will vary from probe to probe (due to different coating 

thicknesses), as well as depend on the tip sample separation.  

Creating a subwavelength aperture is but the first step, the most important step is to bring 

this probe near the surface in a controlled manner.  There are many variations on how to achieve 

and maintain such a small distance from the sample without destroying the probe or sample.  

Many of these methods were first achieved with the advent of atomic force microscopy, AFM 
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[4].  In most AFM instruments, a sharpened tip is dithered vertically at some resonant frequency.  

The amplitude of this vibration changes when the tip is brought to within nanometers from the 

surface due to the interaction between matter at such small scales.  The AFM probe is sensitive 

to forces arising from mechanical contact force, Van der Waals forces, capillary forces, chemical 

bonding, electrostatic forces, magnetic forces, Casimir forces, solvation forces, etc. [7].  Through 

the use of a force feedback mechanism, the probe may be kept at a constant amplitude of 

oscillation; thus at a constant separation from the sample.  The two most common methods of 

monitoring this amplitude are a beam bounce setup with a cantilevered probe Figure 2-6 (b), or 

by a tuning fork attached to the tip Figure 2-6 (c) [24].  The probe may be kept at a constant 

amplitude of vibration, which maintains a constant tip sample separation, or at a constant height, 

where the tip is brought to some distance, and the force feedback is disabled.  The latter requires 

accurate knowledge about the sample a priori.  A schematic of a typical NSOM system can be 

seen below in Figure 2-7. 

 

Figure 2-7 Schematic of Nanonics NSOM -100, where all three measurement modalities of 
emission (transmission or reflection far-field detection), collection (transmission or reflection 

far-field illumination), and dual (emission and collection) are available. 
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There are three main geometries of NSOM, which can each be interpreted from the 

schematic seen in Figure 2-5.  In the basic collection geometry, light is focused on to a sample 

that may contain sub-wavelength variations in the topography and the dielectric function and 

collected by the near-field probe.  As seen in Figure 2-5, the probe must be brought in close 

proximity to the sample surface as the evanescent fields decay exponentially in the propagation 

direction.  The probe used in the collection geometry allows for the detection of evanescent field 

through some secondary scattering from the probe of the evanescent fields to propagating modes 

in the fiber.  In this geometry, a large illumination area is created by focusing light onto the 

sample.  The interaction of this light with the sample produces both propagating and evanescent 

fields.  When placed very near to the surface, the small aperture of the probe will couple both 

these contributions such that they may be detected in the far-field.   

NSOM can also operate in emission mode when light is coupled into the fiber and 

emitted from the tapered fiber probe.  This geometry is also pictured in the basic evanescent field 

detection schematic in Figure 2-5, however in this case the light is traveling from right to left.  

The tip generates evanescent fields that probe the sample when the distance between the sample 

and tip is very small.  In principle, the emission and collection modes of operation are reciprocals 

of one another, however depending on the sample and the desired measurements, one method 

may be preferable over the other.  The third mode of operation is that of both emission and 

collection.  This mode is somewhat difficult to envision from Figure 2-5, however if one 

considers that the tip can be used both to generate and collect evanescent fields, it is possible to 

consider the light reflecting from the sub-wavelength features.  This technique in particular 

carries the possibility of a near-field phase detection, as the collected signal will always beat with 

the signal reflected from the end of the fiber.  Through out this dissertation, the NSOM in Figure 
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2-7 was used to both experimentally measure optical near-fields (as in Chapter 5) and as a basis 

for derivations of near-field modeling (Chapter 6).   

Another type of near-field microscopy is the so-called scattering (apertureless) scanning 

near-field microscopy.  It is similar to the ones described above however; in this case the fields 

are generated by focusing light onto the tip in the vicinity of the sample.  Notably, the field near 

the end of the tip may be locally enhanced due to the evanescent fields generated from 

diffraction from the tip. In this geometry, there is no need to fabricate an aperture at the end of 

the probe and evanescent fields will also be created due to the focused lights interaction with the 

sample.  This type near-field microscope allows for two different mechanisms of coupling 

evanescent fields to propagating: scattering of the evanescent fields created by the sample from 

the tip, and scattering of the fields generated by the tip from the sample.  As such this method 

requires some sort of modulation of the detected signal, usually with a frequency near that of the 

tip to cancel out the large background [25]. 

There is also a type of near-field system known as the photon scanning tunneling 

microscope.  Again, this type is very similar to the NSOM mentioned above, however, in this 

case the evanescent fields are generated by total internal reflection.  The near-field tip is be 

scanned very near to the surface and convert or detect some of these evanescent components.  

This type of microscope is commonly used in conjuncture to very thin samples which, 

sometimes, can support surface plasmons [26]. 

2.4. Numerical Techniques 

Due to the complexity of the near-field probes and scattering geometries, analytical 

solutions are usually not applicable.  Rather, complex scattering problems are often approached 

using numerical modeling. There are a variety of numerical methods that are currently being 
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used in the modeling of electromagnetic responses and scattering from a material in the near-

field. Depending upon the specifics of the problem at hand, one may use: finite difference time 

domain (FDTD), Mie scattering, T-matrix, finite element method (FEM), coupled (discrete) 

dipoles approximation (CDA), etc.  These techniques often offer varying degrees of accuracy as 

a trade off for computational time and required memory storage.   

Different numerical techniques rely on different assumptions and methods of 

approximating solutions to these equations.  The finite difference time domain formulation first 

discussed by Yee [27], involves discretising both space and time in order to approximate the curl 

equations by finite difference quotients.  In using this technique, the scatterer and the 

surrounding space are approximated by a grid.  Artificial boundaries are created by use of a 

perfectly absorbing material or perfectly matched layer to minimize artificial reflections.  This 

method is most useful in describing a well characterized piece of material or semi-infinite 

structure.  If time is also discretised, then the fields that are generated with a pulse excitation can 

also be modeled.  This technique is very powerful, however due to the requirement of expanding 

the grid to locations outside the scattering region; some accuracy in describing the material is 

sacrificed.   

The finite element technique is similar to FDTD, however FEM is an approximation to 

the solution to the differential equations where as FDTD an approximation to the differential 

equation themselves.  Typically FEM is preformed in the frequency domain.  FEM also requires 

that the entire space be discretised, however with FEM, the lattice does not necessarily need to 

be cubic.  This allows for a lattice to be specified that will better approximate the shape of the 

scattering particle or material.  FEM solves the boundary conditions of only neighboring cells, 

thus creating a banded diagonal system of equations, which many numerical techniques may be 
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used to solve.  Like FDTD the main drawback to FEM is the requirement of taking into account 

the space outside the scattering volume.  The boundary conditions at the edge of the particle and 

those of the computational domain must be specified.  The edge of the domain must account for 

the behavior of the fields at infinity and ensure no reflections back into the scattered region.   

Mie scattering is a very specific analytical solution for the scattering from spheres.  

However, currently, analytical solutions for irregular shapes have not been developed [28].  We 

use Mie theory extensively in Chapter 3 where we analyze the vectoral scattering from a single 

sphere.   

Another technique, the coupled dipole approximation CDA (also known as the discrete 

dipole approximation) approximates a continuum volume as a finite array of polarizable points 

[29].  The basic idea for the coupled dipole approximation was first conceived in 1964 by 

DeVoe, who was studying optical properties of molecular aggregates [30].  In 1973 Purcell and 

Pennypacker improved upon DeVoe’s treatment and applied this technique to the study of 

interstellar dust grains.  In the original derivation by DeVoe, retardation effects were not 

included and the original method was only suitable for particles of size less than a wavelength.  

Purcell and Pennypacker created a flexible general technique for calculating the scattering and 

absorptive properties of particles of arbitrary shapes.  CDA gives an approximation of the correct 

solution, the accuracy of which will depend greatly on the number of lattice point used to 

approximate the shape.   

2.4.1. The Coupled Dipole Approximation 

CDA and similar integral methods do not suffer from the important disadvantage of 

FDTD and FEM, namely the need to discretise space outside the particle, and the need to 

implement suitable boundary conditions to prevent non-physical reflections from the boundary 
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of the computational domain.  Throughout this dissertation, some of the tasks require exploiting 

the available computational resources to best model the scattering from an arbitrary shaped 

scatterer or collection of scatterers.  CDA is the method of choice as it is relatively simple to 

implement and is well suited for inhomogeneous materials of arbitrary composition.     

As described in Section 2.1, the interaction of an electromagnetic wave and an 

inhomogeneous material can be described in terms of the integral equation Eq.(2.1), in which the 

field at some observation point is the sum of the incident field and that of the surrounding 

medium. The coupled dipole approximates this integral (Eq.(2.5)) by a discrete summation 

(Figure 2-8).  The fields resulting from the integration become those of dipoles on a lattice that 

can best approximate the shape of the scatterer.   

A BA B

 

Figure 2-8 Coupled dipole approximation of a sphere by an array of dipoles (small scatterers) 

The field at each of the dipoles can be written as the summation of both the incident field 

and the contributions occurring from the interaction with all the other dipoles on the lattice 
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where ( )k jE r  is the electric field radiated to the point jr  by the kth point dipole kP .  Considering 

a point dipole at an arbitrary orientation and at an arbitrary location kr


, the radiated field can be 

written as:  

 ( ) ( , ) ,k j j k k    E r A r r P  (2.21)

where ( , )j kA r r is the interaction matrix accounting for both near- and far-field coupling 

components as a result of the dyadic Green's function. This matrix is a dense, symmetric positive 

definite matrix of size 3N×3N where N is the number of dipoles used.  The elements of ( , )j kA r r  

can be found by[31]: 
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where the magnitude is defined as jk j kr  r r  and the normal vector as ˆ ( )jk j k jkr r r r .  By 

considering the self interaction term, when j=k, where the induced dipole moment is related to 

the incident electric field by 

 
j ( )j inc jP αE r . (2.23)

The unknown individual dipole moments can be found by solving the system of 

equations in terms of their interaction and the incident field. 
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The self-interaction term (j=k) is equal to the inverse of the atomic polarizability of the dipole 

representing the volume at that location. The atomic polarizability is directly related to the 

dielectric properties of the material and is found from the Clausius-Mossotti relation Eq.(2.9). 
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At the heart of a CDA calculation lays the self consistent solution to the system of linear 

equations seen in Eq.(2.24). There are many techniques for solving large systems of equations.  

However this system under consideration is both large and dense, so no sparse techniques may 

be used.  One common technique is the conjugate gradient algorithm for symmetric positive 

definite matrixes [32].  At every iteration of the conjugate gradient algorithm, the method of 

steepest decent is used to search for a minimum of the function describing the solution.  As this 

system of equations is dense, and the accuracy depends on the number of lattice points, storing 

such a large system is one of the primary constraints when looking to approximate larger pieces 

of material.  To greatly reduce the amount of memory space required, it is possible to consider 

storing only the unique interaction vectors and make use of the symmetries of the problem [33].  

To allow for such a large reduction in storage, an algorithm must exist for manipulating the 

stored values.   

The derivation of a method of reducing the matrix vector multiplication of the dense 

system to a convolution of only the unique values is presented in Appendix 0  Upon 

implementing this tool, it is only necessary to calculate the interaction for lattice points of unique 

vector separations.    After the system of equations has been solved to within a certain tolerance 

specified.  The resulting field at some location r can be found by using Eq(2.20).  If in the far-

field, Eq.(2.20) can be simplified to[31]: 
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As a demonstration of the ability to calculate the scattering from a sphere, a table of a 

comparison between the calculation of the extinction cross section predicted through Mie theory 

and the numerical computation using the coupled dipole approximation is shown below in Table 

2-1.  As can be seen in Table 2-1, the accuracy of CDA increases with the number of modeling 
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locations (as would be expected), however, when the size of the object is small, good agreement 

can be found with less dipoles. 

 

Table 2-1 Comparison of analytical Mie theory calculation of extinction cross section vs. the 
numerical calculation using the coupled dipole approximation for varying numbers of dipoles in 

the modeling volume. 

Cube of Dipoles Sphere 0.5 1 1.5
16 x 16 x 16 1856 1.191 11.0985 20.8278
32 x 32 x 32 15624 1.1613 10.8588 18.188
64 x 64 x 64 131040 1.1719 10.8657 17.603

Mie Theory 1.1745 10.852 17.4276

Exctintion Cross Section for Radius:

 

The CDA method outlined above is used through out this dissertation to provide 

quantitative measurements of different scattering characteristics.  Moreover, we will describe 

how one may expand upon the current CDA formulism to describe interaction between larger 

objects (Chapter 4).  Also, we use CDA for the calculation of the electromagnetic force 

experienced by a particle interacting with a field and analyze how interaction in multiple 

scattering systems modifies the dynamics. 

2.5. Statistical Optics 

Most material systems in nature are not perfectly homogeneous with constituents 

distributed in a nice periodic fashion; rather they exhibit different degrees of disorder both 

spatially and temporally.  When considering the optical responses of such materials, one single 

realization of the wave matter interaction does not reveal the entire wealth of information about 

the global properties.  Actually, as we will discuss in Chapter 6, the optical response really 

depends on the scales over which the material is probed.  To describe the properties of such 

systems, one has to utilize statistical tools and consider ensembles of different interactions in 
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order to quantify specific properties of the material system.  Statistical tools such as the moments 

of an ensemble, correlations, allow one to develop relationships based on the entire distribution 

of possible events without the need to know what exactly happens at one specific moment in 

space or time.  This is the concept of a stochastic experiment. 

A stochastic experiment is a test where the outcome is not known a priori even if all is 

known about the process; for example, the flipping of two coins.  The exact outcome of one 

experiment only exists as a probability of occurrence.  The probability of occurrence can be 

measured as a frequency of number of times an event occurs in regard to the number of 

experiments performed.  The exact value of the probability of an event occurring is then found in 

the limit of an infinite number of experiments; mathematically, for some event A, occurring n 

times in N experiments: 

 
( ) lim

N

n
P A

N
 . (2-26)

To perform a random experiment, one defines a random variable.  A random variable 

takes on the value of one possible event from the ensemble of all possible events and does so 

with the probability of that event occurring.  The random variable concept allows for observing 

how different systems change the both the exact value of event and the associated probabilities.  

From the properties of a random variable taking on the events and probabilities of an experiment, 

one may define a cumulative probability function (CDF) for describing a random variable U:  

    ProbUF u U u   (2-27)

Analyzing the CDF, one can see that it is monotonically increasing over the range from 

negative infinity to infinity.  The value of the CDF at negative infinity is 0, and at infinity is 1.  

This definition of the CDF is equally valid for discrete or continuous random variables.  The 
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probability of the occurrence of an event occurring may be defined from the CDF of Eq.(2-27) 

as:   
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which is known as the probability density function (PDF).  The PDF shows how the events of an 

experiment are distributed across all the possible values they may take.  The probability that the 

random variable U takes a value between the limits of a and b is simply: 

    Pr
b

Ua
ob a U b f u du    . (2-29)

The PDF is what is easily measured in an experiment by taking many of the outcomes of 

an experiment and separating them into bins (creating a histogram).  To compare different 

measured PDF’s, we may assess the shape through calculating the moments.  The general 

definition of the moments of an ensemble may be found from the PDF as: 

 ( ) ( )n n
U UM u f u du




  . (2-30)

The first moment (mean, average) defines the event most likely to occur.  Higher order 

moments define how different the events are from the first moment, the spread.  If the first 

moment is not enough to discern different experiments, then higher order moments may be used.  

Through out this dissertation we will discuss many different PDF’s and how they may be found 

and interpreted through real and simulated experiments. 

2.5.1. Gaussian Statistics in Optics 

As a simple demonstration of how statistical models may be applied to describe a 

physical situation, let us consider the situation of scattering of light from a random medium and 

the familiar appearance of a speckle pattern [34].  A speckle pattern can be perceived as the 
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random interference of harmonic waves with random phases.  In general the complex amplitude 

of a polarized speckle field can be written as [35]: 

      r iU x U x iU x   (2-31)

where Ur and Ui are the coherent summation of N harmonic waves with random phases: 
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It can be thought that the different phases acquired can be due to the reflection or 

transmission from a surface with a certain roughness.  If the surface in question is significantly 

rough with respect to the wavelength, the resulting phase distribution would be uniform over the 

interval[ , ]  , giving the probability density function (PDF): 
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

  
 

    


. (2-33)

If also the amplitudes are assumed to be uniform, i.e. a1=a2=aN, then the probability 

density function of the intensity is well known and can be expressed in terms of a Fourier-Bessel 

series [36]: 

      
0

1

2
N

h o of h J au J u h udu


   (2-34)

where h is the intensity:   22 2
r ih U U U   .  At large N, the PDF can be approximated 

as: 

 
  2 2

1
~ exp

h
f h

Na Na

 
 
 

, (2-35)

and is plotted in Figure 2-9. 
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Figure 2-9  Intensity PDF for large number of random waves interfering having a uniform phase 
distribution. 

In the Gaussian regime, where the number of scatters is large, the PDF of the total phase 

 arctan i rU U   becomes independent of N: 

 

 
1

2
0

f
elsewhere



  
 

    


 (2-36)

To characterize the shape of the PDF, we can look at the first and second moments of the 

distribution using Eq.(2-30), we find    (1) 2
hM Na , and (2) 2 42hM N a .  In order to have some 

sort of normalized method of characterizing the shape, we can look at the central spread, the 

standard deviation: 

    2(2) (1)var h hM M    , (2-37)

normalized by the mean, known as the optical contrast: 

 (1)
hM

C


 . (2-38)

From the expressions for the PDF (Eq.(2-35)) for a large number of random harmonic 

waves with a uniform phase distribution and constant amplitudes, the mean and standard 

deviation are exactly proportional; yielding a contrast of 1.  This is the definition of a fully 
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developed Gaussian speckle pattern [37].  When in the Gaussian statistics regime, increasing the 

number of contributing random waves does not change the statistics when each wave is of 

constant amplitude and arises from a uniform phase distribution. 

A typical example of situations where such a speckle pattern can be described in terms of 

Gaussian statistics is that of a near-field scan in the collection geometry [38].  In such a situation, 

a large area is illuminated and probed locally with a tapered fiber probe.  In this case, a large 

number of independent scattering centers are excited upon propagation through the material.  A 

test of these concepts could be performed by considering the number of scattering centers to be 

proportional to the interaction volume of the detection system.  In this case, the interaction 

volume, for a significant excitation is governed by the aperture size of the probe.  If the probe 

size is large enough a number of scattering centers such that the PDF is described by Eq.(2-35) 

then increasing the size of the tip should not have an effect on the optical contrast. 

A rather different statistical situation is observed when the probe is used to excite a 

random media, and only a small number of scatterers are observed in the far-field.  This is the 

subject discussed in Chapter 5 and how varying the intensity of the probing field affects the 

statistics. 
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CHAPTER 3: PASSIVE PROBING OF COMPLEX NEAR-FIELDS 

As discussed in Chapter 2, in reality there is no means of passively measuring optical 

near-fields.  The required secondary interaction to couple the non-propagating fields to the far-

field for detection changes the local EM field until some self-consistent field results. The 

material system (probe) influences the field to be tested and therefore the measurement is 

“active”. Attempting to solve the complicated interaction for each experimental situation proves 

to be a daunting task, and is in many cases impossible.  If one instead probes the intermediate 

field, where the coupling of evanescent or decaying fields no longer influences significantly the 

result of the primary scattering event, a “passive” interpretation may be valid. Because the 

material and probe may be treated as separate components of a linear system, passive probing 

provides the simplest relationship between the detected propagating signal and the local field 

distribution.  In this interaction regime, one only needs to know the transfer function of the probe 

in order to characterize how the material modifies the field structure.   

As apparent from Figure 2-3, the intermediate zone of field propagation, the behavior of 

scattered electromagnetic fields can have some very interesting and unexpected structures. 

Because the field material interaction is vectoral in nature, the redistribution the incident energy 

usually depends on the polarization state of the excitation field, which can typically be controlled 

experimentally.  This information is of fundamental relevance not only for material 

characterization purposes but also for understanding and controlling the properties of the EM 

field itself in intricate photonic structures.  
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The separation of the detected signal into components of a linear system simplifies 

significantly the interpretation of a measurement.  However, away from the primary volume of 

interaction, the influence of the complex field components diminishes rapidly becomes difficult 

to assess and one must devise clever experiments to reveal them.  In this chapter, we will first 

discuss how a material system modifies the local field distribution and how these modifications 

in the near field affect in the measurable characteristics of the intermediate and far fields.  We 

will discuss how one observe experimentally the influence of the decaying fields in the 

intermediate zone and how a change in the polarization state can lead to a perceived shift in the 

volume of interaction with a sphere [P7].  Finally, we will discuss how this shift can be 

interpreted as a manifestation of a general “spin”-dependent effect, known as the Spin Hall effect 

for light.   

3.1. Redistribution of Energy in Single Scattering   

As was discussed in Chapter 2, even in the case of scattering from a sphere, the most 

symmetric three dimensional objects, the filed distribution in the near zone exhibits a 

complicated behavior.  In the case of linearly polarized excitation, we have seen that the spatial 

distribution of scattered intensity changes dramatically depending on the observation distance.  

Actually, the intensity patterns are also altered when the polarization state of the excitation field 

is changed.  For electromagnetic most detectors sense the time averaged energy flow (or 

magnitude of the time averaged Poynting vector) [22].  As such, a detector can not sense the 

evanescent components in the scattering from a small sphere, where the evanescent fields 

manifest in static field conditions (no net energy flow).  However, if instead of a conventional 

detector, we consider a sensing mechanism by some point like fluorophore, it will be sensitive to 

the instantaneous magnitude of the field squared, sensing both propagating and static fields.  In 
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the intermediate and far fields, where there are only propagating fields remain, the magnitude of 

the electric field squared is equivalent to the magnitude of the Poynting vector.  This is due to the 

fact that in the far-field, the electric and magnetic fields have a deterministic relationship.     

In a passive measurement, the intensity (the magnitude squared of the E field) scattered 

from a dielectric sphere varies with angle of observation and with the radial distance of 

observation as shown below in Figure 3-1. 
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Figure 3-1 Intensity distributions in the plane (blue) and perpendicular to the plane (red) of a 
linear polarized excitation for three different observation distances 0.25r  (A), 1.5r   (B) 

and 10r  (C). 

As can be seen in Figure 3-1, the intensity is constant in the y-z plane regardless of the 

observation distance.  However, in the xz plane and close to the scatterer, the measured intensity 

along the polarization direction can be quite large; this is near-field effect diminishes when the 

increasing the radial distance from the scatterer.  Nevertheless, one can imagine situations where 

distance-selective excitations are required such as the practice of scattering-based NSOM, for 

instance [39]) In this case, the ear field intensity peak can be moved along the polarization axis 

by simply rotating a half waveplate that controls the excitation field. 

Depending on the specific application, there may be situations where asymmetric 

intensity distributions are not desired.   If the excitation field is in a  some elliptical or circularly 

polarized state as shown in  Figure 3-2, the magnitude of the scattered field is the same in both 
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the xz and yz planes.  As can be seen, the magnitude is not independent of the azimuthal angle of 

observation in these planes; however a similar local field enhancement may be generated along 

the plane for which the dipole is rotating. 
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Figure 3-2  Angular intensity distributions in the plane (blue) and perpendicular to the plane 
(red) of a linear polarized excitation for three different observation distances 0.25r  (A), 

1.5r   (B) and 10r  (C). 

Of course, one can consider that the detection is not only sensitive to the magnitude of 

the field squared but also the local polarization state.  Understanding the vectorial problem 

provides ample information about how the scatterer modifies the field.  This would be desirable 

again in the practice of scattering NSOM for determining polarization dependent features. To 

describe the polarization state of the scattered field at any arbitrary point, one needs to first 

identify the most suitable basis in which to represent a three-dimensional (3D) polarized field. 

Any fully polarized 3D field will have the electric field vector confined to some plane and a 

phase relationship tracing out an ellipse [40]. An arbitrary 3D field may be considered as: 

     , i tt i e   E r p q , (3.1)

where p and q represent the real and imaginary vectoral components of the 3D field.  If we want 

to define the relationship between p and q to be on some ellipse, we can define the major and 

minor axis as: 
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   ii i e   p q a b , (3.2)

where   is a scalar parameter, writing the parameters of the ellipse in another form, we have: 

    
   

cos sin

sin cos

 

 

 

  

a p q

b p q
. (3.3)

The scalar parameter   should be chosen such that a  and b are mutually orthogonal.  

Also, to have a uniquely defined   we can choose the magnitudes to be such that a b  

allowing us to construct the following relationship: 

 
  2 2

2
tan 2 


p q

p q
. (3.4)

From a and b, we can also calculate the ellipticity of the 3D field: 

 
ellipticity 

b

a
. (3.5)

The ellipticity goes to 0 for linearly polarized light and to 1 for circularly polarized 

Far away from a scatterer, the polarization ellipse will lay in a plane perpendicular to the 

direction of propagation (the radial vector), as the field is two dimensional.  In the near and 

intermediate fields, where there is a superposition of many plane waves, the polarization may not 

be perpendicular to the radial vector.  If now examine again the case of a linearly polarized 

excitation, in Figure 3-3, we can see how the polarization state is modified upon scattering from 

the small sphere.  As can be seen, when looking very close to the scatterer,  0.25r   (Figure 

3-3 A), the plane of the polarization ellipse is not perpendicular to the radial vector (the plane of 

polarization does not lay on the surface of the sphere), more over, we can see that there are some 

locations where the field has become elliptically polarized.  Since this is the instantaneous 

polarization state, the non-propagating evanescent fields also play a role in the final state further 
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away from the object, 1.5r   (Figure 3-3 B), the contributions from the evanescent 

components of the scattered field are less visible, and the polarization is along the surface of the 

sphere (tracing the electric field lines).  This is even more pronounced when we look in the far 

field (Figure 3-3 C).  
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Figure 3-3 Polarization state of the scattered field measured at a distance r from a scatterer 
excited with a field linearly polarized along x. The observation distances are 0.25r  (A), 

1.5r   (B) and 10r  (C). 

It is also interesting to see how the scatterer modifies the polarization when the incident 

field is circularly polarized Figure 3-4.  Close to the scatterer (Figure 3-4 A) one can see again 

that the polarization ellipse is not confined to the plane perpendicular to the surface normal (the 

radial vector).  The transformation of the polarization state is this time from circular in the 

forward direction to linear in the plane perpendicular to the propagation direction of the incident 

field (z=0 plane).  To assess how the polarization state evolves as the observation point is moved 

away, we can look a little further (Figure 3-4 B).  In this case, unlike the linear polarized case, 

the change in the polarization state remains.    Looking further (Figure 3-4 C) we can see that this 

transformation from circular to linear still remains.  This fact is obvious when we consider that a 

small sphere (equivalently and electric dipole) in the plane of oscillation, there is no means to 

scatter any other state aside from linear.  This particular feature in the scattering from a single 
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sphere has some rather intriguing implications when considering the conservation laws for 

electromagnetics. 

A B C

x
y

z

y
z

y

z

x x

A B C

x
y

z

y
z

y

z

x x

 

Figure 3-4  Polarization state of the scattered field measured at a distance r from a scatterer 
excited with a circularly polarized field. The observation distances are 0.25r  (A), 1.5r   

(B) and 10r  (C). 

3.2. Angular Momentum Conservation 

Conservation laws are ubiquitous in all physical disciplines. In optics, the conservation of 

energy, and conservation of linear and angular momentum are of particular interest.  To 

compliment our analysis on how the scatterer modified the polarization state, we can also 

consider how the momentum was exchanged.  Specifically here, we are interested in the angular 

momentum in elastic scattering of circularly polarized light on a sphere.  The angular momentum 

of a propagating electromagnetic field is [41]: 

    * *0 0, ,
2 2z z z

c c
j x y z

i i

 
 

   E r E E E


 (3-6)

where the first term represents the orbital angular momentum (OAM) and the second term 

accounts for the spin angular momentum (SAM).  The orbital angular momentum term is 

determined by the macroscopic energy flow with respect to an arbitrary reference point and does 

not depend on the wave’s polarization.  The spin angular momentum on the other hand, relates to 

the phase between orthogonal field components and is completely determined by the state of 
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polarization. Because the total angular momentum is conserved along propagation, when a wave 

encounters a refractive index inhomogeneity (including interfaces between otherwise 

homogeneous media), a momentum transfer appears between the orbital and spin terms.  This 

angular momentum exchange, or, in other words, the spin-orbit interaction (SOI), explains a 

number of polarization effects [42,43].  

Of course, a linearly polarized plane wave exhibits no angular momentum while a 

circularly polarized one carries all of its angular momentum in the spin term.  Therefore, in the 

case described above in Figure 3-4, the spin angular momentum from the incident field must 

have been completely transformed into orbital in the plane perpendicular to the direction of 

propagation.  The orbital angular momentum of a field is observed as a curvature of the Poynting 

vector, which is defined as 

 *1

2
  S E H . (3-7)

Using the expressions described in Chapter 2 for a single dipole, the Poynting vector for 

some arbitrary dipole moment (excitation polarization) may be found as [44]: 

       
4

* * *
2 2 2

0

2 1
ˆ ˆ ˆ ˆ1

32

ck

r kr kr 
              

S p p p r p r r p r p . (3-8)

As can be seen in Eq.(3-8), the time averaged Poynting vector consist of two terms, one 

that points along the radial vector, and another that depends on the polarization state.  To show 

the difference between the two polarization states we have discussed so far, from Eq.(3-8) we 

can deduce the expression specifically for the case of a linearly polarized excitation as: 

 
24

2
2 2

0

ˆsin
32

ck

r


 


p
S r , (3-9)
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where   is the angle between the linear polarization state and the observation location.  We can 

see from Eq.(3-9), the energy is flowing radially outward for any linear state.  This means that no 

matter where one observes the energy flow, the magnitude will change but the shape remains the 

same.  A plot of the normalized Poynting vector of the field scattered from  by a small sphere  

excited with linearly polarized light is shown below in Figure 3-5.  
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Figure 3-5  Distribution of Poynting vector in the x-z plane (A), y-z plane (B) and x-y plane 
(transverse to the direction of excitation) for a 100nm radius sphere for the case of linear 

polarization along the x direction with a wavelength λ=532nm. 

As expected, all three planes are identical aside from the 0 intensity along the direction of 

the induced dipole.  The Poynting vector in the case of excitation with circularly polarized light 

exhibits a rather different functional form.  Following from Eq.(3-8), one finds that  

   
24

2
2 2 2

0

2 1
ˆ ˆ2 sin 1 sin

32

ck

r kr kr
 

 
         

p
S r φ , (3-10)

where here φ̂ is the azimuthal angle in the xy plane.  As we can see from Eq.(3-10), the behavior 

for circularly polarized excitation is quite different than the one observed for linearly polarized 

case.  In addition to the same radially symmetric component, there is an additional element that 

depends on the polar angle (angle with the z axis).  Interestingly, the distribution of the 

Poynting vector changes with  the angle of observation and it also changes depending on where 

one observes it. This is a consequence of contributions form the radially decaying components of 
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the scattered fields.  A vectorial plot demonstrating this behavior of the Poynting vector is 

presented  in Figure 3-6. 
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  Figure 3-6  Distribution of Poynting vector in the x-z plane (A), y-z plane (B) and x-y plane 
(transverse to the direction of excitation) for a 100nm radius sphere for the case of circular 

polarization with a wavelength λ=532nm. 

As can be see, the flow of energy is the same in the x-z plane (Figure 3-6 A) and y-z 

plane (Figure 3-6 B) as one would expect for a circularly symmetric excitation.  What is not seen 

however is that the energy actually flows out of plane, as illustrated in Figure 3-6 C for the x-y 

plane.  The amount of energy flowing out of plane in Figure 3-6 A and B is 0 in the forward and 

backward directions, and reaches it maximum in the x-y plane.   

3.2.1. A Consequence of Angular Momentum Conservation 

In Ref [45] it was discussed that upon projecting the lines from the Poynting vector back 

to the plane of the original volume of interaction, there will be a perceived shift in the scattering 

location.  What is most interesting in this situation is that the amount of this shift, and its 

direction will depend on the ellipticity of the excitation polarization.  As can be seen in Figure 

3-7 A., the curved Poynting vector of Figure 3-6 C in the xy plane leads to a spiral trajectory 

which converges to a perceived shift in the volume of interaction in the far field. While rotating a 

quarter wave plate, the perceived shift goes from its maximum for circular polarization, to 0 for 
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linear, and to a maximum in the opposite direction of circular polarization of opposite 

handedness.  
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Figure 3-7 (A) In the far field, the perceived location of the volume of the interaction is shifted 
by an about Δ.  The shift is in opposite directions for the different circularly polarized excitations 

states (blue and red curves) and is equal to 0 for any linearly polarized excitation state (green 
curve).  This transversal shift Δ occurs in any plane ∑ and its absolute value depends on the 

angle θ with respect to the forward scattering direction. 

This shift will occur at any observation angle aside from the exact forward and backward 

directions.  The magnitude of this shift in the far field can be calculated from the angle 

S makes with the line of direct sight (radial vector r )[45, 46]. The shift is perpendicular to the 

plane of scattering, and has opposite signs for excitations with different handed excitations as 

seen in Figure 3-7. Its value [46] 

    2/ 2 sin / 1 1 2sindipole          (3.11)

depends on the polar angles of scattering θ and reaches a maximum in the plane where a full 

transformation from SAM to OAM occurs: the plane perpendicular to the direction of 

propagation of the incident wave ( 2  ).  Note that this shift does not depend on the optical 
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properties of the scatterer [45,46]. For a sphere of finite size, in the far field, the shift in 

perceived location is   

  lim /S S
    r

r
r , (3.12)

where S  and S  are the components of S perpendicular and parallel to ρ.  In general the 

transformation of SAM to OAM is not complete. However, for certain sets of parameters (sphere 

radius, refractive index) there are one or several angles   where transformation is total and the 

scattered light is linearly polarized. The value of Δ corresponding to these angles attains local 

maxima and can reach tens of wavelengths in magnitude. 

An analytical solution to Maxwell’s equations for the scattering from larger spheres is the 

well known Mie theory.  The expressions are well known and a complete derivation may be 

found in Ref [47].  A comparison between the energy flow near and around a larger sphere, is 

shown in Figure 3-7.  Due to the SAM to OAM transformation in the case of a Rayleigh 

scatterer, the Poynting vector propagates along conical and spiral trajectories [44] (Figure 3-8 

A).  For larger spheres, the more complicated process of scattering results in a complex, 

sometimes winding trajectory of S. For instance, Figure 3-8b illustrates the projection of S on the 

plane perpendicular to the direction of excitation and containing the center of the sphere. 

Notably, the bending of the Poynting vector field lines as seen in Figure 3-8 determines large 

angles between the S  and r , resulting in experimentally measurable SOI effects.  This 

intermediate zone spans up to several , and, therefore, an observation can be performed without 

significantly  disturbing the field near the sphere’s interface. The large intermediate zone for a 

sphere is due to the evanescent fields, which in this case exhibit an inverse power law decay, as 

opposed to the exponential decay for a planar interface[48]. 
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Figure 3-8 Poynting vector field lines projected on the plane perpendicular to the direction of 
excitation and containing the center of the scattering sphere.  Different size spheres, (a) smaller 

than the wavelength λ and (b) larger than λ, exhibit a spiraling of the flow of energy in the 
intermediate region.  Most interesting is the winding of Poynting vector field lines in (b) due to 
the complex process of scattering from large spheres (Results are presented using an adaptation 

of the Matlab vector field visualization toolbox [49]). 

3.3. Observing Direction of Intermediate-Field Energy Flow 

Observing the circulation of the Poynting vector in scattering from a sphere requires a 

detection scheme that is sensitive to the local energy flow.  One such experiment could involve 

optical forces, where the trajectories of probe scatterers are analyzed in the proximity of the 

sphere. A much simpler procedure however can be based on a common tool having angular 

selectivity, i.e. a single-mode optical fiber.  In the context of various experimental methods for 

coupling evanescent fields in Chapter 2, we discussed how a tapered optical fiber can be used to 

interact with the non-propagating fields and couple them to propagating in the fiber.  In the 

coupling to a fiber, the field distribution is modified to match the propagating mode structures of 

the fiber.  Thus, an optical fiber provides insight to the local field distribution through its 

coupling efficiency.  The coupling efficiency of a single mode fiber is found as [50]: 

 * ˆ2 ( )  sC d


    E F y , (3.13)
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where sE  and F  are the scattered field and fiber mode, ŷ  is the unit vector along the fiber and τ 

is the electric field transmission coefficient.  The integration is performed in the plane σ 

perpendicular to the fiber.   

To measure the described shift, an experiment based on the directional sensitivity in the 

coupling to a single-mode optical fiber was performed (Figure 3-9). Polystyrene spheres with a 

diameter of 4.62 μm were sparsely distributed upon a microscope slide. To minimize the 

interference effects of the substrate, index matching fluid was used to create conditions 

equivalent to those of spheres in suspension. Circularly polarized coherent laser light (λ=532 nm) 

was used as an excitation and a prism was employed to adjust the plane of illumination as shown 

in Figure 3-9. An ensemble of a half-wave and quarter-wave plates allowed the generation of any 

polarization state. A second quarterwave plate and polarizer in conjuncture with a silicon 

detector were used to ensure that the desired circular state of polarization is incident on the 

spheres.  

 

Figure 3-9 Schematic of the experimental setup using a single mode optical fiber as a means for 
sensing local power flow direction.  

The scattered light was collected through a coherent imaging fiber bundle (Sumitomo 

IGN-08/30), containing 30 000 single-mode fibers. Individual fibers have a core diameter of 1.6 
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μm and the fiber to fiber separation is 4 μm. The positions of individual particles were detected 

and monitored using an additional, incoherent illumination from underneath the sample. A 

cooled CCD array (Andor IXON) was used to both image the spheres at the opposite end of the 

bundle and to detect the scattered intensity at desired locations.  

The position of the imaging fiber in the close proximity of the spheres was controlled via 

a microscopic stage (not shown in the figure). Using a piezomotion controller (Newport model 

ESP 300), the imaging fiber was scanned in the intermediate region of dielectric spheres (1 μm 

away) with a step size of 150 nm, parallel to the slab and perpendicular to the direction of the 

excitation propagation. For each location of the fibers, sequential images were recorded with 

left- and right-circularly polarized coherent excitation, as well as with incoherent illumination. 

To expose the asymmetry in the field distribution, the detected intensities were then subtracted to 

reveal the shift in the direction of S (Figure 3-10b). The measurements were repeated to provide 

a statistical data analysis. For instance, in Figure 3-10b, error bars represent the 95% confidence 

interval in the measured results. 
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Figure 3-10 Comparison between the analytical prediction (a) and the experimental results (b) 
for the coupled power through a single mode fiber scanned across a polystyrene sphere of 4.6μm 

diameter. The graphs depict the difference between the scattered intensities corresponding to 
pure states of excitation plotted as a function of fiber’s position with respect to   the center of the 

sphere.   
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As a comparison, the analytical prediction of the intensity coupled through single-mode 

optical fibers after scattering from a sphere is calculated through the use of Mie theory and 

compared to the experimental results.  The remarkable agreement is illustrated in Figure 3-10and 

demonstrates not only the asymmetry of the scattered fields, but also our capability to infer a 

shift in the perceived location of the interaction volume (sphere’s location).   

3.4. The Virtual Shift and Spin Hall Effect for Light 

This modification in the perceived location of the sphere as shown in Figure 3-7 may also 

be interpreted as a manifestation of the spin Hall effect in scattering from a finite object.  The 

analogy with electron transport in describing electromagnetic wave propagation provides is 

increasingly becoming more popular [51- 6 6 6 6 6 6 6 6 6 762], allowing one to draw similarities to transport 

phenomena such as the spin Hall effect in semiconductors [63].   

Recently, it was suggested and demonstrated that an equivalent spin Hall effect of light 

(SHEL) exists and can be measured for a beam impinging on a dielectric interface [43,64,65] 

(Figure 3-11 A). In SHEL, the electron spin is replaced by the wave’s polarization, and the role 

of an applied electric field generating the electronic current is taken by the refractive index 

gradient.  The effect is observed as a displacement of the beams carrying spin, i.e. a transversal 

shift in the perceived location of the interaction volume. For different incident spins, the shift is 

in opposite directions, which is analogous to the induced electron spin flux perpendicular to the 

initial electronic current.  When the incident beam is in a pure state (circularly polarized), a shift 

in the beam’s center of mass may be observed as illustrated in Figure 3-11 B.  Exciting with a 

mixed state, results in a separation of spin, where the region of overlap is still in a mixed state of 

polarization as suggested in Figure 3-11 C. 
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Figure 3-11. (A) A beam of light incident on a planar refractive index gradient, (B) beam shifts 
observed in far-field corresponding to incidence in pure states of polarization (right circular, left 
circular), and (C) the observable result corresponding to an incident beam in a mixed state. (D) A 
plane wave incident on a planar refractive index gradient, (E) the far-field shifts corresponding to 

incidence in pure states of polarization, and (F) the result of an incident plane wave in a mixed 
state of polarization. (G) A plane wave scattering from a sphere, (H) the transversal shifts in the 

perceived sphere center as observed in far-field for pure incident states, and (I) the result of 
scattering for incident wave in a mixed state. 

As depicted in Figure 3-11 D, due to the infinite extent of the interaction, the transverse 

shift cannot be observed (Figure 3-11 E), as the refracted field is still an infinite plane wave and 

no reference point can be identified. When the incident field is not in a pure state, for example, 

linearly polarized, in spite of the transversal spin fluxes, there is no net photon current and 

therefore there will be no observable effect (Figure 3-11 F).   

If the refractive index gradient is spherical and the excitation is a plane wave as 

illustrated Figure 3-11g, the conservation of angular momentum results in transversal spin flows 

tangent to the spherical surface[45,46]. In this case, performing sequential excitations with pure 

states and using a detection scheme sensitive to the local direction of energy flow, the transversal 

shifts can be observed as will be shown later.  The presence of this shift breaks the symmetry of 
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the field distribution relative to any plane that contains the propagation vector and the center of 

the sphere. In other words, the result of the interaction between circularly polarized light and a 

sphere depends on the incident spin: the sphere distinguishes between left and right.  For 

excitation with a mixed state, the transversal shift that occurs cannot be directly observed 

because, again, there is no net transverse photon flux as in the case of plane wave impinging on a 

plane interface.  It should be noted that the similar considerations may be applied in a cylindrical 

geometry. These circumstances are similar to the Corbino disk geometry in electronic systems, 

where counter-propagating spin currents are generated but no net electron fluxes can be 

detected[66].   

3.5. Summary 

Even in the most symmetric of 3D structures, a sphere, interaction of an electromagnetic 

field with a material yields a very complicated energy distribution near to the object.  Moreover, 

the relative orientation of the observation point with respect to the exciting polarization state 

adds additional complexity.  Polarization related phenomena in both single and multiple 

scattering can be attributed to processes in which angular momentum is exchanged between the 

electromagnetic wave and the scattering medium [45, 67]. Solving the corresponding Mie 

problem, we demonstrated that there are directions where the angular momentum can completely 

transform into orbital momentum.  

The transformation of spin momentum into orbital momentum results in a spiral flow of 

energy in the near-field and intermediate zones around a scattering particle for a circularly 

polarized incident field.  When the incident light is linearly polarized (no angular momentum), 

such behavior is not observed in the same scattering plane as required by the momentum 

conservation law.  We presented both analytical and experimental confirmation that spin to orbit 
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interaction leads to a perceived shift in the location of the volume of interaction.  The 

measurement of this shift constitutes the first observation of transversal spin transport (a 

manifestation of the spin Hall effect) in scattering from finite size objects, using an object rather 

than the exciting field to localize the interaction.  The significance of this demonstration of the 

complicated behavior resulting from field-material interaction is manifold.  Optical experiments 

are suitable tools to model spin phenomena that in electronic conduction may be difficult or even 

impossible to approach. This could lead to the discovery of novel manifestations of spin 

transport in confined geometries where effects such as loss of coherence and dissipation are 

expected to be minimized. 

Understanding subtle aspects of conservation laws in optical scattering should provide 

insights into phenomena such as spin transfer and power flow which, in turn, are essential for 

developing new sensing approaches at nanoscales. Manipulating the polarization properties of 

electromagnetic fields may also have consequences for controlling the subwavelength behavior 

of optical forces. Lastly, circular polarization is rather exotic in nature. The ability to distinguish 

between left and right may provide unique communication channels similar to the circular 

polarization vision recently discovered in some crustaceans [68].  In addition, controlling and 

manipulating the polarization properties of an excitation field has consequences that manifest 

themselves in the conservation laws determining the subwavelength behavior of optical forces 

which will be discussed in the following chapter. 
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CHAPTER 4: NEAR-FIELD INTERACTIONS IN SIMPLE MATERIAL 
SYSTEMS 

As discussed in Chapter 3, even when a simple object such as a sphere interacts with an 

electromagnetic field, the redistribution of energy through scattering can become very 

complicated near the object.  As the material system itself becomes more complicated, i.e. 

multiple scattering objects, the energy distribution near the objects have an extra degree of 

complexity, and interpretation of near-field measurements becomes even more difficult.  Just as 

a single mode optical fiber provided means of probing the local field distribution as shown in the 

preceding chapter, a second scattering object can act a means to probe the local field.  However, 

when in the near-field of one another, the presence of the probe will affect the local field.  As a 

result, “active sensing” cannot  be treated as a separable linear system; rather, the self-consistent 

effective field distribution must be accounted for. 

In this chapter, we will discuss the scattering from simple material systems that are 

electromagnetically coupled and interact with an incident field to change both the local and the 

distant energy flow.  First, the situation of coupled scattering from two small objects will be 

addressed and treated analytically. Specifically, we will show how different measurable 

quantities are being modified through coupling and its relation to the incident field.  We will then 

discuss numerical approaches necessary to deal with larger scale material systems, where 

analytical solutions cannot be obtained.  Using these numerical tools developed, we will study 

the dynamics of a non-rigid system of two sphere system and show it can be manipulated 

mechanically using the polarization of the incident field. Finally, we describe means to observe 
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experimentally the presence of near-field coupling effects and will discuss the implications for 

near-field experiment. 

4.1. Coupled Scattering from Small Spheres 

Let start by considering the canonical case of two lossless identical spheres excited with a 

plane wave (Figure 4-1).  The total field at the location of one scatterer that lies within a system 

of scatterers is the summation of the incident field and the fields’ scatterer by all other objects in 

the system.  As was discussed in Chapter 2, in general, this may be found from the vector 

integral equations.  One approximation to the vector integral equations involves replacing the 

integral with a discrete sum of interacting dipoles.  This approximation is especially accurate 

when the system of scatterers pertains to a system of small spheres.   
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Figure 4-1 Schematic of two coupled sphere geometry 

For the case when two spheres are mutually excited with the same fields, the total field 

E is found by solving self-consistently the system of equations that takes into account the mutual 

interaction between the particles [69]  
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1 1 2 2

2 2 1 1

( ) ( ) ( ),

( ) ( ) ( ).
Inc

Inc

 

 

E r E r Gα E r

E r E r Gα E r
 (4-1)

In Eq.(4-1), 1r and 2r  represent the dipole locations, ( )IncE r  is the incident field, α  

corresponds to the individual polarizabilities of the two different scatterers, and the tensor G  is 

the inter-dipole propagator (dyadic Green function).  The inter-dipole propagator is a symmetric 

tensor that depends only on the vectorial separation.  The general solution to such a coupled 

system for the field at the second scatterer is found as:  

    12 2
2 2 2 1 1( ) ( ) ( ) .Inc inc


  E r I G α E r Gα E r  (4-2)

If we consider a plane wave exciting two identical spheres, the coupled system becomes 

highly symmetric.  For a sphere, the polarizability tensor becomes a scalar.  Also, a great 

simplification to the tensorial mathematics is achieved if one writes the dyadic Green function in 

its diagonal frame:  

 0 0

0 0

0 0






 
   
  

G ; (4-3)

where 32exp( )( 1) /ikR ikR R     and 2 2 3exp( )( 1) /ikR k R ikR R     are eigenvalues of G , 

and R  is the scalar distance between particles as depicted in Figure 4-1 .  

For the separation geometry chosen to be along the x axis Figure 4-1, the components to 

the field at second scatterer are found to be: 
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 (4-4)

In terms of observables, the two sphere system will collectively scatter the incident field, 

and as we saw in both Chapters 2 and 3, the magnitude, polarization, and Poynting vector will all 

depend on the location of the observation point.  Rather than discuss an observation dependent 

quantity, we can focus on some global descriptor such as, for instance, the extinction cross 

section which describes the degree to which a material can scatter and absorb electromagnetic 

radiation [47]. The cross section represents an apparent area used to describe by what amount the 

radiation interacts with the target, and it is usually not the same as the geometrical cross section.  

The extinction cross section, which accounts for both scattering and absorption may be found 

from [47]:   

       3 *4 ' ' ' 'ext Inc

V

C k d r    r E r E r . (4-5)

In the case of a single dipole or a system of dipoles, the extinction cross section relates to 

the induced dipole moment as [31]: 

  *
,4ext j Inc j

j

C k   P E , (4-6)

where the subscript j represents the jth dipole in the system.   

Examining behavior of the extinction cross section for the case of a linearly polarized 

excitation field, we can first consider the two situations, when the separation vector is collinear 

to the polarization direction, and when the separation vector is perpendicular to the polarization 
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vector.  As a basis for comparison, we can look at the extinction cross section of the interacting 

spheres as normalized to the extinction cross section from independent scattering (Figure 4-2). 
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Figure 4-2 Plot of extinction cross section for two 10nm polystyrene interacting spheres 
normalized to the extinction cross section for independent spheres when the exciting polarization 

is along the direction of separation (blue) and perpendicular to the separation (red) with a 
wavelength of 532nm.  

As can be seen in Figure 4-2, the presence of interaction changes the perceived size of the 

scattering object.  Also evident from Figure 4-2 is that the magnitude and locations of maxima 

depend on the polarization state. Note that the periodicities observed for both polarization states 

are equal to the wavelength of the exciting field, which implies that there are interference effects.  

Due to the symmetry, one would expect that these two situations are the extrema in terms of the 

dependence on the polarization state.  If we now plot the cross section for any arbitrary linear 

polarization state between parallel and perpendicular to the separation vector, we have Figure 

4-3.   
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Figure 4-3 Extinction cross section for two interacting spheres normalized by extinction cross 
section for independent spheres varying the angle of the applied linear polarization state to the 

separation vector (A) keeping one sphere fixed and varying the location of the other (B) a 
comparative plot with collinear to the separation (blue) and perpendicular to the separation (red).  

As can be seen in Figure 4-3, the situations when the polarization is collinear and 

perpendicular specify the bounds of the extinction cross section for all other polarization states.  

Also, there is a smooth transition between these two situations shifting the locations and 

magnitudes of the corresponding maxima and minima.  Of course, as we witnessed in Chapter 3, 

the ellipticity may also play a role in the determining certain scattering quantities.  However, in 

this situation, the extinction cross section dependents only on the relative magnitudes of the 

orthogonal field components and has no dependence on their phase relationship. As the 

magnitudes of the orthogonal components for field circularly polarized and when linearly 

polarized at 45 degrees, the extinction cross section behavior is also equivalent when the field is 

circularly polarized and polarized at 45 degrees with respect to the separation vector.   

The case of small scatterers is interesting, because one can derive well behaved analytical 

solutions for scattering crossections for both independent and coupled systems.  However, there 

are many practical situations when the idealization of objects much smaller than the wavelength 
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may not be relevant; therefore other approaches must be used.  In the following we will extend 

this analysis to the realistic case of finite size interacting objects. 

4.2. Numerical Modeling Interaction in Larger Systems 

In order to model scattering from larger systems of particles, two competing numerical 

techniques are most appealing: T-matrix method and the coupled dipole approximation.  As 

described in Chapter 2, the T-matrix involves solving Maxwell’s equations via decomposing the 

fields into spherical harmonics.  In the case of a single sphere, the T-matrix is equivalent to the 

exact analytical solution proposed by Mie [47].  In multiple spheres, the interaction between 

neighboring spheres as well as the incident field is also decomposed into spherical harmonics.  If 

the object is not spherical or made of some arbitrary composition, the T-matrix method suffers in 

accuracy.  For dealing with both homogeneous and arbitrarily shaped objects, CDA is more 

appealing.  For generality of the approach of modeling near-field interactions as we will 

throughout this dissertation, CDA was chosen such.  

As described in Chapter 2, CDA is essentially a numerical method for solving a discrete 

form of the vector integral equations.  The response of some object of arbitrary shape and 

composition is modeled as a cloud of interacting dipoles.  The field at one of these dipoles is the 

summation of the incident field, and the field resulting from it’s interaction with all the other 

dipoles: 

 

1

( ) ( ) ( )
N

j inc j k j
k

 E r E r E r  (4.7)

In many numerical approaches, modeling of interacting systems requires modeling the 

entire volume consisting of both the scatterers and the space between them (depicted below in 

Figure 4-4).   
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Figure 4-4 Computational space of two sphere system as modeled with the conventional coupled 
dipole formalism. 

As the majority of the modeling locations don’t contribute to the final field distribution, 

this method is terribly inefficient.  To save on the valuable and limited computational resources, 

obviously, one would like to use the available modeling points to only model where the material 

physically exist.  In order to model multiple interacting objects in CDA, it is necessary to 

consider the total field at one location as a summation of local and distant scattered field 

terms[70]:   

 distant

, ,distant
1 1

( ) ( ) ( ) ( )
NN

j inc j k j local k j
k k 

  E r E r E r E r  (4.8)

The system of equations of a multiple particle system will still be symmetric, and consist 

of many of the same symmetries of the original CDA interaction matrix; just the large matrix 

must be constructed a little differently.  For a two particle system, the interaction tensor is of the 

following form: 

    
   

local,1 distant,1 2

distant,2 1 local,2

jk jk

jk

jk jk





 
  
  

A r A r
A

A r A r
 (4.9)

where r denotes the separation between modeling points of system 1, system 2, or between the 

two systems.  The size of interaction tensors will be 
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 3 3 3 3

3 3 3 3jk

N N N M

M N M M

  
    

A , (4.10)

for systems 1 and 2 consisting of N and M dipoles respectively.  Although straight forward, it is 

also necessary that the separation vectors of both the local and distant components lay on a cubic 

lattice such that one may still make use of convolution technique for accounting for the matrix 

vector multiplication as outlined in Chapter 2.  While on a cubic lattice, the matrix vector 

product necessary for iterative methods to solve the system of equations may still be expressed 

as a convolution.  In this case of two objects, the convolution must be separated into 

components, i.e. for a two particle system will consist of four 3-d convolutions.  In terms of 

computations, this is indeed more than the single 3-d convolution required if the intermediate 

space was also included; however, with this separation of field trick, the available locations for 

the separation vector are no longer confined to the same lattice. 

To verify that such a computational trick may be implemented and that no additional 

errors are introduced in the additional convolutions required, we can calculate the extinction 

cross section and compare to the analytical solutions for two small spheres (Figure 4-5).     
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Figure 4-5 Comparison of analytical results (solid lines) and numerical results (dots) for 
extinction cross section of two 10nm polystyrene interacting spheres normalized by extinction 
cross section for independent spheres when the exciting polarization is along the direction of 

separation (blue) and perpendicular to the separation (red) with a wavelength of 532nm.  

As can be seen in Figure 4-5, the numerical calculations using 4096 dipoles per sphere 

give the same normalized cross section.  Accepting that this technique of separating the local and 

distant field contributions is accurate, we can now assess the influence of interaction in larger 

scatterers.  For example, if we perform the same calculation for a sphere of diameter 1.8 and 

excite with a linearly polarized plane wave we see a similar modulation in the extinction cross 

section. 
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Figure 4-6  (A) Plot of extinction cross section for two 475nm radius polystyrene spheres 
interacting spheres normalized by extinction cross section for independent spheres when the 

exciting polarization is along the direction of separation (blue) and perpendicular to the 
separation (red) with a wavelength of 532nm.  (B) Keeping one sphere fixed at the origin, a map 
of the normalized extinction cross section as the function of the position of a second sphere for 

an applied linear exciting field. 

As we can see in Figure 4-6, even in the case of large sphere, the presence of a second 

object in its vicinity changes the perceived size.  The magnitude of this change is smaller for the 

larger spheres because they scatterer predominantly in the forward direction.  Thus it may be 

expected that interaction effects are larger when the two spheres are stacked on top of one 

another.  As Figure 4-6 (B) demonstrates, the effect of electromagnetic interaction depends on 

the orientation of the applied field.  Of course, the extinction cross section is only one possible 

observable quantity; other properties, such as relative position for instance, may be even more 

susceptible to consequences of such interaction.  To analyze these effects, one needs to consider 

the influence the probing field has on the spheres position through optical forces.    

4.3. Dynamical / Mechanical Effects on Interaction in Large Systems 

The interaction of light with matter can change the mechanical properties of a material 

system. The so-called “optical trapping” is one example where the location of a particle may be 

manipulated by means of an interaction with an external electromagnetic field.  The idea of 
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mechanical action of light has been pursued for hundreds of years. The ability to trap and 

maneuver small objects such as micro-particles, polymer chains, cells, etc. is undoubtedly one of 

the most exciting use of what is  now commonly referred to as optical tweezers [71].  A host of 

applications are being pursued where optical forces are employed for manipulation, 

measurements, or for creating and controlling new states of matter.  Moreover, the mutual 

interaction of a collection of objects in close proximity to one another offer yet another means of 

particle-particle manipulation. 

The Lorentz force equation gives the force acting on a point charge q  in the presence of 

an electromagnetic field [72]: 

  q  F E v B , (4.11)

where here v  is the velocity, and E  and B  are the electric and magnetic fields.  For larger 

objects, the electromagnetic force is usually found from a surface integral of the Maxwell stress 

tensor, which accounts for the shear force plus the time dependent change in momentum from 

the incident field. 

 
0 0

V

d
d dV

dt
   F T a S , (4.12)

where here S is the Poynting vector, and the elements of T can be found as: 

 
2 2

0
0

1 1 1

2 2jk j k jk j k jkT E E E B B B  


         
   

, (4.13)

In the case of a small sphere, or dipole, as we discussed in part one of this chapter, there 

exist and analytical solution to the total force provided by Eq.(4.12).  After a lengthy derivation 

(See Appendix C) one may find that the time averaged total force (as the frequency of optical 

fields far exceeds the response for which a particle can respond) on a dipole depends on the 

induced dipole moment and the local field as: 
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    * *1

2
       F p E p E , (4.14)

In the specific case of a sphere, there is a simple relationship between the induced dipole 

moment and the local field in terms of the polarizability ( p E ).  This allows for many 

equivalent methods of expressing the total force.  Physically, the most obvious decomposition of 

the total force is into the conservative and non-conservative portions.  A conservative force is 

one in which the total work performed on an object over the course of a closed path is 0.  The 

conservative portion of the force is also the term found from the gradient of the potential energy, 

another common means of describing dynamics.  The non-conservative portion of the force is 

typically attributed to some sort of loss, as work is done even when traveling a closed loop.  

Non-conservative forces lead to continuous motion where as conservative forces can lead to 

transient phenomena.  A complete derivation starting from the Lorentz force of Eq. (4.11) 

through the Maxwell Stress tensor of Eq.(4.12), also deriving the force for a dipole of Eq.(4.14), 

and finally showing how the force may be decomposed into components  may be found in 

Appendix C.  Broken into components, the total force on a small sphere in terms of its 

polarizability and the local field is given by: 

 
       2

0
0

1

2 S

   


       F E S L , (4.15)

where  *
0 4S i  L E E  is the time averaged spin flux density, S  is the time averaged 

Poynting vector (Eq.(3-7)).   

The first term in Eq.(4.15) that is known as the gradient force depends on the gradient of 

the intensity of the field; and is the only conservative portion of the force.  The gradient term is 

the only component depending on the real part of the polarizability, and does not have any 

dependence on the phase of the field.  The second term is depends on the time averaged energy 
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flux of the applied field.  This term, usually referred to as the radiation pressure, depends on the 

imaginary part of the polarizability; and is non-conservative in nature.  The third term is usually 

unnamed in the literature, is related to the spin momentum of the applied field and is also non-

conservative in nature [73,74].  In situations where the Poynting vector has a complex behavior, 

one would expect that intriguing non-conservative and continuous motions may arise. 

As has been described throughout the current chapter, the fields arising from mutual 

interaction disrupt change the local fields and modify the apparent properties of the scatterer.  

What was not discussed was the dynamics of coupled particle systems.  One important 

consequence of electromagnetic particle-particle interaction is optical binding (OB), first noted 

by Burns et al [75]. Two particles excited by a common field can form a bound “optical dimer” 

when they arrange themselves to a stable position where the radial forces acting on them are 

zero.  Since the first OB demonstration, a number of aspects have been studied including the 

excitation generated by counter-propagating beams [76,77], effects of beam’s structure [78], or 

the consequences of scattering [79].  In all situations, the resultant binding intrinsically depends 

on the potential energy landscape created by the conservative part of the electromagnetic forces.  

However, little if any attention has gone toward the non-conservative forces, and how they may 

have an impact in a coupled system. 

Let us examine the system of two identical spherical particles illuminated by a plane 

wave propagating perpendicularly to the radius-vector connecting the centers of the particles, as 

shown in Figure 4-7. Forces are generated on the spheres due to the three-dimensional, polarized 

field established as a result of scattering [80]. Due to symmetry in the x-y plane, the force acting 

on each particle can be decomposed into radial (binding) and tangential (rotational) components. 
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There is also a scattering force along k, but its effect is identical for the two particles and does 

not hamper their transversal movement. This is the classical OB geometry [75,69, 81 , 82]. 
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Figure 4-7  Optical binding in elliptically polarized light EI. Apart from the binding force FR, 
interacting particles experience tangential forces FT. Note the existence of differential forces �F 

leading to individual spinning in addition to common orbiting of particles around the system’s 
center of mass. 

Just as in Section 4.1, the total field E  is found by solving self-consistently the system of 

equations (Eq.(4-1)) that takes into account the mutual interaction between the particles[69].    

The field derivative is then calculated to obtain the final expression for the force in Eq.(4.14).  

The calculation of optical forces acting on matter is believed to be a well established 

routine. The same is true for the optical forces arising in basic OB situations, even though care 

must be taken in describing the particle-particle interaction.  A popular way for evaluating the 

derivative / u E  is to differentiate the final solution of the system of equations Eq. (4-1) (see 

Eq. 4 in Ref.69). By doing so, however, the results contradict the calculation of time-averaged 

forces based on the well-established formalism of momentum flux tensor (Maxwell stress tensor) 

[83]. The correct way of evaluating the derivative / u E  is to differentiate with respect to either  

1r  or 2r  directly in Eq. Eq. (4-1).  Nevertheless, it is interesting to note that the way / u E  is 

calculated has a minor effect for the radial, binding force; this is perhaps the reason this 
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inconsistency has not been noticed before.  When evaluating the tangential forces, however, 

there are situations where the way the calculation of field derivatives is conducted becomes 

important as it will be demonstrated here. 

Using  Eqs. (4.14) and Eq. (4-1) one can now evaluate the radial and tangential forces to 

be 

 22 2
||

2 2

| || | | |
Re Re

2 |1 | |1 |

I I

R

E E
F

r r

  
 


                  ,

 (4.16)

 *
||2

* *
| | Re Re

(1 )(1 )

I I

T

E E
F

R

 
  

           ,

 (4.17)

where IE , ||
IE  are the components of incident field perpendicular and parallel to the separation 

vector. We can now proceed to examine the effect of the incident polarization. 

4.3.1. Optical binding with Linearly Polarized Light.   

Because the depth of the potential wells in the stationary points depends on the incident 

polarization [81], the system of optically bound particles tends to orient itself such that it 

occupies the most energetically favorable position.  The potential energy of a single dipole is 

found as: 

 U  p E . (4.18)

where p is the induced dipole moment.  A plot of the potential energy for three different linear 

polarization states is shown below in  
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Figure 4-8 (A) Plot of the potential energy for a 100nm polystyrene sphere of refractive index 
1.59 in water excited with linear states along the separation direction x (blue curve), at 45 

degrees (green curve) and orthogonal (red curve) with an incident power of 0.1W per square 
micron.  The wavelength was 632nm.  (B) shows the corresponding forces for the same system 

for the three different polarization states normalized to the unitless quantity Const= 
(4πεo|Eo|2(10-23m2)) -1.  The dots in B correspond to a numerical simulation of the same 

scattering situation using CDA to calculate the forces. 

As can be seen in Figure 4-8(A), regardless of the polarization state, there exist potential 

wells at depths that a particle may become trapped radially.  Also observed in Figure 4-8 is that 

the deepest potential energy well (maximum forces Figure 4-8(B)) occur when the polarization 

state is orthogonal to the separation vector.  This means that when two small spheres are excited 

with a linearly polarized state, and they form and optically bound pair, they will align orthogonal 

to the polarization direction. One interpretation of this behavior is as a consequence of optical 

interaction, there is an effective anisotropy in a system of bound spheres.  However, this is the 

opposite behavior as an anisotropic dipole or a rod would demonstrate, where preferential 

alignment is always along the polarization direction.  To understand this phenomenon, we can 

step back and consider how the total field is established from the fundamental field distribution 

of a dipole. 

As our dipole moment is induced by the field, it will be aligned along the direction of the 

field, the potential energy is simply U p E  .  The most energetically favorable position is 
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the minimum in the potential energy, which corresponds to a maximum in the dipole moment.  In 

the weak interaction approximation, we can think of the field at one dipole just being the result 

of the interference between two dipole fields.  Analyzing the total field at one of the spheres 

location, the field may be considered as a constant field (from the incident field) interfering with 

the scattered field from the other dipole.  The location of the second scatterer that maximizes the 

local field (or equivalently the dipole moment) should correspond to both a maximum of the 

scattered amplitude from the other dipole, and should interfere constructively (meaning the phase 

should play a role).  

Figure 4-9 shows the behavior of the amplitude of the scattered field as compared to the 

optically bound locations for the different linear polarization states.  
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Figure 4-9  Contours of constant intensity for an x-polarized excitation of a 2 dipole system, 
keeping one dipole at the origin and varying the location of the other (contours are linear with 

log(log(I)).  The black line correspond to the positions of optical binding (if a second sphere was 
near by, it would travel along the black line until it was along the y axis (vertical)) 

As we can see in Figure 4-9, the magnitude of the scattered field along the direction of 

the polarization is much smaller than that along the orthogonal direction once we are further than 

a third of the wavelength away (again we see the donut shape in far field).  If we are satisfied 

with the concept of maximizing the field at distances comparable to the wavelength, this simple 

picture demonstrates why optically bound spheres align orthogonally to the incident polarization.  



 

 

 

75

The scattered intensity is at a maximum orthogonal to the field polarization, and this in turn 

produced a minimum in the potential energy.   

However, this picture does not explain why of the location of the optical binding changes 

with polarization.  The intensity is always monotonically decreasing as a function of the 

separation in all directions.  To understand this we can look to the phase of the scattered field, as 

seen in Figure 4-10, where contours of constant phase of the scattered field are plotted.  
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Figure 4-10  Contours of constant phase an x-polarized excitation of a 2 dipole system, keeping 
one dipole at the origin and varying the location of the other.  The black line correspond to the 
positions of optical binding (if a second sphere was near by, it would travel along the black line 

until it was along the y axis (vertical)) 

As can be seen in Figure 4-10, the black lines that signify the position of the optically 

bound locations lay directly upon contours of constant phase.  This phase corresponds to 

positions where the scattered fields interfere constructively with the incident field.  As the phase 

of the scattered field from a dipole is not spherical, the separation distance changes with 

polarization in accordance to maintain this constructive interference.   

4.3.2. Optical Torques with Linearly Polarized Light.   

A fundamental consequence of an applied force is the ability to induce torque with 

respect to some reference point. Torques can also be induced by optical fields.  Several concepts 
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for optical spin motors or “nano-rotators” have been discussed based on optical traps created 

with circularly polarized light or vortex beams and relaying on object’s asymmetry, absorption, 

or birefringence  [84-86].  Also, recently it was shown that for a single sphere in an optical trap, 

the subtle interplay between conservative and nonconservative forces create a “nano-fountain” 

with constant circulation of trapped particles [87]. 

One may readily find the corresponding torques ( ) ( )T j T j j jj
r 

   Γ R F p E r  by 

summing over all dipoles jp  in the system [88]. Here jR  represents the position of the dipole 

relative to the axis of rotation and the symbol   denotes the components of vectors 

perpendicular to the chosen axis. In the case of OB spheres, one may identify torques resulting in 

two special rotational motions: (i) sphere orbiting together around their common center of mass 

and (ii) spheres spin about their own axis.   

When the interaction is weak ( 1  , 1  ), Eq.(4.17) simplifies to 

2 2| | | | cos(2 ) Re(( ) / )T IF R    E , where   is the angle between polarization and 

separation vectors. We note that the tangential force varies in space proportionally to cos( )kR  or 

sin( )kR  having the same periodicity as the radial (binding) force (Eq.(4.16)). The tangential 

force acting on a dipole-like particle is zero when the field polarization is along or orthogonal to 

the separation vector.   

For systems of larger particles, where there are no simple analytical results; one has to go 

beyond the simple dipole approximation and use numerical procedures. As the CDA extension 

described in Section 4.2 yields the local field distribution, it is straight forward to calculate the 

forces acting on each individual dipole as described in Ref.[89].  Typical results of CDA 

calculations for three different sized particles excited with different linear states are illustrated in 

Figure 4-11.  
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Figure 4-11. Torques in an optically bound system of silica spheres of radius 0.1 ma   solid 

lines, 0.2 ma  dashed lines, 0.4 ma   dot-dashed lines: (A) orbital torque about the system’s 

center of mass and (B) spin torque of a sphere about its own axis. The spheres are in water and 
are excited with a field polarized linearly at an angle θ with respect to the optical binding vector. 

The torques are normalized to 
24 4

0 10 I a   E . 

As can be seen, there are no torques when the incident polarization is orthogonal or along 

the separation vector. However, torques arise at any other angle resulting in orbital and spin 

motions.  Note that the torque does not reach its maximum at exactly 4   as may have been 

expected.  For small particles, this may be understood as a result of the asymmetry in the 

scattered field; for larger particles a similar asymmetry can be expected but may not be the only 

reason.   

The unexpected appearance of spin torque is due to a gradient in the tangential force 

across the spheres as shown in Figure 4-7. Due to this gradient of the tangential force, the spin 

torque has an opposite sign compared to the orbital one. In fact, the mere existence of these spin 

torques is a significant result, demonstrating that OB interaction can lead to rotations of lossless 

dielectric objects. 

The torques in Figure 4-11 are mostly determined by gradient forces and, hence, 

determined by the conservative part of the total force.  In any system with damping, the 
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mechanical motion created by a conservative force will eventually cease. It follows that the OB 

particles will eventually align perpendicularly to the direction of polarization and that the time 

scales of their motion will depend heavily on the specific constraints of the damping mechanism.  

In the following we will reveal other situations where the non-conservative forces are the main 

cause for such torques, which can be controlled by the polarization of the external 

electromagnetic field. 

4.3.3. Optical Torques with Circularly Polarized Light.   

In Chapter 3, it was demonstrated that scattering of circularly polarized light from a 

sphere generates a spiraling energy flow around it [P7]. This effect arises from the conversion of 

spin angular momentum of incident light into orbital angular momentum of scattered light. One 

can envision that a test object placed in the vicinity of such a sphere will experience the radiation 

pressure from the curved power flow, causing the object to move along curled trajectory. In 

reality, the situation is complicated by the interaction between the two bodies as was discussed 

before. Moreover, together with radiation pressure, the field gradient force and the force due to 

gradient of phase may play a significant role. Thus, the real outcome can only be found by 

analyzing self-consistently the problem of electromagnetic interaction.  

Starting from Eq. (4.17) in the simple case of small non-absorbing dielectric particles, the 

tangential force can be approximated to be:  

 2 2 2 2

2 2 4 4 7

| | Re( ) | | [6 (3 )cos(2 )

(9 15 )sin(2 )] / 4 .

T IF kR k R kR

k R k R kR R

   

  

E
 (4.19)

The sign is determined by the polarization’s handedness. It is worth noting that the force 

magnitude changes as a function of R with twice the frequency compared to the optical binding 

force evaluated from Eq.(4.16). Furthermore, contrary to the case of linear excitation, the 
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potential landscape is now circularly symmetric as shown in the inset of Figure 4-12.  This 

means that the tangential forces are completely nonconservative and create a steady-state orbital 

torque about the system’s center of mass.  Affected by this torque, particles move along 

stationary orbits with radii determined by the condition 0RF  .  In addition to this continuous 

rotation around the common axis, the particles will also exhibit a continuous rotation around 

their own axes due to the gradient of the nonconservative tangential force along the radial 

direction. 

To estimate the torques acting on larger particles we used again the CDA numerical 

approach. A typical summary plot of the orbital torque for the first two stable bound positions is 

shown in Figure 4-12 as function of particle radius. Also shown, are the analytical predictions of 

Eq.(4.19) for Rayleigh particles, which seem to make a good description up to a radius of 

about /10ma  , where m  is the wavelength in medium. As apparent in Figure 4-12, an 

interesting effect occurs for larger spheres: the orbital rotation can change its sense depending on 

the particle size. This change in the direction of rotation, not present in the case of small 

particles, can happen even when moving between the different stationary orbits. Our calculations 

also indicate that for particles with ma  , the radial and tangential forces have now similar 

periodicities as a function of R and, moreover, the zeros of radial force and the zeros of the 

tangential force occur approximately in the same place.  Thus, a slight modification in the radial 

position of spheres can change the direction of rotation.  
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Figure 4-12. Magnitude of orbital torque as a function of the radius of interacting spheres for the 
first (curve 1, blue) and second (curve 2, red) stationary orbits. The plus symbols indicate regions 
where the torque has opposite sign.  The dashed lines indicate the analytical predictions based on 
Eq.(4.19) for Rayleigh particles.  The calculations are for silica spheres in water excited with a 
plane wave of intensity 250mW m  and wavelength in vacuum 532  nm.  The black line 

shows the magnitude of torque due to Brownian force at 290K in the first stationary orbit.  The 
inset depicts the symmetric potential energy landscape and the trajectory of a bound particle due 

to nonconservative orbital torques. 

In addition to electromagnetic interaction, OB systems can also be subject to Brownian 

motion. Directional motion due to optical forces will be affected by the additional chaotic 

movement associated with some random force 2 12B BF ak T  [90]. The torque resulting from 

the Brownian force provides a useful reference for the magnitude of orbital torques.  In Figure 

4-12, one can clearly see that for 0.3 ma   and an optical intensity of 250mW m , the optically 

induced torques dominate.  

Due to the complex interaction, the OB particles are also subject to spin torque with 

respect to the individual axes as shown in Figure 4-13. As can be seen, for the chosen 

parameters, the spin torque increases with the particle size but, similar to the orbital torque, the 

sense of rotation is not always the same.  Examining the two types of torques in Figure 4-12 and 

Figure 4-13, one can see that the spin and orbital torques have opposite directions for small 

particles but their behavior becomes more complicated when the sizes increase.   
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Figure 4-13  Magnitude of spin torque s  as a function of the radius of interacting spheres for 

the first (curve 1, blue) and second (curve 2, red) stationary orbits. The plus symbols indicate 
regions where the torque has opposite sign.  The calculations are for silica spheres in water 

excited with a plane wave of intensity 250mW m  and wavelength in vacuum 532  nm. The 
black line shows the magnitude of absorption-induced spin torque of one silica sphere with 

refractive index 71.59 10in i  .  

Circular polarization can induce torques on a small object due to asymmetry, absorption 

or birefringence. Therefore, it is instructive to compare the magnitude of OB spin torque with the 

optical torque exerted on a particle due to its intrinsic absorption. The later can be estimated as 

2 2 4abs I absE a Q k   [91], where absQ  is the absorption coefficient.  Estimations based on 

typical values for absorption in silica are shown in Figure 4-13, and, as can be seen, spin torque 

dominates for 0.1 ma  .  Notably, because the OB spin torque does not necessarily have the 

same direction as the excitation handedness while the torque due to absorption is always in the 

same direction, the two torques can combine to increase or cancel the net rotation.   

The magnitudes of the orbital and spin rotations of OB particles may be affected by the 

surrounding medium. In fluids for example, in addition to the influence of viscosity on forces 

and torques, hydrodynamic coupling may occur between closely placed particles. For a sphere of 

radius 0.4 ma   and an intensity of 250mW m  in the Rotne-Prager approximation [92] one 
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finds that, in the first stationary orbit, the orbital and spin angular velocity in water are 

17o  rad/s, 2.6s   rad/s, respectively. It is worth mentioning that for these specific 

parameters, the liquid flow created by the orbiting spheres greatly affects their spin rotation 

forcing them to rotate in opposite direction with respect to acting torque s  (as indicated by 

minus sign). In fact, the ratio between spin and orbital angular velocities can be optically 

modified. This external control together with the hydrodynamic coupling may be used to detect 

the presence of otherwise hardly noticeable spinning motion of OB spheres. 

4.4. Observing  Coupling Effects in the Near-Field 

Of course, particle-particle interaction also plays a role when the system is not dynamic 

as we observed in Section 4.1 in the coupled cross section.  What is not obvious is whether 

particle-particle interactions play a role when the objects are not all excited by the same field, 

such as the highly localized excitation generated in an NSOM.  Experimentally, it is difficult to 

gauge the effect on one sphere due to the presence of another.   

The extension of CDA discussed in Section 4.2 may be further extended to numerically 

model such a situation.  A common model for the field generated by an NSOM probe (Section 

2.1) is the field emitted from a single dipole.  In the same method that the distant field was 

included as a separate interaction matrix in Section 4.2, an additional dipole may be added in the 

same manner.  A schematic of the computational system can be seen in Figure 4-14.     
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Figure 4-14 Schematic of modeling 2 sphere system excited locally with a single dipole acting as 
the local excitation (NSOM probe),  using the separation of local and distant fields for the 

compression of the computational system. 

Because only a single dipole is added to the system of equations, there is no need for any 

additional convolutions to invert the system, merely an additional matrix vector product of size 

3 3N  , N being the total number of dipoles in the system.  To test the effects of coupled 

scattering, we modeled two spheres with a radius of 0.3λ excited locally with a probe polarized 

along the direction of separation; the results are shown in Figure 4-15. 
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Figure 4-15  (A) Plot of intensity scattered from two 160nm radius polystyrene spheres 
interacting spheres normalized by extinction cross section for independent spheres locally 

excited with a small sphere with the polarization along the direction of separation (blue) and 
perpendicular to the separation (red) with a wavelength of 532nm.  (B) Map of the normalized 
scattered intensity as the function of the orientation for an applied linear exciting field of the 

single sphere exciting the coupled system. 
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As can be seen in Figure 4-15, the presence of a second sphere changes the intensity of 

the scattered field from a single sphere even when the exciting field is highly localized.  These 

collective modes of the dielectric structure can explain the intensity variations and the presence 

of regular fringes surrounding microspheres.   

A situation where such an approach would be useful is that of a monolayer of dielectric 

spheres with a diameter greater than the wavelength.  Due to the large size of the spheres, the 

topography is slowly varying, and in the case of independent scattering, the response on the top 

of one sphere would depend only on the local interaction between the probe and the local slope.  

For a monolayer of spheres, one would thus expect that the intensity distribution around one 

sphere would be repeated for every other equivalent sphere.  However, if the sphere did not 

scatter independently, as is the case in the far-field illumination, the response would depend on 

the local morphology.  In other words, the number of spheres in the proximity of a single sphere 

would determine the scattered intensity near and around it due to optical interaction.  To test the 

validity of the above treatment to a monolayer of dielectric particles, we performed a near-field 

scan on a monolayer of 1.5µm silica spheres, shown below in Figure 4-16.  
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Figure 4-16 (A) AFM topographical image of monolayer of silicon spheres compared to near-
field intensity (B) distribution, and the selection of inner and outer spheres to analyze. 
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As can been seen, the NSOM image of this deterministic situation is very complicated, 

the intensity distribution having regular interference fringes surrounding the microspheres.  

Certainly, the slowly varying slope above the sphere is not determining all the observed featured 

of the intensity distribution.  Here the presence of possible cross-talking between the silica 

spheres can be seen as a collective response of the dielectric micro-particles   

To quantify the presence of cross-talking, we chose to analyze the intensity distributions 

for a sphere surrounded by a group of spheres experiencing significant cross-talking (inner 

sphere) and a sphere on the edge of the cluster experiencing less cross-talk (outer sphere).  We 

chose to analyze the top of the two spheres as seen in the black rectangle (area of .94 by .53 µm²) 

seen in Figure 4-16; the rectangle was chosen such that the local slopes within the area were as 

close as possible.  A close up of the topography and intensity distributions at this location is 

presented below in Figure 4-17. 
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Figure 4-17  Individual images of topography and intensity distribution for inner and outer 
spheres analyzed over an area with near equal slope. (A), inner topography , (B) inner intensity, 

(C) outer topography, (D) outer intensity,  

It is possible to see the interference fringes that occur in the inner sphere by looking at 

the intensity distribution.  In order to quantify this it is necessary to compute the standard 

deviation and look at the amount of fluctuations that the Inner sphere has compared to the Outer.  
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In this example, the average intensity for the Inner and Outer sphere are 752 kHz and 760 kHz 

respectively. The standard deviation for the Outer sphere was calculated at 26 kHz which is 

3.47% of its average intensity. The standard deviation for the Inner sphere was calculated at 41 

kHz which is 5.49% of the average intensity for that sphere. This shows a significantly higher 

spread in the intensity for spheres surrounded by a group of spheres due to the cross-talking 

between spheres.  Just as observed in Figure 4-15, the response of a larger sphere, even when 

locally excited, depends on the local morphology. 

4.5. Summary 

In many situations, independent objects interact collectively with an electromagnetic 

field. The consequences are diverse and depend on the polarization of the incident field as well 

as the specific positioning of the interacting objects. We showed here that this interaction leads 

not only to changes in the optical signatures of such coupled system but also on the mechanical 

properties of its constituents. Specifically, it was demonstrated in this Chapter that such near-

field electromagnetic interaction provides a new mechanism for generating optical torques. 

Electromagnetic fields induce conservative forces resulting from field gradients as well as 

nonconservative forces appearing due to radiation pressure and gradients of phase. When two 

objects are optically bound, these forces determine conservative and nonconservative torques.  

Remarkably, the interplay between the conservative and nonconservative torques can be 

controlled by the polarization of the incident field. For instance, when the incident field is 

linearly polarized, the torques are mostly conservative and affect only the transient behaviors. 

For circular polarization on the other hand, the nonconservative torques are significant and lead 

to nontrivial phenomena. In particular, bound systems can rotate not only around the common 

center of but also around their own axes. In the intermediate case of elliptically polarized light, 
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the conservative torque will determine a transient orbital motion, whereas the nonconservative 

one will lead to a continuous spin rotation.  The whole system can be seen as a ‘nano-mixer’ 

with complex mutual rotations of constituents. The direction and speed of these rotations can be 

dynamically controlled through the intensity, state of polarization, and spatial profile of the 

incident radiation. Our estimations indicate that effects are easily observable under reasonable 

environmental conditions.  

We have also shown that this electromagnetic interaction is significant even when only 

an individual scattering object is excited with a highly localized field. These results are 

significant, because they demonstrate that even when probing locally a composite medium, the 

scattered radiation depends on the surrounding morphology of a sample. Understanding the 

specific manifestation of radiation coupling should be of interest in applications of photonic 

crystals which are developed in the optical near-field, as well as for a range of phenomena 

involving multiple light scattering in the bulk of inhomogeneous materials. 
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CHAPTER 5: NEAR-FIELD SCATTERING IN COMPLEX MEDIA 

As we saw in Chapter 3, in the near- and intermediate-fields of a scattering object, the 

electromagnetic energy exhibits a complex behavior that depends on the vectorial properties of 

the exciting field.  As described in Chapter 4, additional complexity is introduced when multiple 

objects are immersed in the same field and optically interact with another in addition to the 

exciting field, acting as some effective object.  We also discussed how, for dynamic material 

systems, one may use the complicated vectorial dependence and the mutual interaction of 

neighboring objects to change the dynamics of material systems.  Both Chapters 3 and 4 dealt 

with simple material systems characterized by uniform dielectric properties. In this case, only a 

few parameters were required to describe the deterministic scattering object.   

However, there exists a large and rather different class of material systems that are more 

complex because their optical properties vary randomly in space or time.  These media are 

considered to be optically inhomogeneous and coherent scattering usually yields field variations 

that are also randomly distributed, commonly referred to as a speckle pattern.  Usually, one 

single wave-matter interaction does not yield much valuable information to characterize such 

complex media; rather a statistical ensemble is required such that statistical characteristics like 

moments of distributions for instance can be related to meaningful material properties.  Probing 

of the local field through some secondary interaction may affect the individual member of the 

ensemble, but not affect the statistical characteristics of the scattered fields.  That is, because 

material descriptors are statistical in nature, the contributions from the secondary interaction may 

be either separated or neglected.   
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  In general, the response of complex media will depend on the amount of averaging 

performed. Also, when the characterization is based on far-field measurements, there is a 

significant amount of averaging over the structure, which usually washes away much of the 

structural information. In the near- and intermediate-regions however this is not necessarily the 

case and specific information may be retrieved.     

In this chapter, we discuss intensity and polarimetric fluctuations in near field scattering.  

Specifically we address the situation of scale dependent responses, and how a tapered optical 

fiber allows one to observe statistical variations depending on the volume of interaction.  At 

certain scales, the material response depends strongly on the local structure; varying the volume 

results in unique optical signatures.  As a first step, we will consider the scalar scattering 

treatment, and assess the intensity variations that will be interpreted in the frame of a simple 

scalar model based on a 2D random walk description [P1].   

Nevertheless, as emphasized several times already, the real scattering problem is 

vectorial and only a vectorial description can elucidate the physical origins of the observed 

intensity fluctuations in the near-field.  To accomplish this, we again turn to numerical modeling 

where we have direct access to the different properties of known physical systems.  We will 

show how, by exploiting the sensitivity of optical interaction to the local material structure, one 

can find a characteristic length scale, maximum anisotropy length that depends on the local 

composition and organization of composite random media. This new length scale represents a 

unique and intrinsic property of optically inhomogeneous media and describes their polarimetric 

responses [P9].  
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5.1. Scale Dependent Optical Response 

In general, material properties are scale dependent, and one can discuss corresponding 

length scales of microscopic, mesoscopic, and macroscopic regimes. Their absolute dimensions 

will depend on the specific material characteristics.  When ever a real measurement takes place, 

there is some effective averaging of the material properties, and the amount of averaging will 

dictate whether the observation occurred in the micro-, meso-, or macroscopic regime.  For 

instance, measuring a surface profile with an AFM will depend on the physical size of the probe.  

Depending on the amount of averaging (Figure 5-1(A)), the observed fluctuations in the 

measured signal will vary.  The same is true for the optical response of optically inhomogeneous 

media (Figure 5-1(B)), where the corresponding length scales are determined by the material 

properties, for instance size of inclusions, volume fraction, packing structure, etc. 
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Figure 5-1 (A) Example of a Gaussian distributed surface profiled with varying observation 
scales corresponding to the microscopic, mesoscopic, or macroscopic averaging.  (B) An 

optically inhomogeneous medium with refractive index variations due to inclusions and the 
corresponding scale lengths determined by the material properties (see text). 

In terms of an inhomogeneous material, the microscopic scale (  ) refers to the smallest 

volume over which the material is homogeneous; probing this scale reveals what is usually 

referred to as the “intrinsic properties” of the medium.  For the situation of a random surface, the 
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microscopic scale would correspond to probing the material with a delta function; with no 

averaging during the measurement.   

The optical characteristics at the largest, macroscopic scale ( L ), involve significant 

averaging over volumes usually much larger than the characteristic scales of inhomogeneities.  

All known effective medium theories are based on this averaging principle [93].  For the case of 

a surface, at this scale, one usually observes the global distribution, so called Gaussian statistics 

with a large number of members contributing to each measurement.   

The intermediate mesoscopic scale ( ), on the other hand, involves an insufficient 

amount of averaging of the microscopic properties such that information is persevered.  In the 

mesoscopic regime, fluctuations around the average become important, and may contain 

additional information about structural morphology.  This is the scale that is available when 

measuring the response of a material with near-field microscope.   

To demonstrate how sampling affects observed statistical properties of random 

phenomenon, let us consider the following simple example.  The task is to sample some 

distribution xf that, for the sake of the argument, can be considered to be Gaussian. Of course, in 

the limit of a large number n  of measurement samples, the statistical characteristics of the 

ensemble of xf elements will approach those of the distribution xf .  However, when n  is small a 

non-Gaussian statistical regime develops.  It can be shown (Appendix 0) that as a function of the 

sampling number n  for a Gaussian distributed random variable the mean and standard deviation 

have the following dependence: 
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for 1n  . What this means is that the mean of the observed distribution is the same independent 

of the type of sampling but the width of the sampled distribution is function of the number of 

available samples.  The distribution corresponding to the surface profile of Figure 5-1(A), as a 

function of the number of sample elements n  is shown Figure 5-2. 
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Figure 5-2 (A) Distributions observed considering n  sampling points.  (B) Convergence of the 
contrast to the global distribution contrast as a function of the number of sampling points n .  

As can be seen, the observed distribution can be quite different when sampled with a 

small number of elements.  If the observed distribution is further related to the optical properties 

of an inhomogeneous material, then this dependence allows examining, for instance, the number 

of sampling points within the measurement volume. Finally, we note that in the case of randomly 

inhomogeneous media, a multiscale description of the light propagation can be envisioned where 

the Maxwell’s equations, the transport equation, and the diffusion equation can be applied to 

describe the microscopic, mesoscopic, and macroscopic scales, respectively. It should be 

anticipated that the observed optical response from a light-matter interaction depends on the 

volume probed experimentally. This concept has been used, for instance, to describe different 

statistical regimes in near-field scattering from random media [P1,38]. As we will demonstrate in 
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the following, in the case of near-field microscopy, the volume of effective interaction can be 

changed by varying the intensity of excitation or by manipulating the tip-sample separation. 

5.1.1. Random Walk Model and Non-Gaussian Statistics 

When a near-field intensity distribution is the result of some random process, a statistical 

treatment offers another means of understanding the physical origins of the intensity fluctuations 

[34].  As was described in Section 2.5, one standard method of analytically modeling an intensity 

speckle pattern is as the coherent summation of harmonic waves with an amplitude and phase 

distribution.  In general the complex amplitude of a polarized speckle field can be written as 

[35]: 

      r iU x U x iU x  , (5-2)

where rU  and iU  are the coherent summation of N  harmonic waves with random phases: 
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If the number of scattering contributions is large ( N  in Eq.(5-3)), as in the case of 

Gaussian statistics described in Section 2.5, rather simple assumptions can be made about the 

relative phase and amplitude distributions for the different interfering waves.  However, a 

different situation exists where the number of harmonic waves is small.  In this situation the 

uniform phase distribution is no longer a good assumption.  Not having a uniform phase 

distribution means that the intensity distribution is no longer a negative exponential (as seen in 

Figure 2-9). A small number of contributions arise from weakly scatting systems, or when the 

variation in the surface topography is smaller than the wavelength of light.  These situations 
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result in speckles that are partially developed and the contrast may be much less than unity [94].  

From the random walk model described in Section 2.5, a similar treatment may be applied to 

understand the effects of a non-uniform phase PDF.   

The phase distribution will obey some circular distribution, as its values are wrapped over 

0 to 2 .  One standard distribution in circular statistics that may be useful for describing the 

phase distribution is the von Mises distribution  
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 (5-4)

where Io is the modified Bessel function of the zero-order. The von Mises distribution has the 

nice characteristic that by tuning the parameter  , one may have a uniform distribution 

when 0  , and a sharp Gaussian as   .  The von Mises PDF is plotted in Figure 5-3 to 

demonstrate the behavior for varying  . 
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Figure 5-3 Plot of von Mises probability density function for varying ν 

Following the same procedure as developed in Section 2.5 for the case of a uniform 

distribution, we would like to find the distribution of the scattered intensity.  A full derivation of 
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the joint PDF of the intensity h  and the phase   is provided in reference [36].  The probability 

density function of the intensity with the von Mises phase distribution is the following: 

 

     
 

1 1

2 2
0

0 0 02
1

1

/
,

| 0 | 0| 0

N

jN

j
j

J Nh h
f h I I N J

N h N hN h J


  



   
      





   
                        

  (5-5)

where | 0h  is the average intensity if all of the random harmonic waves were in phase, and 

j are the positive roots of the zero-order Bessel functions.  The first term of Eq.(5-5), a function 

of  , characterizes the deviation from random phases with a uniform distribution, i.e. the 

deviation from the Gaussian regime.  To examine the shape characteristic of the intensity 

distribution, we can again evaluate the contrast Eq.(2-38). It can be shown that the first moment, 

the mean of Eq.(5-5) is equal to [36]: 
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and the variance is found as: 
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(5-7) 

The expressions in Eq.(5-6) and Eq.(5-7) provide a means to calculate the contrast as a 

function of a non-uniform phase distribution characterized by ν and for a small number of 

contributions N .  The contrast of a speckle intensity ensemble is defined as: 
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A plot of the speckle contrast as a function of the number of random sinusoidal waves 

can be seen in Figure 5-4.   
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Figure 5-4 Plot of phase distribution (A) and corresponding contrast (B) as a function of  N , for 
different values of   

As can be seen, the narrower the phase distribution, the smaller the contrast.  Also it can 

be observed from Eq.(5-7) that for any value of ν other than 0, the contrast will converge to 0 as 

N  goes to infinity.  In the case of a uniform phase distribution, both the mean and the standard 

deviation (the average and the fluctuations) grow at the same rate; where as for a non-uniform 

phase distribution, the mean grows faster than the fluctuations. 

In drawing the relationship between such a random walk model and the physical 

scattering system, one can consider that the number of scatterers is related to the volume of 

interaction observed in the measurement, and the phase distribution related to the material 

properties.  As the volume increases, the contrast decreases, or as the amount of averaging over 

the material properties increases, the relative fluctuations decrease.    

5.2. Intensity Statistics of Near-Field Experiments 

This model can be used very well in the situation that arises from a near-field scan in 

emission mode.   In emission mode, the interaction volume is governed by the diameter of the tip 



 

 

 

97

aperture and the distance away from the surface.  This aperture is typically much smaller than the 

wavelength; as such the interaction volume seen from the far-field is very small as well.  This 

results in scattering from a small number of scatters.  Unlike a global excitation, the resulting 

intensity probability distribution from a near-field scan in emission mode does not give that of 

the Gaussian regime where the PDF is negative exponential [95].  Also for such an experimental 

geometry, the contrast is significantly less than unity[38]. 

Before applying such a model directly to near-field intensity fluctuations, we should 

examine the different physical mechanisms that may result in such fluctuations; or what are the 

parameters of the material system related to the phase distribution in the random walk model.  In 

general, in the far-field of scattering of coherent radiation from a random or inhomogeneous 

media it is impossible to discern whether the intensity fluctuations are the result of scattering 

from an optically inhomogeneous material, or from a homogeneous material with a surface 

roughness.  Scattering from a homogenous material with a rough surface also results in a speckle 

pattern from the non-specular reflection at the surface.  Thus, in order to know the origin of the 

fluctuations, one must have some information either about the samples composition or the 

surface.   

Performing a near-field scan requires to place a probe in the close proximity of the 

material interface.  As was described in Chapter 2, this is commonly achieved through the use of 

atomic force microscopy techniques.  As a result, for every near-field scan, one obtains both the 

far-field intensity distribution resulting from the local excitation as well as the AFM 

topographical data.  An example of a typical NSOM scan of a random media and the 

corresponding AFM topography can be seen below in Figure 5-5(A).     
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Figure 5-5 NSOM scan of optical coating consisting of 100 parts latex and 25 parts TiO2 
particulates. (A) is AFM topography, (B) Intensity distribution 

As can be observed in Figure 5-5, the intensity image (B) from a random media as 

excited in the near-field leads to a speckle pattern in the far-field.  As a means of characterizing 

the topography in a meaningful manner, we can look at the local slope that the near-field probe 

would experience.  We define the local slope in the direction û  as the gradient of the topography 

sampled over the aperture of the probe: 

 
ˆ ˆj j

j

T T
Slope u u 




 (5.9)

here   is the probe diameter and jT  corresponds to the AFM recorded height at location j .  The 

local slopes provide a useful method of comparing the intensities recorded at different locations.  

We can combine the information presented in the two different images (Figure 5-5) in the form 

of a plot of the normalized intensity vs. the local slope as calculated by Eq.(5.9).   
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Figure 5-6 Typical histogram of an NSOM scan.  The solid curve corresponds to the Fresnel 
reflection predicted for the corresponding effective index of the inhomogeneous sample.  

As we can see in Figure 5-6 there is a significant spread of the intensity values and the 

correlation of intensities from similar slopes is very low.  However, a great deal of qualitative 

statistical information may still be gathered by such a plot.  The distribution of local slopes, the 

longitudinal spread of the histogram, describes the topographical character of the interface, 

accounting for both the root-mean-squared (RMS) roughness and lateral correlation length of the 

surface profile. The intensity fluctuations determined by the local optical permittivity can be 

regarded as the vertical spread of the histogram. Therefore, this representation relates the local 

variation of the dielectric constant to the morphology of the physical interface, offering a 

comprehensive (but still qualitative) description of the near-field situation. 

Going back to the random walk model, the governing phase distribution, which is related 

to the physical scattering situation, must account both for mechanical and dielectric 

contributions.  As the information about the mechanical fluctuations is inherently recorded with 

an NSOM scan, we can associate with it some geometrical phase distribution, defined as [P1] 

 
0 2p hn     . Displa



 

 100

If the dielectric function and the topography are considered to be statistically 

independent, then there two contributions to the total phase distribution can be added in 

quadrature 2 2
dielec p       .  Therefore applying this model can also aid in the decoupling 

between the surface and sub-surface effects. 

5.2.1. Scale Dependent Response and Random Walk Model 

As the optical response observed from a random medium will depend on the volume for 

which it is probed, it would be nice to look at how the behavior changes with the volume of 

interaction.  The most obvious method to change this volume of interaction would be to change 

the physical dimensions of the probe; this however highly impractical experimentally, therefore 

another method should be applied.  Another means available is to exploit the nonlinear 

thresholding that the inherent noise level in detection systems impose upon the 

measurement[P1].  Because of this thresholding, when the intensity coupled into the medium 

increases, the detection system effectively collects radiation from a larger area on the surface of 

the medium Figure 5-7.  This allows a relatively simple means of experimentally varying the 

volume of interaction as measured from the far field.  
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Figure 5-7 Variation of detected interaction volume as a function of incident intensity 
   2 1I red I green . 

 In relation to the random walk model, it is considered that the area the detector sees is 

proportional to the incident intensity. Within this area, N independent scattering centers are 

being excited.  Thus in this first approximation it can be considered that increasing the incident 

intensity and consequently the average intensity corresponds to an increase in the number of 

excited effective scatters.  As the average intensity is increasing, the global governing phase 

distribution does not change; however, as was described in Section 5.1, the effective phase 

distribution depends on the probing size, and will be different.  However, the outlined random 

walk model and the resulting contrast dependence described in Eq.(5-8) takes this into account.   

To demonstrate the value of such a model and to experimentally probe the volume 

dependent response of an inhomogeneous material in the mesoscopic regime, two different 

materials were analyzed.  For each material, multiple scans were performed over the same region 

as the average intensity was adjusted. The first type of samples are slabs made of calcium 

carbonate and kaolin micro-particles, which were compacted such that they generate pores with a 

size distribution centered at 20 nm as determined by the mercury porosimetry [96]. These media 

are optically opaque, their thickness is 1 mm, and the refractive index has small variations 
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centered around n=1.5. The r.m.s fluctuations of the surface height range between λ/40 and λ/10 

while the lateral correlation length of the interface heights is comparable with the wavelength of 

light.  

The second type of inhomogeneous media examined were optical coatings containing 

100 parts latex and 25 parts TiO2 particulates. In these samples the uniform distribution of the 

pigment was proven by scanning electron microscopy (SEM) and energy dispersive x-ray 

spectroscopy (EDS) analysis. In comparison with the first type of samples, the index of 

refraction now has a much broader distribution ranging between n=1.5 and n=3.2. The r.m.s 

fluctuations of the surface heights vary between λ/10 and λ/6.  However, in this case, the lateral 

correlation length of surface profile is much larger than the wavelength of light Figure 5-8 shows 

the comparison of this model with experimental results.  The points represent experimental 

results corresponding to multiple scans over the same area varying the intensity coupled to the 

tip.  The continuous curves represent the results of calculations using the random walk model 

that describe best the experimental data.  Two different locations were chosen on to investigate 

the effects of topography for both samples. 
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Figure 5-8 (Left) PDF of phase distribution used to fit experimental data. (Right) Plot of 
experimental and random walk model 



 

 

 

103

As can be seen in Figure 5-8, the uniform distribution of the TiO2 pigment in the latex 

matrix leads to a broad initial phase distribution of the elementary scattering centers (depicted by 

the red curve) and, therefore, to larger values of the optical contrast.  On the other hand, due to 

smaller variations in the local refractive indices, the compact slabs made of calcium carbonate 

and kaolin micro-particles are characterized by a rather narrow phase distribution (depicted by 

the blue curve). Consequently, in this case the intensity fluctuations are much smaller, i.e. lower 

values of optical contrast as illustrated by the blue symbols.  In the case of the locally 

inhomogeneous media, the optical contrast is a measure of the intensity fluctuations and relates 

to the fluctuations of the dielectric constant. 

The phase from the r.m.s surface fluctuations plays a significant role when the lateral 

correlation length is on the order of the interaction volume.  In other words, when sampling a 

random variable, if the duration of sampling is comparable to the order of the fluctuations, the 

variations will be seen; however is the duration is much longer, the fluctuations will average out. 

For the first type media, the calcium carbonate and kaolin micro-particles, with a lateral 

correlation length approximately equal to the wavelength, the different values of the RMS 

roughness measured correspond to σ=16nm and σ=29nm as indicated in Figure 5-8. As expected, 

the rougher the scanned surface, the larger the values of the speckle contrast because an increase 

in the additional phases θ leads eventually to a broader distribution of phase and consequently to 

a higher contrast value 

A rather different physical situation is encountered in the case of the second type of 

optical coatings. Here the lateral correlation length is much larger than the wavelength, and the 

phase distribution should be independent of the surface variations.  Accordingly, the variations 

of the total phase θ are practically determined only by the initial phase distribution of the 
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exciting effective scattering centers. The red symbols in Figure 5-8 represent the dependence of 

the optical contrast on the average intensity for two different values of surface roughness: 

σ=36nm and σ=77nm. As can be seen, the influence of the RMS roughness is negligible in this 

case because of the large values of the lateral correlation length.  

An important consequence of the non-Gaussian nature of this scattering regime is when 

only a few number of events sample the global materials statistical distribution, the material may 

be considered vastly different.  What’s more is that the evolution of the observed response may 

be indicative of the intrinsic material structure.  In this simple scalar random walk model, we 

considered only a simple phase fixed phase distribution as the underlying material discriminator.  

This treatment is very useful for decoupling the statistical influences of the mechanical and 

optical properties of an inhomogeneous, but lacks in provide any insight into the physical origin 

of the phase distribution as it relates to the materials structure properties. 

5.3. Local Anisotropic Polarizability of Inhomogeneous Media 

To gain more insight about the material morphology and structure, we should look into 

the full vectorial scattering problem as described in Section 2.1.  As we saw in Eq.(2.5), the field 

scattered from a small object can be determined from its polarizability, which is dependent on 

the material properties.  In general, the polarizability is anisotropic, and will exhibit a 

polarization signature upon scattering in addition to the intensity variations.    

The interaction between constituents of composite materials can generate anisotropic 

responses, even in situations when both the micro- and macroscopic properties are isotropic.  

Such structurally induced anisotropy exists, for instance, in aggregates of metal nanoparticle [97] 

or in small spheres with eccentric inclusions [9899100]. As a result, unique optical signatures 

develop at these mesoscopic scales. 
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When the materials’ description at mesoscopic scales involves an anisotropic response, 

one has to go beyond conventional effective medium approaches, which are based on assigning 

some effective dielectric permittivity to the local properties. In the case of an isotropic 

distribution of optically isotropic constituents, the effective dielectric permittivity is scalar. 

However, if the volume of averaging is limited, the local properties can no longer be described 

with a scalar permittivity. For an averaging volume much smaller than the wavelength, the 

polarimetric scattering properties can be described as anisotropic Rayleigh scatterers as 

suggested in Figure 5-9. Thus, in this case we can locally assign an effective dielectric 

polarizability tensor (or, equivalently, permittivity or refractive index tensors) where the 

magnitude of the diagonal components, degree of anisotropy, and the orientation of main axes 

depend on the particular location as suggested in Figure 5-9(B)or change from one mesoscopic 

object to another as illustrated in Figure 5-9(D).  
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Figure 5-9. (A) An inhomogeneous material system probed at mesoscopic scales through a local 
excitation provided by a near-field optical probe.  (B) The observed far field response of the 

material system may be interpreted as being determined by a discrete array of anisotropic 
Rayleigh scatterers with different local magnitudes and orientations.  (C) An inhomogeneous 

material system where the physical dimensions of the object limit the extents of the field material 
interaction and the effective anisotropic Rayleigh scatterer (D) producing an equivalent scattered 

field.  
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 In general, the characteristics of these “anisotropic scatterers” will also depend on the 

mesoscopic volume (level of averaging) considered.  Therefore, one can define a local 

anisotropic polarizability (LAP) that is determined, for example, by the particles dimension if we 

deal with small inhomogeneous objects Figure 5-9(C,D)or by the excitation volume, as in the 

case of near-field optical microscopy [P1] Figure 5-9(A,B).   

As an example of a mesoscopic optical response, let us consider a spherical interaction 

volume created either through local excitation or physical extents of the object, with dimensions 

smaller than the wavelength. Optical inhomogeneities within this volume effectively determine 

an overall anisotropic polarizability depending on the specific packing structure. 

There are situations however where the degree of anisotropy may change through the 

measurement.  One can imagine that even for isotropic hard sphere packing, situations may exist 

where there is some dynamic re-arrangement of inclusions resulting in changes of the effective 

scattering polarizability. In such conditions one can still recover information about the 

anisotropic polarizability but now it will be in terms of distributions of the tensor elements as we 

will show in the following.  

In a scattering experiment, the relationship between a real polarizability α  and the fully 

polarized incident and scattered fields is commonly described in terms of the corresponding 

cross-spectral density matrices *
ij i jW E E  as [101]: 

 T
obs incW P αW αP  (5.11)

where obsW , incW  are the cross-spectral density  matrices of the scattered and excitation fields, P 

accounts for the field propagation to the detector, superscript T stands for transpose.  To allow 

for variations in the magnitude of the polarizability not accounted for in the SSP approach, one 

must measure the entire polarizability tensor and determine both its magnitude and orientation.   
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To establish simple relationships between the polarizability tensor elements and the 

measured intensities, a direct procedure can be developed based on sequential excitations.  For a 

fixed orientation of the effective polarizability α  there are six unknown elements in the 

symmetric polarizability tensor.  Using Eq.(5.11), one can find a deterministic relationship for 

each of the polarizability elements using a scheme based on three independent excitation fields 

along with a polarimetric detection of scattered intensities.  If the three independent excitation 

fields are chosen to be orthogonal, and if the scattered intensities are measured along the same 

direction of polarization, one can write a simple expression for the measured intensity 

2

, ˆ ˆ T
i j j j iI     , where i and j correspond to the direction of polarization of excitation field E 

and the direction of polarization of detection, j  is the unit vector along j-direction of intensity 

detection.  For example, when the excitation field is polarized along x and the measured intensity 

is co-polarized, the measurement provides directly the xx  component of the polarizability 

tensor.  Following similar steps, a system of six equations can be established and the six 

independent components of symmetric polarizability tensor can be retrieved.  The diagonal form 

of the polarizability and the corresponding angles of rotation can then be found after performing 

eigenvalue decomposition:  

 0 0

0 0

0 0

a
T T

diag b

c






 
    
  

α R α R R R  (5.12)

In Eq.(5.12), the matrix R is composed of the columns of the eigen-vectors and accounts for the 

three-dimensional rotation of the diagonalized polarizability into the detection coordinate frame.  

The eigenvalues are ordered such that a b c    .   
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This procedure of measuring scattered intensities and calculating the diagonal form of the 

polarizability will now be applied to the case of scattering from inhomogeneous spheres 

containing inclusions much smaller than the wavelength. We will examine the case of two 

different structural compositions which, at macroscopic scales, correspond to the same dielectric 

permittivities according to conventional effective medium theories (for instance, the Bruggeman 

theory) [102]. Inhomogeneous materials were modeled by randomly placing isotropic 

homogeneous spherical inclusions within the volume of some host characterized by a certain 

refractive index, and then the optical response was calculated using the coupled dipole 

approximation (CDA) [31].  The polarizability of these inclusions is related to their assigned 

refractive indices through Lorentz-Lorenz formula.  

For modeling of a random distribution, a Metropolis Monte Carlo (MMC) method of 

packing inclusions was implemented [32].  To verify the successful packing of hard spheres, the 

pair correlation function was calculated and compared to the analytical 3D Percus-Yevick 

solution [32]. For each distribution of inclusions, the diagonal elements of the polarizability 

tensor ( a , b , c ) and the angles specifying the orientation of its main axes were determined 

using the procedure based on Eq.(5.12) and Eq.(5.12) which require successive excitation with 

three fields in different states of polarization and the calculation of corresponding  scattered 

intensities in two orthogonal states of polarization. In order to acquire statistically relevant 

information, a large number of realizations (random packing) were analyzed and the inverse 

problem of polarizability tensor determination was solved for each realization of the random 

medium. As a result, we obtain probability density functions (PDF) for the distributions of 

diagonal elements of the polarizability tensor. The forms of these PDF’s reflect the properties of 
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the statistical ensemble of eigenvalues and eigenvectors that characterizes the material properties 

at this mesoscopic scale. 
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Figure 5-10. Probability density functions of ordered (see text) diagonal elements of the 
reconstructed polarizability tensor. The volume of interaction corresponds to a sphere of 50 nm 
in diameter having a host refractive index of 1.33 and a) inclusions with a refractive index of 2 

and a volume fraction of 0.27 and b) inclusions with a refractive index of 2.4 and a volume 
fraction of 0.18. The dots are the results of the numerical simulations while the solid lines are 

guessed ‘best fit’ of numerical data. 

In Figure 5-10 we summarize the results corresponding to the two different structural 

compositions examined. We note that for the uniformly random material simulated based on a 

hard sphere model of the inclusion packing, there is no preferential orientation of the effective 

polarizability. Therefore, our procedure resulted in uniform distributions of the orientations R  

for both inhomogeneous materials. The values found for the tensor elements on the other hand 

indicate that, at this mesoscopic scale, the polarizabilities are not only anisotropic, they are also 

different for the two inhomogeneous materials as can be clearly seen in Figure2. 

For sample A, the smaller dielectric contrast between the host and the inclusions leads to 

a narrower distribution of the diagonal elements of the polarizability tensor and, consequently, to 

smaller fluctuations in the scattered fields.  In the case of sample B, however, the larger 
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dielectric contrast results in a larger separation between a , b , c  also contributing to larger 

intensity variations.   

To quantitatively characterize the local anisotropic polarizability (LAP), we introduce an 

anisotropy factor defined as the contrast calculated for diagonal components of polarizability 

tensor   

 
   

 

223Tr Tr ( ) ( ) ( )
2

Tr

diag diag a a b b b c c c a

a b cdiag

        
  

     
  

 

α α

α
 (5.13)

where Tr   denotes the trace of tensor  . Note that, in the past, other definitions have been used 

for such anisotropy factor.  In Ref. [97] for instance, an anisotropy factor S  was defined as the 

variance of depolarization factors  31
03( ) ( , )

V
d r   ν r I G r r .  Here 0( , )G r r  is the regular 

part of the quasistatic free-space dyadic Green’s function for electric field, I  is the unity tensor. 

In this designation, the local anisotropy factor cannot depend on the excitation volume and, 

moreover, its locality can be violated in 3D random composites without structural self-similarity, 

i.e. in nonfractal composites that are of interest here. Another definition of the anisotropy factor 

was introduced in Ref [103]; it is similar to Eq.(5.13) except that it is based on the variance 

rather than the contrast of the polarizability components. The definition of   in Eq.(5.13) is most 

appropriate for our discussion, which focuses on describing the form anisotropy and not 

necessarily on the absolute magnitude of a specific dipole moment.  

Using the definition in Eq.(5.13), the anisotropy factor   was calculated for every 

realization of the localized inhomogeneous volume. In this sense,   is a statistical parameter 

similar, for example, to the contrast measured in near-field microscopy [P1]. Of course, an 

averaged   can then be calculated from the recovered ensemble of values of this parameter. The 
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average anisotropy factors calculated for the two materials illustrated in Figure 5-10are  39.2 10  

and 313.2 10 , respectively. The 30% difference clearly demonstrates that LAP is a parameter 

that can be used to quantify differences between macroscopically similar media.  

5.3.1. Scale Dependent Local Anisotropic Polarizability 

In the preceding discussion, LAP was examined over one single length scale. This 

situation corresponds to fixed volume of light-matter interaction imposed by the measurement 

procedure. In case of the two different media presented in Figure 5-10, the differences will, of 

course, diminish as this volume of interaction increases; the two different optical responses will 

converge toward the same macroscopic value corresponding to an isotropic polarizability tensor. 

The rate of this convergence however may be different depending on the specific structural 

morphology.  

We will turn now our attention to LAP’s dependence on the volume of interaction. We 

have repeated the previous analysis for spheres of different radii R and the results are presented 

in Figure 5-11 where we compare the anisotropy factor  for the case of two different sizes of 

spherical inclusions randomly distributed within probing volume of different sizes. The main 

observation is that   always attains a maximum that defines a new length scale characterizing 

the electromagnetic interaction. This maximum anisotropy length (MAL) represents the length 

scale over which the response of inhomogeneous medium is most sensitive to the polarization 

(vector) properties of the excitation field. In other words, it is at this scale that, in average, the 

depolarization of light during scattering occurs more effectively. Along with scattering mean free 

path and transport mean free path that describe the way the energy is transferred, MAL 

represents another interaction-specific length scale that characterizes the propagation of 

polarized fields through random media. 
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At length scales smaller than MAL, the local polarizability becomes isotropic with   

tending to zero as the probing volume decreases. At larger scales, the macroscopic behavior is 

gradually approached leading again to an effectively isotropic scattering volume with 0  .  
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Figure 5-11.  Effective anisotropy factor Δ as a function of excitation volume R  normalized by 
inclusion diameter d  for spherical inclusions with a refractive index of 1.5 randomly distributed 
in vacuum.  The continuous lines correspond to inclusions with diameter 32  while the dashed 

lines correspond to inclusions of diameter 64 . Curves 1 to 4 correspond to a volume fractions 
of inclusions of 0.3, 0.2, 0.1, and 0.025, respectively. 

As can be seen in Figure 5-11, the values of the anisotropy factor appear to be 

independent of the size of inhomogeneities. This happens, because, in our example, the 

interaction inside the inhomogeneous volume considered is mostly within the electrostatic 

regime. Therefore, the behavior of   does not depend on the wavelength and is fully scalable 

with inclusions’ dimensions. Also noticeable in Figure 5-11 is the faster decay of    for higher 

volume fractions of inclusions inside the sphere of interaction. This can also be easily explained 

by realizing that, for a given excitation volume, the larger number of inclusions corresponding to 

a higher volume fraction represents in fact a more isotropic medium. 

In the particular case when the spherical inclusions can be considered as packed hard 

spheres, we found that MAL has a simple interpretation. As illustrated in Figure 5-12, in this 

case MAL defines the volume containing, in average, three inclusions. Note that three inclusions 
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represent the minimum number of particles necessary to form a fully anisotropic scatterer. Thus, 

the statistical averaging for scatterers containing more than three inclusions results in a gradual 

decrease of the anisotropy factor.  
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Figure 5-12.  Maximum anisotropy length () normalized by the diameter of inclusions d  
versus the volume fraction of inclusions f .  Open circles and crosses represent MAL values 

corresponding to inhomogeneous media with inclusions of diameters of 64 , 32  
respectively. The solid line corresponds to the volume containing on average 3 inclusions. 

Of course, the other factors determining the optical response of a composite medium are 

the intrinsic properties of the components.  It is expected that, in general, higher anisotropy 

factors will characterize materials with increasing dielectric contrasts. This is evident in Figure 

5-13 were we plot the value of the maximum anisotropy max  as a function of dielectric contrast 

of inclusions  
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Figure 5-13. Maximum of anisotropy factor max  as a function of volume fraction f  of 

inclusions with 50nm in diameter and having different refractive index contrasts.  
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The calculations presented Figure 5-13 demonstrate that the values of max  simply scale 

with the magnitudes of dielectric functions of components indicating that the max behavior is 

determined only by the material’s structure and not by its composition. 

We have demonstrated that at mesoscopic scales, the optical response of random media 

consisting of optically isotropic components may be interpreted in terms of local anisotropic 

polarizabilities (LAP). We illustrated this concept using the example of an inhomogeneous 

medium containing spherical inclusions, but the model is valid for arbitrary, macroscopically 

isotropic inhomogeneous media. At mesoscopic scales, different materials can be characterized 

by their specific anisotropic polarizabilities even though they may have similar effective 

dielectric permittivities when described in terms of an effective medium approach.  

There are, of course, different means for characterizing the local optical properties of 

inhomogeneous media. For instance, the scalar contrast of scattered intensities measures the 

relative variations of the scattering cross-section within the interaction volume discussed above 

in Section 5.2. When this volume increases, the scattered intensity variations decay 

monotonically to zero with a rate depending on the medium’s properties. In this case however, 

only asymptotic scales can be determined which may affect the specificity.  MAL on the other 

hand is not only derived from a tensorial feature of the material but it is also a local property. Its 

value is a basic characteristic of material’s morphology.  

5.4. Summary 

As we have seen throughout this chapter, probing at varying mesoscopic scales, the 

optical response of random media offer means of discriminating between different materials; and 

if polarimetrically analyzed, demonstrate some characteristic length scale that is determined by 

the materials structure.   
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We showed how the typical information collected during a near-field optical scan allows 

for the surface statistics to be properly accounted for. Subsequent analysis permits differentiating 

between the topographical and optical contributions to the effective optical interface. This 

decoupling between the mechanical and the optical characteristics of the effective surface 

together with the stochastic properties of the scattered intensity can be used to obtain information 

about the local variations of the dielectric constant which, in turn, relate to the morphological 

properties of the inhomogeneous material. 

We also demonstrate how the vectorial situation may be modeled and the existence of a 

characteristic length scale, maximum anisotropy length (MAL), at which the degree of local 

anisotropy   reaches its maximum.  At this scale the inhomogeneous materials are most 

sensitive to the polarization of incident light. Thus, electromagnetic wave interaction on this 

scale length results in the maximal depolarization. Along with other characteristics length scales 

such as the scattering mean free path, the value of MAL reflects essential intrinsic properties of 

random media.  In the case where the composite material consists of spherical inclusions in a 

hard sphere packing, MAL may have a purely geometrical representation, not depending on the 

dielectric properties of the medium’s components. In the case of random packing of spheres, 

finding the maximum anisotropy length allows determining the size of the volume containing in 

average three inclusions.  

These findings may also be relevant to the design of novel materials because this new 

electromagnetic interaction scale represents the material scale at which the polarimetric response 

of a medium is most sensitive to the excitation field. 
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CHAPTER 6: STOCHASTIC POLARIMETRY FOR NEAR-FIELD 
SCATTERING 

 In complex materials where the properties of importance are statistical quantities, the 

effects of secondary interaction may be neglected, so long as no additional fluctuations are 

introduced.  Thus, statistical tools may be used to extract the material information about complex 

materials in a complex scattering situation such as near-field microscopy.  In Section 5.2, a 

simple scalar model based on a random walk was used to describe the complicated scale 

dependent response that a near-field probe reveals when scanning inhomogeneous materials.  

Later, in Section 5.3, the vectorial scattering situation was studied and it was shown how an 

additional electromagnetic length scale related to the intrinsic structure may be revealed through 

analyzing the polarimetric scattering fluctuations.  In this chapter, we address the topic of inverse 

problems for vectorial scattering problems. Specifically, we will examine how fluctuations in 

polarimetrically observed scattering can be related to the full vectorial properties of the 

scattering medium. 

We can begin our polarimetric analysis by considering each individual measurement of 

near-field intensity to be equivalent to scattering from a material region with subwavelength size, 

i.e. a small scattering center.  A number of different approaches have been developed to 

characterize the properties of small scatterers, including different microscopies, dynamic light 

scattering, fluorescence correlation spectroscopy, etc. [104,105]. These techniques are especially 

useful in providing material parameters such as diffusion coefficients, hydrodynamic radii, and 

average concentrations. The optical response of a single particle that is much smaller than the 
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wavelength is commonly described by the so-called polarizability tensor.  This characteristic is 

of interest, for instance, for controlling the fabrication of nano-particles or for describing the 

conformations of polymers or biological molecules such as DNA [106]. 

  Before getting to the details of a near-field excitation, it may be useful to quickly review 

some basic concepts related to polarimetric measurements.  In a typical polarimetric scattering 

experiment, the object (polarizability) is probed with a controlled incident field for which the 

Stokes vector is known.  From combinations of different polarizations of the incident field and 

polarimetric measurements, the unknown polarizability may be calculated. Equivalently, the 

polarizability can be found by keeping the initial polarization constant and varying the angular 

configuration of the source and detector.  This is the only method that can provide the exact 

polarizability of a scattering center.  However, if the material under scrutiny is some random 

system, and the individual member of an ensemble of an ensemble does not need to be known, 

statistical methods for polarimetric characterization may also be applied.     

An ensemble of polarimetric data can be accumulated in a situation where measurements 

are taken for different orientations of the scattering polarizability while maintaining the same 

configuration for excitation and detection.  In essence, rather than establishing the deterministic 

relationship between in the input and output for every member of the ensemble, one considers 

the statistical characteristics of distributions of measurement data and relates them to the 

underlying material parameters.  This approach is preferable when the full experimental 

conditions cannot be controlled: particles suspended in solution rotate in time or, such as the case 

of near-field microscopy, the local polarizability acquires different orientations during the scan.  

The approach of relating statistical characteristics of polarimetric measurements to intrinsic 

material properties has come to be known as stochastic scattering polarimetry (SSP).      
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6.1. Stochastic Scattering Polarimetry 

When measuring optical fields, one cannot measure the scattered field directly; rather one 

measures the intensity, or cross-spectral density.  As we have described throughout this 

dissertation, when the scattering object is small, the scattered field distribution is related to the 

material properties through the objects polarizability.  A generic scattering experiment, dealing 

with a real polarizability and a fully polarized excitation, is commonly described in terms of the 

cross-spectral density matrix Eq.(5.11) [101]:  

  * *

1 1 2 2 1 1* *
x x x y t t t t

obs diag inc diag
y x y y

E E E E

E E E E

 
  
 

W P R α R R W R R α R P  (6.1)

where again obsW , incW  are the cross-spectral density matrices of the scattered and 

excitation fields. In Eq.(6.1), the x-y plane is chosen to be perpendicular to the direction of 

propagation (Figure 6-1), and P  is a 3 2  tensor that represents the propagation to the 

observation point in the wave zone.  In Eq.(6.1), 1R  and 2R  account for the three-dimensional 

rotation of the diagonalized polarizability and of the excitation polarization into the detection 

coordinate frame, while diagα  denotes a diagonalized form of the polarizability Eq.(5.12): 
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Figure 6-1.  A generic scattering process where a scatterer with unknown polarizability α  is 
illuminated by a constant, arbitrarily polarized field incE . An intensity  measurement is 

performed in the far-field through a polarizer P  oriented in the plane xy . 
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The expression of the cross spectral density in Eq.(6.1) contains both the correlation 

between orthogonal field components and the intensities along two orthogonal directions x and y. 

In a polarimetric scattering experiment, one measures only intensities obs
i iiI W  ( ,i x y ); for 

example, by the use of two polarizers, the diagonal elements of cross-spectral density.  

For a given incident field described by incW , scattered intensities are obtained for 

different orientations of the scatterer. Therefore, an ensemble of such scattered intensities can be 

built and further analyzed statistically to infer the morphological information included in the 

polarizability .  As described in Section 2.5, one useful tool for characterizing distributions is 

statistical moments, in general having the form: 

  
1 2 1 2

( )
... ( ) ( ) ( ) ( )

n n

n
i i i i i iM I I I p d



        (6.2)

where 1 2, ,ni i i x y  and ( )p   represents the probability function associated with the 

orientation of the diagonalized polarizability. Integration in Eq.(6.2) is performed over all 

orientations determined by solid angle  . 

A plethora of applications may be described from this general concept of using moments 

(Eq.(6.2)) of scattered distributions to solve this inverse scattering problem described by Eq.(6.1)

.  It will depend on the specific experimental situation and the knowledge of the physical system 

as to which direction to apply this concept.  In general, the inverse problem may be solved for 

the magnitudes of the eigen values of the tensorial polarizability, its orientation, or the exciting 

fields’ polarization with respect to some detection frame, or any combination of these unknowns.   

In one simple application, where the orientation, the magnitude and the field are all delta 

distributed (the so called direct problem, with no stochastic element), knowing or structuring the 

field can be used to reveal the full tensorial polarizability [107].  Similarly, if one knows the 
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elements of the polarizability, the inverse scattering problem may be applied characterize the 

unknown exciting field [80]. 

When relating SSP to the experiment, knowledge of the scattering system (distributions 

of excitation, orientation, magnitudes, etc.) determines the number of measurements needed and 

how the relationships are derived.  Through out the rest of this chapter we will discuss some 

applications of SSP to different physical geometries and show how polarimetric moments may 

be related to the intrinsic material or field structure. 

6.1.1. Recovering the Anisotropic Polarizability of a  Scatterer 

One situation of interest here is when, during the experiment, the scatterer rotates 

randomly in space with probability described by ( )p  .  The fixed material properties defined by 

the unknown polarizability α  probed by some constant, but arbitrarily polarized incident field as 

depicted in Figure 6-1.  In general, a fully polarized excitation field can be described in terms of 

three orientation angles and an ellipticity parameter; in other words, there are four independent 

parameters that determine the structure of the excitation field.  

For a given probability function describing the orientation confinement of the 

polarizability ( ( )p  ), expressions for the scattered intensity can be derived starting from Eq. 

(6.1). Furthermore, the moments of the intensity distributions can be related to the material 

properties and the parameters of the excitation field. All in all, the scattering situation is fully 

described by the three elements of the diagonalized polarizability tensor α  in addition to the four 

independent incident field parameters. 

In performing polarimetric intensity measurements along two orthogonal directions x and 

y, a situation arises when the incident field is polarized with the major axis oriented at the 
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bisection of the two directions of measurement.  In this situation, all the moments of the two 

orthogonal intensity distributions are equal, and, consequently, the number of independent 

equations which can be used for reconstruction is reduced.  Unique recovering of α  may still be 

possible by considering higher-order moments of the intensity distributions to obtain additional 

independent relationships. However, in this case one has to recognize that higher-order moments 

of the intensity distributions are more susceptible to noise [108]. Alternatively, one can choose to 

consider only up to the second-order moments of intensity distributions, but introduce an 

additional intensity measurement. For example, by performing a third measurement along the 

bisection of the first two orthogonal measurements, a rotation of the detection coordinate system 

can be applied which decreases the cross correlation of orthogonal intensity distributions. The 

parameters characterizing the incident field and the material properties are uncorrelated; as such, 

decreasing the cross-correlation of intensity ensembles allows for more independent probability 

distribution functions.  Note that the rotation of the detection coordinate system is a linear 

transformation performed over all the elements of the intensity distributions, therefore, no 

statistical information is lost. This rotation angle   of the coordinate system, 

    1

obs obs  W R W R , can be found by minimizing the real part of the cross-correlation 

between the two orthogonal measurements, which is related to the intensity polarized at their 

bisection angle. 

Let us consider the effect of the rotation  

  cos sin
( )

sin cos

 


 
 

  
 

R  (6.3)

on the first moment of cross-spectral density matrix: 
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  *

(1)

*

x x y

y x y

I E E

E E I

 
 
  

M . (6.4) 

Minimizing the real part of off-diagonal element the first order moment (1) (1) 1( ) ( )  M R M R  

leads to the following equation (further details outlined in Appendix 0) 

     * 2 2cos sin cos sin 0x y x yE E I I        . (6.5) 

which can be solved to find the final expression for rotation angle   as  

      22 2(1) (1) (1) (1) (1) (1) *

1

*

2 4
tan

2

x y x y x y x y

x y

M M M M M M E E

E E
 

          
 

. (6.6) 

In Eq.(6.6), the sign is chosen such that in new coordinate system the condition 

(1) (1)
xx yyM M is fulfilled.  It must be clear that, in fact,   defines the angle between the major axis 

of the polarization ellipse of the incident field and the x axis of the coordinate system in Figure 

6-1.. The rotation we have identified eliminates the dependence on this angle and, therefore, in 

the new system of coordinates, the incident field is now described by only three independent 

parameters.  

The 3rd  additional measurement at 45  with respect to the first two orthogonal directions 

can be expressed in terms of the non-diagonal elements of the cross-correlation matrix: 

  (1) (1) (1) * *
45

1 1 1 1
,

2 2 2 2x y x y x yM M M E E E E     (6.7) 

where (1)
45M  is the first moment of the intensity distribution measured at 45 . Using Eq. (6.6), 

and (6.7)), the angle   is finally evaluated to be 
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       2 2(1) (1) (1) (1) (1) (1) (1) (1)
45 451

(1) (1) (1)
45

2 2 4
tan .

2

x y x y x y

x y

M M M M M M M M

M M M
 

           
 

 (6.8) 

In the rotated system of coordinates, two new intensity distributions obs
x xxI W   and obs

y yyI W   can 

be defined as 

   
 

2 2 1 1
45 2 2

2 2 1 1
45 2 2

cos sin 2 cos sin ,

sin cos 2 cos sin .

x x y x y

y x y x y

I I I I I I

I I I I I I

   

   

    

    




 (6.9) 

where 45I  is the intensity measured along the 45  direction. 

The first and second moments of distributions obs
xxW  and obs

yyW  can now be evaluated 

together with the corresponding cross-correlation term (2)
xyM .  Using Eq.(1-3) and assuming that 

( )p   corresponds to a uniform random distribution of the orientation of the diagonalized 

polarizability, one finds the first moments of the two rotated ensembles to be 

   

 

(1) 2 2
1 1 1

(1) 2
1

(2) (1) 2 (2) 2 (3) (4) 4
1 1 2

1
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( 3) 3 ,
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(6.10) 

In the general expressions for the 2nd - order moments in Eq.(6.10), ( ) ( )n
ijP  are second-

order polynomials with respect to the ellipticity parameter  .  The exact expressions for these 

polynomials are given in the Appendix 0. In addition, the following short-hand notations were 

used  

  2 2
1 2( ) / 3, ( ) / 2,db dbdc dc dbdc db dc       

, ,b cdb dc          ( ) / 3,a b c       

(6.11) 
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 2 2 2 2 2
1cos , cos , sin sin , ( / ) ,L K Q w          

where   and w are the main axes of excitation polarization ellipse  ( w ).  

The expressions in Eq.(6.10) constitute the main result of SSP for a uniform distribution 

of polarizability orientation, as they establish the relationship between the statistical moments 

(up to the 2nd order) of the measured intensities and the parameters defining the anisotropic 

polarizability to be determined.  It is worth mentioning that the a , b , and c  values used in 

Eq.(6.11) refer to relative values of the polarizability tensor, rather than the actual values of the 

diagonalized tensor elements; a constant has been factored out and included in the propagation 

operator P.  These relative values of the diagonal elements can be normalized with respect to the 

largest element (we choose a  as a largest element of diagonalized polarizability tensor Eq.) and 

this allows generating a number of validity criteria for our reconstruction procedure. Using the 

dimensionless variables 2 3
1 2/ , / , , ,K L      in Eq.(6.10), one finds that they are subject to the 

following physical restrictions: 

   2 3
1 2/ [0,1], / [ 1,1/8], 1 1, [0,1], [0,1]K KL K L               (6.12) 

The restrictions on K imply that the projection of the major axis of excitation polarization 

ellipse onto the xy plane should be greater than the projection of its minor axis. Starting from 

conditions expressed in Eq.(6.12) one can establish the following limiting values for the ratios 

between statistical moments: 

  (1) (1) (2) (1) 2

(2) (1) 2 (2) (1) 2

/ [0,1], ( ) [1,3.1],

( ) [0,2.1], ( ) [0,1]

y x xx x

yy x xy x

M M M M

M M M M

 

 
. (6.13) 

These relations may be useful in practice when, in the presence of experimental errors, the 

measured statistical moments may shift outside the validity region.  
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We have now established a direct relationship between five statistical moments of the 

polarimetric intensity measurements ( (1) (1) (2) (2) (2), , , , andx y xx yy xyM M M M M ) and the six unknown 

variables that determine the outcome of the random scattering process; three material parameters 

defining   and three parameters describing the incident field in the rotated system of 

coordinates. This situation represents still an underdetermined system of equations. However, 

any additional knowledge about the material properties or about the excitation field will allow a 

full description of the scattering situation, even if only the 1st and 2nd order moments are being 

used. 

Before illustrating several examples, it is worth mentioning, that one can follow the 

procedure outlined above to obtain similar relations between the statistical moments of the 

measured intensities and material parameters for situations where the random orientation of the 

polarizability is described by other distribution functions.  Also, the same treatment can be 

considered in circumstances where the experiment is performed using a polarimetric detection 

system based on two circular polarizations and some elliptical state measurement. 

To test the theory outlined above, a series of numerical experiments were performed to 

model the interaction with a scatterer described by an anisotropic polarizability. The experiment 

was numerically simulated for random orientations of the scattering particle with respect to a 

fixed detection frame.  For each orientation, the intensity was recorded in the three directions of 

polarizations as described above. 

6.1.2. Far-Field Stochastic Scattering Polarimetry 

One common assumption that can be made about excitation field properties is that the 

plane of the polarization ellipse of the excitation field is parallel to the detection plane (forward 
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scattering).  In this case, when 0   and 0   the expressions for the statistical moments in 

Eq.(6.10) becomes:  

  (1) 2
1

(1) 2
1

(2) 2 2 2 4
1 1 2

(2) 2 2 2 2 4
1 1 2

(2) 2 2 2 2 2
1 1

1
(3 4) ,

5
1

(4 3) ,
5
3 6 8

(9 8 16) (4 ) (8 3 ) ,
35 5 35
3 6 8

(16 8 9) (4 1) (8 3) ,
35 5 35
3 3 4

(4 17 4) ( 1) (3 8
35 5 35

x

y

xx

yy

xy

M

M

M

M

M

  

   

         

          

       

  

  

       

       

       4
23) .   

 (6.14) 

In practice, in order to determine the four unknowns 1 2, , ,     one needs only four of 

the equations in Eq.(6.14). Because in an experiment the evaluation of the intensity moments is 

always subject to a certain procedural accuracy, we will choose a combination of the four 

equations that provides the minimal error in solving for the unknowns. Our estimations show that 

the evaluation of (1) (1) (2) (2), , ,  and x y xx xyM M M M  is more stable with respect to possible experimental 

errors.  

A series of simulations was performed for different elliptical excitation states. Table 6-1 

summarizes the percent error of reconstruction for different shape parameters, different 

parameters of ellipticity, and different numbers of polarimetric measurements. The percent error 

in Table 6-1 refers to an average of the deviation in the calculation of the b  and c  values from 

the exact values of the polarizability.  The polarizability of the particle is related to the shape 

parameters , ,  and     through the Clausius-Mossotti expression for isotropic ellipsoids [28]:  

  

 
2

2

1
4

3 3 1
j

j

n

L n
  


 

 (6.15) 
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where , ,j a b c     from Eq. , factors jL  are determined by ellipsoid shape [28], n  is the 

refractive index of particle that was chosen to be equal 1.5 for numerical computations.  

Table 6-1 Percentage error of reconstructed polarizability for different shapes of particles, 
different field orientations, and different number of realizations for the case of an elliptically 

polarized excitation field, 0, 0    . 

Realizations 

, ,    500 1000 2500 5000 

3,3,1 2.0 2.0 1.8 1.1 

3,2,1 1.0 0.7 0.5 0.3 ε 
=

 0
 

3,1,1 2.3 1.3 1.7 0.8 

3,3,1 2.0 1.4 1.4 2.0 

3,2,1 1.0 0.7 0.6 0.3 

ε 
=

 .1
5 

3,1,1 1.4 1.9 1.0 0.6 

3,3,1 3.5 2.3 2.4 2.4 

3,2,1 2.5 1.5 1.0 1.0 ε 
=

 .3
 

3,1,1 3.2 2.7 2.4 1.7 

3,3,1 5.6 5.4 3.3 2.4 

3,2,1 4.3 3.7 2.3 1.3 

ε 
=

 .6
5 

3,1,1 5.5 4.5 2.8 3.2  

Obviously, the reconstruction error decreases with increasing the number of realizations 

of particle orientation. Also, one can notice that the error increases for larger values of ellipticity 

parameter  , and this can be understood by considering the limiting case of circularly polarized 

excitation. In this situation, all the moments for the linear polarization measurements in the x and 

y directions become equal, and the system of equations becomes undetermined. In the case of 

circularly polarized excitation, the morphological properties of the material may be found based 

on circular polarization measurements, however, this situation will not be discussed here.  
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Another detail to which we would like to point out is that according to our numerical results the 

reconstruction error seems to be smaller for purely anisotropic polarizabilities when 

a b c    . 

Another practical situation that is often of interest is when the incident field is in some 

arbitrary linear state of polarization. In this case, the general expression in Eq.(6.10) reduces to 

the following system of equations: 

  

     

(1) 2
1

(1)
1

22
(2) 4 2 2

2 1 1

2
(2) 2

2 1 1

3

5
3

5

8 9 42 3 3 3

35 35 35

12 3 3(3 )

35 5 35

x

y

xx

xy

K
M K

M

K K K K K
M K

K K K
M

 



 
   

   


 



  
   


   

 (6.16) 

which may be solved for the magnitudes of the diagonal elements a , b , and c  of the 

polarizability tensor from Eq.(5.12) and the polar angle  . In this case, the choice of the optimal 

four equations is unequivocal because the linearly polarized incident field moments (1)
yM  and 

(2)
yyM  are no longer independent:  2(2) (1)(15/ 7)yy yM M . 

To test the stochastic scattering polarimetry in this situation, a series of numerical 

experiments were performed for various angles of the incident excitation, different anisotropies, 

and the different number of realizations of particle orientation.  The results are displayed in 

Table 6-2. 
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Table 6-2 Percentage error of reconstructed polarizability for different shapes of particles, 
different field orientations, and different number of realizations for the case of a linearly 

polarized excitation field ( 0, 0    ). 

 Realizations 

, ,    500 1000 2500 5000 

3,3,1 3.6 2.9 2.3 1.0 

3,2,1 3.1 2.0 1.7 0.8 

ψ
 =

 0
 

3,1,1 4.0 2.9 2.0 1.2 

3,3,1 4.6 3.4 2.1 1.1 

3,2,1 4.2 2.4 1.5 1.1 

ψ
 =

 π
/6

 

3,1,1 4.9 3.7 2.3 1.7 

3,3,1 5.9 4.1 3.9 1.8 

3,2,1 5.6 3.8 3.0 1.4 

ψ
 =

 π
/4

 

3,1,1 9.2 5.2 3.1 2.3 

3,3,1 11.0 7.8 7.4 4.2 

3,2,1 10.3 6.5 4.3 3.4 

ψ
 =

 π
/3

 

3,1,1 14.6 10.8 9.4 7.7  

Examining the results in Table 6-2, one can easily see that there is a strong dependence of 

the reconstruction error on the polar angle  . In the case when   equals / 2 , the electric 

field vector is co-directed with respect to the path to observation point, and the measured 

intensities no longer depend on orientation of the polarizer. In this situation, the equations for the 

x and y-components of cross-spectral density matrix are not independent anymore.  However, it 

is remarkable that in the case when the polar angle   is less than / 3 , the original values of 

anisotropic polarizability can be recovered within about 2 percent. 

In order to illustrate the accuracy of the proposed method for reconstructing unknown 

polarizabilities, let us consider the simple example of scattering from a GaP nano-rod (refractive 

index of 3.37), which is 100nm long and has an aspect  ratio of 1/10.  In this case, after 5000 
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intensity measurements for different orientations of nano-rod, we are able to retrieve the ratio of 

polarizability tensor components / 0.20 0.05b a    , which is in very good agreement with the 

exact value / 0.199b a   .  The two examples discussed here exemplify experimental situations 

where the incident field is unknown. Of course, the general expressions in Eq.(6.10) can be 

simplified and may also be used in situations where the experimental geometry allows for an 

alignment of the incident field to some known incident polarization.  

  (1) 2
1

(1)
1

(2) 2 2 4
1 1 2

4
,

5
3

,
5
6 3

8 8 .
35 7

x

y

xx
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M

M

 



    

 



     
 

 (6.17) 

In this case, an ideal experimental geometry would consist of a linear excitation and a 

measurement performed along a co- and a crossed direction of polarization.  Notably, in this 

particular situation, it is possible to retrieve the morphological information about the scatterer 

without the need for correlated intensity distributions.  Practically, this means that two 

independent intensity distributions can be recorded at different times or locations for a randomly 

oriented scatterer.  This approach may be of interest in situations where the scattered intensity is 

very small, and the requirement to measure correlated polarimetric intensity distributions can be 

a daunting task.  

The above situation can be simplified even further when it is known a priori that the 

scatterer is rotationally symmetric.  In this case, it is possible to obtain the shape aspect ratio by 

performing only a single measurement that is co-polarized to the linear excitation in a manner 

similar to an earlier suggestion [109].  In this situation, the first and second moments of the 



 

 
 
 
 

 

131

detected distribution allow for such a quantification and the obtained expressions reduced from 

Eq.(6.10).  

6.1.3. Near-Field Stochastic Scattering Polarimetry 

Another application of particular interest to this dissertation is for the practice of near-

field optical microscopy (NSOM). In this case, a sample is locally excited by either the field 

emitted through a tapered optical fiber with an aperture much smaller than the wavelength or by 

the field created around a sharp metallic tip placed in the close proximity the sample. The 

polarization state of the excitation field is usually unknown but the procedure of analyzing 

fluctuations of the scattered intensity can still be used even in this situation.  

P

Detector

PP

Detector

 

Figure 6-2 The geometry of  near-field scattering polarimetry. The probe of near-field 
microscope P scans the heterogeneous  sample having regions  dV  with uniformly oriented 

polarizability. 

When a material system is optically inhomogeneous, its properties are described by the 

local polarizability. For a large class of materials where the inhomogeneities are on a scale much 

smaller then the radiation’s wavelength, one can consider that this polarizability is constant in 

magnitude and orientation within some volume of interaction dV  determined by the 
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characteristics of the near-field probe (i.e. aperture size, tip sample separation, etc). One can 

further assume that this effective polarizability only changes its orientation from point to point 

and, during a scan, all possible orientations of the effective polarizability are realized (Figure 

6-2).  

As opposed to the previous examples discussed, the field emerging from or surrounding 

the tip of a near-field microscope (NSOM) is highly non-uniform. For a transmission aperture 

NSOM, for instance, a common approach is to approximate this with the field produced by 

diffraction from a small aperture in a perfectly conducting screen [110,111]. The details of 

calculating the field diffracted through such an aperture are provided in Appendix 0.  The 

interaction between this inhomogeneous electromagnetic field and a specific material system is 

complex and, in most cases, cannot be described analytically.  The alternative is to use numerical 

techniques, such as the coupled dipole approximation (CDA), to calculate the scattering resulting 

from this interaction.   

To illustrate the procedure of stochastic polarimetry outlined before, we have used CDA 

to simulate the near-field scanning of a material consisting of an array of tightly packed 

anisotropic dipoles which are locally oriented in the same direction. The far-field scattered 

intensities were recorded in the backward direction, as in the conventional NSOM reflection 

mode shown in Figure 6-3. The recorded far-field intensity ensembles were polarimetrically 

analyzed and the components of the polarizability tensor of the individual particles were 

calculated according to the method of stochastic polarimetry. 
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Figure 6-3  Reconstructed polarizability (the c-component of diagonalized polarizability tensor) 
as a function of normalized domain volume /d mV V  where dV  is the volume of uniform 

orientation of anisotropic polarizability and mV  is the volume of interaction (solid line). Dashed 

line shows the exact value of polarizability. The parameters of CDA simulations are: tip-sample 
separation 10nm, modeling cube of 0.8 wavelength in size with 34 10  dipoles. 

The results of anisotropic polarizability reconstruction in near-field geometry are shown 

in Figure 6-3. Every data point represents the result of averaging over 3000 realizations. As can 

be seen, the value of the calculated polarizability depends on the dimensions of the domain of 

uniform polarizability. Of course, the intrinsic values of the polarizability ( / 0.695c a  ) are 

recovered only when this domain volume is equal or larger than the volume of interaction. In 

practice, this volume of interaction depends on a number of factors including sample properties, 

tip characteristics, detection system and the average intensity of excitation [P1]. In the present 

simulation, the volume of interaction occupies almost the entire modeling volume of 

approximately 3(0.8 ) , where   is the wavelength of incident field. Interestingly, our 

simulations indicate that this volume of interaction does not depend on the size of the tip’s 

aperture. This may happen because the volume of interaction has dimensions such that the field 

emerging from the tip appears to originate from a point dipole. Accordingly, the size of the tip’s 

aperture effectively influences only the amplitude of this dipole field and does not change the 
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overall field distribution. In the opposite situation, when there is a significant averaging over the 

material structure within the volume of interaction, the resulting polarizability will correspond to 

some effective value depending on both the intrinsic material properties and structural 

morphology.  

As a final observation we should note that the CDA simulations show that it is possible to 

reconstructing the intrinsic polarizability of an anisotropic material,  modeled as a collection of 

individual dipoles,  even when  accounting for the coupling between material’s constituents. 

Moreover, a successful reconstruction can achieved even when the excitation field is the non-

uniformly distributed over the region of interaction. 

Before exploring further developments, one should emphasize the main characteristics of 

this general concept of stochastic scattering polarimetry.  Essentially, we have demonstrated that 

the diagonal elements of the anisotropic polarizability tensor can be obtained by analyzing the 

statistical moments of polarimetrically measured intensity distributions. Most importantly, this 

information about the polarizability tensor can be recovered even in situations when the state of 

polarization of the incident field is unknown. In addition, the method of stochastic scattering 

polarimetry can be used to reconstruct the values of anisotropic polarizability both in the case of 

interacting nano-particles excited by uniform fields as well as in the case the non-uniform 

excitations that may occur, for instance, in near-field measurements. 

6.2. Task Optimized Stochastic Scattering Polarimetry 

In some situations, the polarizability tensor is constant, and can be directly related to the 

shape of a scattering particle [112,113]. However, there are circumstances when the 

polarizability tensor varies during the measurement; its change may be either in time, 

modifications of shape for instance, or from object to object when an entire ensemble is 
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examined. Typical examples include systems such as structurally dynamic macromolecules like 

DNA, nanoparticles formation in microfluidic environment [106], liquid drops containing 

scattering particles [100,113], or effective inhomogeneous scatterers observed in near-field 

microscopy [P1]. In all these cases, it is not the exact shape of one specific realization that 

determines the meaningful optical properties, but rather some effective polarizability that 

statistically represents the internal structure [P1].  

As mentioned before, in general, for nonabsorbing particles, the polarizability tensor is 

symmetric and contains six independent components; these 6 components define the magnitude 

and the orientation of a scatterer.  Experimentally, the 6 elements can be determined based on six 

independent measurements of scattered intensities, using different excitation fields.  For 

example, as discussed in Section 5.3, a straightforward method is to use sequential excitation 

fields polarized along three orthogonal directions while measuring scattered intensities in two 

orthogonal states of polarization. Once the entire symmetric tensor is retrieved, its diagonal form 

and the corresponding angles of rotation can be found using the eigenvalue/eigenvector 

decomposition 1
diagV V    where V (the columns of eigenvectors) represents some rotation 

matrix operating on the diagonalized polarizability tensor (eigenvalues) Eq.(5.12) 

.Usually, it is these three numbers, the eigenvalues, that one is interested in when trying 

to characterize a scattering object. Of course, alternative implementations can be pursued 

involving different geometrical orientations of sources and detectors, but all procedures will 

require six independent measurements to be recorded simultaneously, i.e. for the same 

orientation of the scattering particle. This constitutes a fully deterministic and complete approach 

to the polarimetric problem. In practice however, its complexity may preclude any direct 

application.  
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The expressions developed in the above Section 6.1 for SSP are specific to the situation 

where the anisotropic polarizability of the scattering object is fixed throughout the measurement 

process. Another application for this inversion procedure applied to stochastic measurements is 

for reconstructing a varying anisotropic polarizability. In this case, the result of a measurement 

will be expressed in terms of the probability distributions of the diagonal elements of the 

polarizability tensor.  

Let us consider the situation of an optically inhomogeneous material system, where it 

may be considered that the dielectric properties vary randomly. From symmetry considerations, 

it follows directly that there is no preferential structuring of the anisotropic polarizability tensor; 

i.e. the main axis of the polarizability tensor is uniformly oriented in space. This implies that the 

three diagonal elements describing the anisotropic polarizability are random variables having the 

same governing probability density functions (PDF): ( ) ( ) ( )a a b b c cf f f    . In solving the 

stochastic problem, such symmetries can be exploited to reduce the number of necessary 

polarimetric measurements as we will show in the following.   

Let us consider now the case of a small, optically inhomogeneous scatterer that is excited 

by a linearly polarized plane wave. Changes in internal structure of scatterer determine 

fluctuations of scattered field [114]. The magnitude of the scattered field polarized along the 

same direction as the incident field is  

  
1 2 3

1 2 3

( , , ) ( , , ) ( , , ) ,

( , , ) ( , , ) ( , , ) 1,
s a b cE v v v

v v v

           
        
  

  
 (6.18)

where 1,2,3( , , )    describe the orientation of the anisotropic polarizability and are functions of 

the random rotations along the Euler angles , , and  :  
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

 (6.19)

If we treat 1,2,3( , , )     and the diagonal elements , ,a b c  of the polarizability tensor as 

random variables, then the stochastic equation Eq.(6.18) represents a relation between the PDF 

of the measured field ( )E sf E  and the PDF’s characterizing the random variables , ,a b c . Our 

problem has now been reduced to solving Eq. (6.18) for the unknown PDF’s ( )af x , ( )bf x , 

( )cf x  using the PDF ( )E sf E  of the measured co-polarized component of the scattered field.    

To solve Eq.(6.18), it is necessary to know the joint probability distribution for the 

random variables a , b , c . In the simplest case, one can assume that a , b , c  are 

independent and proceed as follows.  First, the solution of Eq.(6.18) should be found that relates 

the moments of known probability functions of the random variables sE ,  ,  ,  to the 

moments of the unknown probabilities of a , b , c . Using Eq.(6.18) and Eq.(6.19) one can 

derive expressions relating the moments of the measured intensity distribution ( )E sf E  to the 

moments of the unknown governing the polarizability distribution ( )af x . The n-th order 

statistical moment is found from  1 2 1 2(1 )
nn

s a b cE v v v v d  


       , where   is the 

solid angle. Taking into account that a , b , c  are chosen independently from the same 

distribution, we finally obtain the following relationships between the moments (or equivalently, 

the cumulants) of the measured distribution and those  of the governing distribution of the 

unknown probabilities 
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  2
2 2 3 3

3 3 3
, , ,

5 5 7s E a a E aE           (6.20)

where a b c       is the mean, a  is the variance of the distribution   , and nE , 

na  are n-th order cumulants for distributions the  sE , and   , respectively. Thus, we have 

established relationships between the moments or the cumulants of some governing distribution 

of polarizability elements and the moments of the measured distribution of the scattered intensity 

(assuming that the polarizability is real and for linear excitation, the field is the square root of the 

intensity).  

The next step is to restore the probability distribution function ( )af x  from its moments. 

For distribution functions that are close to Gaussian shapes, this can be done by using the so-

called Edgeworth expansion [115]. Working with the cumulants expansion up to the third order, 

one obtains the following approximate expression for the PDF of the distribution governing the 

statistical properties of )(af : 

  2 2 3
3

3 3

exp[ ( ) / 2 ] ( ) 3( ) 1
( ) 1

62
a a

a
a a aa

f
       

  

          
   

 (6.21)

Note that the probability distribution in Eq. (4) contains the components of polarizability 

tensor mixed by angle averaging; to find the effective anisotropic properties of the 

inhomogeneous scatterers, the elements a , b , c  must be ordered. Of course, during a 

deterministic recovery, one could easily arrange that a > b > c  such that they have the physical 

meaning of ordered eigenvalues of the scattering problem. A similar ordering can also be 

performed in the stochastic problem by acting directly on the probability distribution given in 

Eq.(6.21).  
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Thus, in the third step of our procedure, after the governing PDF in Eq.(6.21) has been 

found, the probability distributions of the ordered diagonal elements can be recovered through 

order statistics, i.e. ( ) ( ) ( )a b c    . The distributions of the ordered diagonal tensor elements 

 ( )x kf x  ( 1,2,3k  ), can be evaluated from the original probability distribution function ( )f x  

and the cumulative distribution function ( )F x  [116] 

              313!
1

1 ! 3 !

kk

x kf x F x F x f x
k k

 
 

 (6.22)

It is worth noting that, for a PDF ( )af x  of the form in Eq.(6.21), the mean values of 

ordered components of the polarizability ( )a , ( )b , ( )c  can be analytically evaluated to be 
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    

 (6.23)

These expressions are useful in practice when simply the averages and not the entire distributions 

of the diagonal elements are required. 

A numerical experiment was conducted to test the outlined procedure for reconstructing 

( )a , ( )b , ( )c . We considered the interaction volume to be an optically nonuniform 

sphere with a radius much smaller than wavelength. Inclusions with some specific 

polarizabilities were randomly placed within the volume of the host sphere. In this situation, the 

electromagnetic interaction is restricted to the subwavelength volume of the host sphere while 

the number of inclusions is kept constant from realization to realization of random packing.  A 
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Metropolis Monte Carlo (MMC) algorithm of packing inclusions was implemented, such that a 

large number of realizations can be obtained efficiently.  To verify the successful packing of hard 

spheres, the pair correlation function was calculated and compared to the analytical 3D Percus-

Yevick solution [32]. For each realization of random packing, the optical response of the 

inhomogeneous sphere was modeled using the coupled dipole approximation (CDA) method 

[31].   

The procedure for generating optically inhomogeneous spheres was repeated two 

thousand times and, for each realization, the three diagonal elements 0
, ,a b c  of the   polarizability 

tensor were calculated using the fully deterministic method based on six independent 

measurements as described in the introduction. The procedure of reconstructing the anisotropic 

polarizability was first verified through modeling a randomly oriented anisotropic object with a 

known degree of anisotropy.  In the mean time, we have also evaluated the scattered intensity for 

each realization of the random packing and constructed the ensemble  ( )E sf E  after which the 

stochastic reconstruction procedure was applied to determine the averages values of the diagonal 

elements of the polarizability distribution. Numerical analysis shows that for moderate volume 

fractions of inclusions, the polarizability distributions are nearly Gaussian distributed and 

described well using Eq.(6.21). In Figure 6-4, we show the error 0 0
( ),( ),( ) , , , ,( ) /a b c a b c a b c    

of reconstructing the polarizability tensor components , ,a b c  using the procedure outlined before 

in comparison to values 0
, ,a b c   obtained via the fully deterministic method. The reconstruction 

error is plotted as a function of volume fraction of inclusions and, as one can see, its value is 

quite small, well within 0.1%.  The non-monotonic error for small concentrations can be 
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attributed to the fact that the probability distributions may no longer be described by a Gaussian 

distribution.   
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Figure 6-4Error in reconstructing the polarizability tensor components, a (dashed green line), 

b  (solid red line), and c (dotted blue line), as a function of concentration of inclusions within 

the sphere of interaction. The number of inclusions is constant in (A) and it varies in (B) (see 
text). The calculations are performed for a host sphere with radius 0.16sr   and refractive 

index 1.33sn   which contains inclusions of radii 0.05ir   and refractive index 2.9in  .  

Figure 6-4(B) presents the results of the recovery method applied to a material system 

where the mechanism of confining the volume of interaction is different. In this case, the 

interaction is confined by a localized excitation but no restriction is placed on the number of 

inclusions. The volume fraction of inclusions is now evaluated over the entire ensemble of 

realizations of random packing. This second case corresponds, for example, to scanning of an 

inhomogeneous medium with the local excitation produced by a near-field optical microscope. 

Such a situation further complicates the scattering statistics as, in addition to structural 

fluctuations, further variations of the scattering intensity arise due to different numbers of 

inclusions for each realization of the inhomogeneous scatterer.  As a result, one can see that the 

reconstruction error is larger in this case and can reach up to 40% at very low volume fractions. 

Technically, this rather large error occurs, because the fluctuation in the number of inclusions 
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infringes upon our assumption about the independence of polarizability tensor components. 

Indeed, a change in the number of inclusions in the excitation volume leads to simultaneous 

variations in all three components of polarizability tensor; the number fluctuations induces 

correlations between tensor’s diagonal elements. The reconstruction procedure should now 

account for the fact that a , b , c  are no longer independent, and that they are governed by 

some joint distribution function.  

In the more general situation of both structural and number fluctuations, we can estimate 

bounds for the possible values of the ordered a , b , c  [116]: 

  1/ 2 1/ 2

( )

3 1
, 1, 2, 3,

4a r a

r r
r

r r
                  

 (6.24)

where (1),(2),(3) ( ),( ),( )c b a  . According to Eq.(6.24), for an arbitrary joint PDF we have 

( ) ( ) 6a c a    . In comparison, when using Eq.(6.23) for the case of independent a , b , c  

one obtains 

  
5

2
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)()(
32

3

a

aa
ca 





 
. 

(6.25)

The bounds expressed in Eq.(6.24) are valid for an arbitrary correlation between the 

polarizability components [116]. Thus, the values of the polarizability tensor elements that can 

be recovered using the fully deterministic method based on six independent measurements 

should lie within these bounds.  Comparing Eq.(6.23) with Eq. (6.24), one can see that the 

maximum error of reconstruction of difference maximal and minimal values of polarizability 

tensor ( ) ( )( )a c   resulting from the assumption about independence of polarizability 

components is about 45%. This is a rather large error, but one has to remember that its value 
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characterizes an inversion procedure in which an anisotropic tensor is reconstructed based on 

ensemble of intensities obtained only with a single polarimetric measurement.  

The accuracy of reconstruction can be improved if additional measurements are available 

as we will show in the following. First, we note that in many cases of interest the distribution 

   resembles a Gaussian distribution. In Ref.[ 117], it was shown that it is possible to establish 

relationships between the moments of order statistics of dependent and independent variables of 

normal distribution. Using our definitions, these relations can be written as  

   1/ 2
( , , ) ( , , )( ) (1 )a b c a b c         . (6.26)

where  2 2/a b a       is the covariance. To estimate the polarizability 

components accounting for their possible correlations, one can always make certain assumptions 

about the scattering object. For instance, in the case of a fluctuating number of inclusions, the 

covariance   can be estimated using the corresponding pair-distribution functions [118]. From 

Eq.(6.26), one can then find the real, correlated polarizability components ( , , ) ( )a b c 
 
using the 

values ( , , )a b c  evaluated under the assumption of their independence.  

However, the possible correlations between the elements of the polarizability tensor can 

also be found without any a priori information entirely on the basis of polarimetric 

measurements. First, we note that these correlations influence directly the magnitude of the 

second and higher order moments:  

  2 21
(3 2 )

5s a bE     . (6.27) 
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In order to obtain both 2  and a b   at the same time, a second polarimetric 

measurement is necessary. For example, one can measure the scattered intensity through a 

polarizer orthogonal to the incident direction of polarization  

  2 21
( )

5 a bE      . (6.28) 

and from the last two equations one can obtain 

  2 2 2 2 23 , 2 .a b s sE E E E        (6.29)

Finally, using Eq.(6.29) and Eq.(6.26), the polarizability components can be found even 

in the case of arbitrary correlations between them. We would like to point out here that, 

remarkably, the two polarimetric measurements allow finding the covariance of the polarizability 

tensor components without knowing the nature of their correlations. 

The practical reconstruction procedure can now restructures as follows. First, one must 

record fluctuations of scattered intensities and build corresponding ensembles for two 

polarization states, i.e. to perform two polarimetric measurements from which  , 2 , 

a b   are estimated. Second, one should reconstruct the polarizability components according to 

formula (6) as if they were independent. Finally, using Eq.(6.26) one can calculate the 

polarizability components that account for possible correlations between them.  

This procedure based on two polarimetric measurements is now applied to the same 

scattering systems illustrated in Figure 6-4. As can be seen, there is only a small difference 

between the results in Figure 6-4(A) and those in Figure 6-5(A) that corresponds to the situation 

of independent polarizability elements.  
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Figure 6-5  Error in reconstructing the polarizability tensor components, a (dashed green line), 

b  (solid red line), and c (dotted blue line), using the two polarimetric measurements method. 

The number of inclusions is constant in (A) and varies in (B); the parameters for the calculations 
are the same as in Figure 6-4. 

The small improvement by a factor of about two in the reconstruction error is due to the 

finite number of scatterers considered in our numerical experiment (a finite sample is in fact a 

type of correlation). Figure 6-5(B), on the other hand, clearly shows that in the case of number 

fluctuations leading to significant correlations between the polarizability elements a , b , c , 

the error of reconstruction drops by two orders of magnitude, which is a significant improvement 

in comparison  to the case of a single polarimetric measurement. The very small error of 

reconstruction still visible in Figure 6-5 is attributed to the fact that real distribution of 

polarizability tensor components differs from Gaussian. As mentioned before, this difference is 

especially pronounced for small concentrations that results in relatively large error of 

reconstruction. 

6.3. Stochastic Polarimetry Applied to Near-Field Measurements 

As pointed our already in  Section 5.3, the localized volume of interaction available using 

the tapered optical fiber of an NSOM generates a scattering response that can be described by an 

effective polarizability.  As discussed through out this chapter, because SSP depends on relative 



 
 
 

 146

fluctuations of statistical ensembles, the secondary interaction may be neglected.  The most 

powerful aspect of SSP as outlined in Section 6.1 is that it may be applied without prior 

knowledge of the exciting field, making it quite appealing to near-field microscopy where control 

of the exact field is difficult.  This, however, requires that the polarizability be of constant 

throughout the measurement.  

Of course, as a first step in describing the polarimetric properties of an inhomogeneous 

material, one could simply consider the scattering due to some effective polarizability tensor that 

is just randomly oriented.  The degree of anisotropy that can be inferred should give some 

indication about the degree of depolarization that occurs in scattering from the medium when 

probed at this scale.  In general, the excitation field emitted from the NSOM’s tip is in  some 

elliptic state and by manipulating the input state of polarization state one could perhaps optimize 

and minimize this ellipticity.  If this is accomplished, then the task optimized treatment outlined 

in Section 6.2 for varying polarizability elements may describe quite accurately  the physical 

situation and require far fewer measurements.  Both of the derived relationships of Section 6.1 

(for a fixed polarizability) and Section 6.2 (for a varying polarizability), yield some effective 

polarizability tensor that best describes the polarimetric scattering from an inhomogeneous 

material to an accuracy that depends on the assumptions made in the relationships derived for the 

moments.  

To illustrate the use of SSP for describing the polarimetric response of  inhomogeneous 

materials two materials with similar properties were chosen and experimentally probed with an 

NSOM.  Sample A was an optical coating consisting of packed particulates of 72.5% calcium 

carbonate, 18.4% kaolin, and 9.1% latex.  Sample B was also an optical coating with a recipe of 

54.5% calcium carbonate, 36.4% kaolin, and 9.1% latex.  The samples were prepared on the 
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same cover slip and placed close proximity such that the two samples could be measured in very 

similar conditions.  The polarization emitted from the fiber was optimized through using an in 

fiber polarization scrambler while looking through a polarizer and maximizing the reflected 

signal when in contact.  The AFM topography and the NSOM intensity are shown below in 

Figure 6-6. 

Topography

Intensity

Sample A Sample B

Topography

Intensity

Sample A Sample B

    

Figure 6-6  AFM measured topography (top) and NSOM measured intensity (bottom) for two 
optical coatings A (left) and B (right). 

The RMS roughness of sample A was found to be 21.7nm whereas sample B had a 

roughness of 12.3nm.  The roughness therefore provides a means of discriminating between the 

two samples; however, we still would like to see how this roughness folds into the entire 

scattering properties.  The average intensity scattered from the two different samples was also 

different at 105kcps and 249 KCPS  However, when examining  the normalized intensity 

distributions as we did in Section 5.2, we can see very similar behavior, sample A having a 

contrast of 0.298AC  , and sample B having a contrast of 0.295BC  .   
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Figure 6-7 Normalized intensity distributions for samples A (blue) and B (red) 

Therefore at these two different average intensities, the two different media (having also 

different roughness) scatter light very similarly.  The larger intensity necessary to provide  

similar statistics for sample B can be related to its smaller RMS roughness that requires  a larger 

interaction volume in order to have a similar level of scattering.   

In order to use SSP we also performed polarimetric measurements along the optimized 

polarization orientation (0˚), perpendicular (90˚) to it, and at the bisection (45˚).  The distribution 

of the polarimetric measurements normalized by the average of the total intensity is plotted 

below in Figure 6-8. 
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Figure 6-8 Polarimetric intensity distributions normalized by the average of the total intensity for 
samples A (A) and B (B). 
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A simple quantitative analysis of the results in  Figure 6-8 clearly indicates that  the 

polarimetric distributions are different for the two media.  As expected, the largest average 

intensity occurs when the analysis is preformed along the direction of incident polarization.  

Another way of presenting the polarimetric information is by plotting the measured polarization 

states on the Poincare sphere as shown below in Figure 6-9.  As no wave plates were used in this 

measurement, we had to assume some handedness for the elliptical states measured.   

BA

 

Figure 6-9 Plot of measured polarization states for samples A (A) and B (B) on the Poincare 
sphere 

 

Having the distribution of Stokes vector elements, we can also calculate the overall 

degree of polarization or, in other words, the incoherent averaging of the Stoke vector.  The 

degree of polarization was found to be 0.948ADOP   and 0.960BDOP  , which confirms that 

the spread in B is more concentrated than A as can be seen in Figure 6-9. 

Having access to the three distributions of polarimetric intensities, we can use the SSP 

procedure described in Section 6.1 and calculate the effective polarizability. Of course, this 

assumes that the scattered intensity distributions are the result of a single anisotropic 
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polarizability tensor that is uniformly oriented over the scanned area of a sample. The diagonal 

forms of the recovered anisotropic tensors are:     

  

,

1 0 0

0 0.752 0

0 0 0.545
A SSP

 
   
  

, and ,

1 0 0

0 0.640 0

0 0 0.631
B SSP

 
   
  

. (6.30) 

As can be seen, the sample A is described by an effective polarizability that is highly  

anisotropic, while the polarizability corresponding to  sample B resembles that of a  rod shape 

scatterer.  As a result of using inverting Eq.(6.10) in addition to the unknown polarizability 

tensor,  we also recover information about the unknown exciting field.  If was found that for 

these measurements: 

  0.74, 0.92 , 0.16 , 0

0.68, 8.53 , 0.28 , 0

A A A A

B B B B





      

      

  

  
. (6.31)

As can be seen by the reconstructed ellipticity and orientation of the ellipse, although we 

optimized the field to be linear exiting the probe, the reconstructed excitation field was found to 

be highly elliptical.  This can be understood as a consequence of assuming the anisotropic 

polarizability to be fixed; as in addition to finding an effective anisotropic polarizability to 

describe the polarimetric fluctuations, this method also finds some effective field distribution.  

Having reconstructed the effective unknown incident field and effective polarizability, 

we can recalculate the distributions performing a numerical simulation of the random 

orientations.  In doing so, we can see how well the constant effective polarizability replicates the 

polarimetric scattering from the inhomogeneous material (Figure 6-10). 
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Figure 6-10 Polarimetric intensity distributions normalized by the average of the total intensity 
measured (solid lines) for samples A (A) and B (B) compared to the fixed anisotropic 

polarizability reconstructed distributions (dashed lines). 

As can be seen in Figure 6-10, keeping the anisotropy fixed leads to sharp boundaries 

corresponding to the maximum and minimum of the polarizability tensor.  The smooth edges of 

the measurements seen in Figure 6-8 are not replicable when both the anisotropic polarizability 

and exciting field are fixed.  However, we can see that for Figure 6-10 (A), the dashed lines of 

the reconstructed polarizability provide a good estimation of the total distribution.  For sample B 

on the other hand, we can see that the model does not accurately replicate the measurements, 

which could be due to the large spread of the measurement along the optimized polarization 

direction.         

As discussed earlier, if we make certain assumptions about the incident field, for 

instance, it was linearly polarized as the experimental geometry was optimized for; we can apply 

the concept of SSP and retrieve the first moments of the varying polarizability elements as 

described in Section 6.2.  Processing the corresponding distribution in the assumed linear 

polarization direction yields normalized diagonal elements of: 
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,

1 0 0

0 0.814 0

0 0 0.618
A Single

 
   
  

, and ,

1 0 0

0 0.878 0

0 0 0.754
B Single

 
   
  

. (6.32)

As we can see, again it appears as though sample A has a higher degree of anisotropy, 

meaning that it redistributes the polarimetric information more than that of sample B.  Having 

only the moments of the effective polarizability from this method we can not make a direct 

comparison with the reconstructed intensity distributions as done in Figure 6-10 .  However, as 

we can see that the anisotropy must not be a constant from the disagreement shown in Figure 

6-10, we can say that this method is more applicable.   

To summarize all of the information in Eq.(6.30), and Eq.(6.32), we can calculate a 

degree of anisotropy as according to Eq.(5.13) to find that for the fixed polarizability: 

  
, 0.297A SSP  , and , 0.277B SSP  . (6.33)

and when we assume a linear excitation, we find:  

  
, 0.236A Single  , and , 0.140B Single  . (6.34)

As can be seen, when treated such that the polarizability elements may vary, there is a 

greater difference observed in the degree of anisotropy between the two samples.  What’s more 

is that that discrimination between the two samples seen in Eq.(6.34) is available from only a 

single polarimetric intensity distribution.   

As we just observed, although having the same scalar descriptors at different interaction 

volumes, these two material systems show different polarimetric responses.  The polarimetric 

scattering can be related to some anisotropy of the internal structure.  To characterize the 

polarimetric response of these random systems, we used the method of stochastic scattering 

polarimetry, which makes use of relative fluctuations to statistically neglect the effects of tip-
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sample interaction.  Based on the available information about the measurements, and certain 

assumptions, SSP allows for different relationships to be derived.   

In the situation where the incident field is unknown, in order to relate the measurement 

fluctuations back to the material system, it is required that the anisotropy be held constant 

throughout the measurement, fluctuations arising only from the orientation.  Interpreting the 

scattered polarimetric distributions with such an assumption lead to a degree of anisotropy 

characterizing the degree of depolarization.  Upon further analysis, it was observed that keeping 

the anisotropy fixed leads to sharp boundaries in the reconstructed polarimetric distributions 

which disagreed with the measurements.  However, for one of the material systems, the 

reconstructed distribution was a good approximation of the actual measurement. 

Of course, if more information about the physical system is available, more accurate 

relationships may be derived following the concepts of SSP.  Knowing the orientation of the 

incident field allows one to account for a varying polarizability, removing the sharp boundaries 

of the polarimetric response.  It was shown that under the assumption of a linear excitation, the 

degree of anisotropy from reconstructed from a single measurement showed a larger difference 

between the two material systems.           

6.4. Summary 

Solving the general problem of scattering from small inhomogeneous objects requires 

solving a linear stochastic equation relating the PDF’s of measured quantities to the unknown 

PDF’s of random variables through a set of coefficients that are themselves functions of random 

variables. Solutions can be found for different specific problems depending on the physical 

origins of the observed fluctuations.  When knowing the distribution of orientations of a 
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scatterer, one can establish a deterministic relationship between the statistical moments of the 

recorded field fluctuations, the moments of the probability functions describing the orientation, 

and the elements of the unknown polarizability tensor describing the scatterer’s shape. Finding 

the solution to this stochastic equation will depend on specific application constraints including 

prior knowledge about the tested physical system.  Most importantly, because this relation is 

established between statistical moments of distributions, one does not need to know the exact 

orientation of the scatterer at any moment in time.  Moreover, if the excitation field is constant 

during the experiment, knowledge about its state of polarization state is not required.   

When information about the exciting field is available, for instance a linear excitation, the 

number of required measurements can be greatly reduced.  We have shown that measurements of 

scattered intensities in one polarization state are sufficient to determine the polarizability tensor 

elements when considering the effective polarizability of an inhomogeneous material. Following 

a similar procedure, task optimized statistical methods may be designed to minimize the number 

of required measurements for a specific application.  

Finally, we should note that employing the uniform distribution is not a conceptual 

limitation of this concept, as the general procedure of stochastic scattering polarimetry can also 

be applied to other distributions depending on the specifics of the experimental application.  

Also, it should be noted that when our method is applied, we obtain information not only about 

polarizability properties but also about properties of exciting field. As such, any known 

information about the material can also be used for probing the local properties of unknown 

electromagnetic fields [80]. 
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CHAPTER 7: CONCLUSIONS AND SUMMARY OF ORIGINAL 
CONTRIBUTIONS 

Light-matter interaction is complicated by the vector properties of both the 

electromagnetic field and the spatially varying properties of most material systems.  Using 

electromagnetic fields as a tool to provide information about material system requires 

understanding how different interaction mechanisms determine variations in measurable signals.  

As discussed through out this dissertation, depending on the nature of the material system under 

scrutiny, the effects of interaction may be neglected (passive probing), exploited (active probing, 

or probing dynamic systems), or statistically isolated (for characterizing complex or 

inhomogeneous materials).  

Probing passively electromagnetic fields close to the surface of a scattering object also 

allows identifying detailed features that depend on the polarization state of the excitation field. 

This information is of fundamental relevance not only for material characterization purposes but 

also for understanding and controlling the properties of intricate photonic structures. We have 

demonstrated that even in the most symmetric case of a single sphere excited by a plane wave, 

the light interaction with the material manifests in a complex polarization structure in the vicinity 

of surface.  Specifically, in the scattering of light that is circularly polarized, a spiral flow of the 

Poynting vector emerges, as expected when considering the conservation of angular momentum.  

Aside from direct applications in the near-field (nano-manipulation, trapping), a complex field 

structure can lead to interesting effects in the far-field.  A spiraling Poynting vector viewed from 

the far leads to a perceived shift in the location depending on the incident field’s polarization.  
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The theoretical prediction was also confirmed in an experiment where this perceived shift was 

identified through a differential intensity measurement using the coupling of a single mode fiber 

scanned above a scattering sphere [P7].  This work demonstrates how a rather simple 

experimental procedure based on a passive measurement can be applied to determine the local 

directionality of the energy flow. 

Controlling and manipulating the polarization properties of an excitation field has 

consequences that determine the subwavelength behavior of optical forces.  As such, the results 

of a field-material interaction can also have useful applications in controlling dynamic systems.  

Unlike solids, dynamic systems are more susceptible to observable modifications of material 

properties in the presence of an electromagnetic field.  Using an extension of CDA for multiple 

interacting objects, one can study their behavior in a controlled manner.  We elucidated the 

underlying physics describing how optically interacting particles converge to stable bound 

locations, and how this effect depends on the incident state of polarization.  Notably, we 

demonstrated that the near-field electromagnetic interaction can provide a new mechanism for 

generating optical torques [P8].  

We have also provided an analysis of the conservative and non-conservative torques that 

arise in coupled sphere systems and how they are determined by the polarization of the exciting 

field.  When the incident field is linearly polarized, the torques are mostly conservative and 

affect only the transient behaviors. For circular polarization on the other hand, the 

nonconservative torques are significant and lead to nontrivial phenomena. In particular, bound 
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systems not only rotate around the common center of but also around their own axes. In the 

intermediate case of elliptically polarized light, the conservative torque will determine a transient 

orbital motion, whereas the nonconservative one will lead to a continuous spin rotation.  The 

whole system can be seen as a ‘nano-mixer’ with complex mutual rotations of constituents. The 

direction and speed of these rotations can be dynamically controlled through the intensity, state 

of polarization, and spatial profile of the incident radiation. Our estimations indicate that effects 

are observable under reasonable environmental conditions [P8].  

The coupled dipole formulism is well suited to arbitrarily shaped objects and excitations; 

with the added development for modeling the near-field probe as an array of dipoles interacting 

with a material system, there are many avenues that one could follow.  As described throughout 

this dissertation, CDA also permits an accurate optical force calculation, and the general model 

we have developed can handle multi-particle systems.  In addition, although not included in this 

dissertation, we extended the applicability of CDA to slabs of inhomogeneous materials, through 

the use of 2D periodic boundary conditions [P4].  This extension currently serves as a full 

vectorial simulation of thin inhomogeneous films.  Future applications foreseen include the 

modeling of optically thick slabs of material through integrating the 2D periodic boundary 

conditions with transfer-matrix approaches, as well as extending the available excitations to 

include incoherent and partially coherent fields. 
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In characterizing complex or optically inhomogeneous media, one single wave-matter 

interaction does not yield much valuable information; rather, a statistical ensemble is required 

such that moments of distributions of the material properties may be discussed.  For such 

materials, a statistical treatment of the near-field is necessary where the image parameters are 

interpreted as random variables.  When the excitation volume is smaller than the wavelength, one 

must also consider scale dependent responses observed due to insufficient averaging of the 

microscopic material properties.  That is, the observed far-field response will depend on the 

mesoscopic volume of interaction.  A simple example of such kind of scattering systems is a 

medium that can be described as an array of independent scattering centers producing fields 

whose amplitudes and phases are random variables depending on the local topographical and 

dielectric properties of the material.  If the structural aspects are, or can be treated as, statistically 

independent random variables, then their individual contributions can be separated.  We have 

found that in this case, a simple random walk model describes well experimental observations 

[P1]. 

A complete description of the volume dependent response from inhomogeneous materials 

requires that the full vectorial scattering situation be addressed.  The mesoscopic response from 

some random material may be interpreted as an array of Rayleigh scatterers with some effective 

polarizability describing the shape and orientation.  Through numerical simulations of different 

random media, we found that there is a scale that corresponds to the maximum degree of 

anisotropy in random media, the length of which depends on the packing structure.  This newly 
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identified scale length corresponds to the size of an average volume where the material is most 

sensitive to the polarization of an applied electromagnetic field [P9]. 

Ideally, one would like to have some means of relating the complicated far-field 

observation of a scale dependence near-field interaction back to the material structure; solving an 

inverse problem.  As with all inverse problems, the method in which the measurement is 

analyzed depends on the physical system, (what is known and unknown) and to the specific 

application at hand.  To solve inverse problems in scattering from subwavelength volumes, we 

developed a general approach known as stochastic scattering polarimetry SSP [P2].  SSP 

involves using moments of measured polarimetric distributions and relating them back to the 

specific material or field property of interest. 

We demonstrated a few possible applications of SSP, one of great interest in near-field 

microscopy, where when generating a highly localized excitation field typically one loses exact 

knowledge and control of the polarization state.  Through looking at fluctuations is that the effect 

of a secondary interaction can typically be statistically separated.  As we demonstrated [P3] 

when the object’s anisotropy is constant through out the experiment, SSP allows for it’s 

reconstruction without the knowledge of the incident state of polarization.    

Having the anisotropy of the object remain fixed throughout the experiment is not a 

restriction, of SSP, and depending on what is known about the probing field, task optimized 
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experimental geometries may be envisioned.  We discussed one such task optimized 

measurement specifically to reveal the scale dependent degree of anisotropy of an 

inhomogeneous material.  Through the use of order statistics and a known excitation, when the 

varying polarizability is uniformly oriented, we demonstrated that a single measurement suffices 

to characterize what deterministically requires 6 [P10].  Following a similar procedure, task 

optimized statistical methods may be derived to minimize the number of required measurements 

for a specific application.  

There many other applications of SSP not explored in this dissertation that may be of 

practical interest.  For instance, if the anisotropy of a small scatterer is known, then probing it 

with a certain field distribution and analyzing the measured fluctuations allows characterizing the 

orientation distribution.  This concept may be used not only for fixed objects but also for 

dynamic systems.     
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APPENDIX: SUPPORTING MATERIALS 
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A.      Derivation of Abbe-Rayleigh Resolution Limit 

Here we present a simple derivation of the Abbe-Rayleigh resolution limit in terms of 

imaging through an optical system.  In the most simple of microscopes, two lenses are used; two 

lenses allow for an easier method of obtaining a highly magnified image without introducing to 

many aberrations.  A simple schematic of a two lens system is depicted below in Figure A-1.    

 

Figure A-1  Schematic of simple two lens imaging system. 

To gather information about how and image is formed, we can begin with specifying an 

arbitrary object function to image as: 

 ,f x y . (A.1)

The relationship between the front and rear focal planes exists through a Fourier 

Transform.  The Fourier transform of Eq.(A.1) can be expressed as. 
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where the Fourier frequencies can be defined as: 
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In Eq.(A.3), we have xR  and yR  as the spatial frequencies, and the angles x  and y  

describe the limiting angles of the system in the different directions.  In the imaging plane, the 

object is recovered through an inverse Fourier Transform.   

         ' ', , , exp ' 'x y x y x y x yf x y F k k F k k i k x k y dk dk
 

 

    -1F  (A.4)

However, any real world microscope has and aperture stop creating a spatial frequency 

cutoff in the Fourier domain.  Also there are aberrations that will also distort the image, making 

resolution even worse.  It is the most important to understand how the microscope is changing 

this spectrum.  If we let then modified spectrum be denoted as 'F  and being modified by a 

function dependent on the microscope, we have the following. 

     ' , , ,x y x y x yF k k F k k g k k  (A.5)

A1.      Rectangular Aperture 

In his first paper in 1873 [119], Abbe considered that the limiting function in the Fourier 

plane can be described in terms of a rect  function with a width dependent on the numerical 

aperture of the system.   
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where oR  is similar to a band pass filter in the Fourier domain.  Ro can be defined in terms of the 

spatial frequency coordinates and thus numerical aperture of the system.  In terms of the: 
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The image formed by the microscope is then the inverse transform of F 



 
 
 

 168

     ' ', ' ', ' ' ", ' " " "f x y f x y g x x y y dx dy
 

 
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If the function g  of the microscope is a rect  function, then the final image will be the 

convolution of the object function with a sinc  function, which defines the cutoff in the spatial 

frequency domain.  To calculate the finest resolution of conventional far-field optics, as in 

example, we would like to image to two point sources separated by a certain distance  .  For the 

first situation, we will work with incoherent light, and work with the interference effects of 

coherent illumination later.  The object function can be defined as: 

 
2 2

f x x x           
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 (A.9)

Since we are dealing with incoherent light, the convolution will be with the intensity of 

the point image function of the microscope or: 

    2
sin 2 og x c R x  (A.10)

Eq.(A.8) is the is the image intensity, which has the analytical expression: 
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At this point, we must define what the criteria should be that constitutes the two objects 

being resolved. As with any measurement threshold, the definition is somewhat arbitrary and, in 

practice, depends on signal-to-noise ratio. Born and Wolf [2] consider the case of two slits to be 

resolved when the maximum of one is located at the first minimum of the second.  Shifting both 

components in Eq.(A.11) by 2 , the resolution limit for incoherent light is found to be: 
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Eq.(A.12) is the well known and common definition for the resolution limit.  Having the 

resolution limit Δ allows us to also define a resolution limit in terms of an intensity threshold.  

Looking at the ratio of the intensity on axis and that of the peak, when the two objects are 

separated by the resolution limit shows that 2 objects can be considered resolved if the intensity 

ratio is smaller than 81%.  This number is specific to the rectangular function used to establish 

the resolution limit. 

Following a similar procedure, the resolution limit for coherent illumination can also be 

derived.  However in this case the object function for will have a phase associated with it; for a 

plane wave at some arbitrary angle we have: 
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 (A.13)

Instead of convolving with the intensity of the point image function of the microscope, 

the convolution will be with the fields associated with it.  Plugging in Eq.(13) into Eq.(8) results 

in: 

    

  

' ' exp sin

             sinc 2 ' sinc 2 ' exp 2 sin
2 2

x

o o x

f x ik

R x R x ik



  

   

                         

, (A.14)

where we can find the intensity to be: 
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                                
                           

. (A.15)

We can see in Eq.(A.15) that the intensity is composed of 3 parts: the two intensities of 

the individual point sources which is equal to the incoherent illumination and some interference 

term.  To see the influence of all three when the two point sources are separated by the common 

definition for the resolution limit, we present Figure A-2.  The numerical aperture was assumed 

to be 1 for an ideal imaging system. 
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Figure A-2 Plot of incoherent illumination (A) and coherent illumination (B) of 2 point objects 
separated by λ/2 

As we can see, Figure A-2 shows that the incoherent case does resolve the two point 

objects, however do to interference effects, the coherent case is not resolved.  It is possible to 

then solve for at what distance the two objects are resolved in terms of this intensity threshold 

established for the incoherent case.  Setting the ratio between the x    and the 0x   to be 0.81; 

solving for Δ, it is found that: 

0.7110
sino n




   (A.16)
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Plotting the coherent case for this separation gives: 
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Figure A-3 Plot of coherent illumination of 2 point objects separated by 0.711λ 

A2.      Circular Aperture 

For most optical systems, the aperture is circularly symmetric, in this case, the 

microscope function can be defined as: 

   ,x y oG k k circ R  (A.17)

Just as before, we can consider the field in the image plane to be the convolution of the object 

function and the Fourier Transform of the instrument function 

   ,x y oG k k circ R            1 12 2
,

2 2
o o

o o

J R x J R y
g x y

R x R y

 
 

  (A.18)

We can calculate the resolution limit in terms of two infinitesimal slits separated by some 

distance Δ, in the case of incoherent illumination where the object function can be written as 

 
2 2

f x x x           
   

. (A.19)

When dealing with an incoherent illumination we need only the intensity of the Fourier 

transform: 
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    2

1 2
,

2
o

o

J R x
g x y

R x




  (A.20)

where: sino o oR n   .  Performing the convolution of a delta function and the incoherent point 

image function we find that the intensity in the image plane is: 

   

2 2

1 12 ' 2 '
2 2

' ' '
2 ' 2 '

2 2

o o

o o

J R x J R x

f x I x
R x R x

 

 

                               
                    

 (A.21)

 

With the same definition of resolution, where we would like to find the separation such 

that the maximum of one contribution corresponds to the minimum of the other; we can shift 

both, and then solve: 

 1 2 0

2 3.8317

0.6098
0.6098

sin
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o
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J R

R

R n







 

 

  

 
(A.22)

Let us also look at the case of coherent slits, we can use the same definition of the object 

function from before. 

       exp sin exp sin
2 2x xf x x ik x ik                

   
 (A.23)

The microscope function again will be in terms of the fields, so we have the following: 

   1 2
,

2
o

o

J R x
g x y

R x




 . (A.24)

The convolution gives the field in the image plane to be 
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, (A.25)

where the intensity can be found as 
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(A.26)
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Figure A-4 Plot of incoherent illumination (A) and coherent illumination (B) of 2 point objects 
separated by λ/2 

As we can see, due to the coherent effect of interference, at a separation of .61λ the two 

slits are not resolved.  So from this definition of Resolution that was established for the 

incoherent illumination, we can find that the 2 points can be resolved if there exist an intensity 

below 73.5% between them. 

0.8190
0.8190
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


    (A.27)
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B.      Convolution Method Details for CDA 

In continuous space, the general problem is solving: 

      1 2 1 1 2, d A r r P r r E r  (B.1)

for P given E and  1 2,A r r
  

.  From the form of    1 2 1 2,A r r A r r 
    

 we can write  

    

   
   

1 1 1

1 2
1 2 1 2

,

' 0 0
'

' ,



 
    

α r A r r

A
A r r

A r r A r r

 (B.2)

This equation can be reformulated, to give us: 

          2 2 1 2 1 1 2' d  α r P r A r r P r r E r  (B.3)

where we can now write: 

        1 2 1 1' 'd  A r r P r r A r P r . (B.4)

We would like to invert the equation for the total field: 

 
 1

1,

( ) , ( ) ( )
N

j j j k k inc j
k k j



 

        P r α A r r P r E r , (6.5) 

which, may now be rewritten as: 

          2 2 2'  α r P r A r P r E r , (B.6)

working in the discrete space, this means: 

   αP A P E  (B.7)

It is only necessary to calculate the interaction for lattice points of unique vector 

separations.  The solution to Eq.(6.5) is much simplified when preformed in the Fourier space.   
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C.      Derivation of Optical Forces 

The Lorentz force equation gives the force acting on a point charge q  in the presence of 

an electromagnetic field [72]: 

 q  F E v B , (C.1)

where here v is the velocity, and E and B are the electric and magnetic fields.  As most 

observable objects are larger than a point charge, typically one considers the change of force 

throughout some volume.  The amount of charge in some small volume V , is related to the 

local charge density  through q V  , making the change in force over some small volume: 

  V    F E v B . (C.2)

It should also be noted that a moving charge density creates a current density J v .  To 

find the total force exerted on the object, it is necessary to integrate over the entire volume V, 

giving the total force: 

 
V

dV  F E J B . (C.3)

Eq.(C.3) is general for arbitrarily sized particles.  However, although equally valid, it is 

not always easy to understand the underlying origins of the force when it is in terms of charge 

and current densities.  Fortunately, there are a number of coupled electromagnetic expressions 

that present the same quantity through different mathematical formalisms.  As we will be calling 

on them many times through out this derivation, it is important to list the most important 

equations in electromagnetism, Maxwell’s equations. Maxwell’s equations in matter are (in SI 

units): 
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0

t

J
t

 
 


  




  


D

B

B
E

D
H




 (C.4)

where we have: 

0

1
0





 

 

D E P

H B M
 (C.5)

Substituting some of the relationships expressed in Maxwell’s equations (Eq.(C.4)) into 

the general force equation Eq.(C.3), yields 

 0 0
0

1

V

dV
t

 


  
         


E
F E E B B . (C.6)

The time derivative in the above expression may be simplified by expanding it as: 

 
t t t

  
   

  
E BE B

B E , (C.7)

and using the relationship from Maxwell’s equations, t   E B , one can write: 

   
t t

 
    

 
E BE

B E E . (C.8)

Considering the above expression, one may readily identify the presence of the well 

known expression for the Poynting vector: 

1
0
 S E B . (C.9)

The presence of the Poynting vector makes sense, as in discussing forces, one would 

expect there to be some dependence on the total energy flux of the exciting electromagnetic field.  
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Substituting the Poynting vector into Eq.(C.8), and Eq.(C.8) back into the expression for the 

Force (Eq.(C.6)) gives  

     0 0 0 0
0

1

V

dV
t

   


 
          


S
F E E B B E E . (C.10)

To simplify this expression, one may make use of some vector identities; namely cross 

product of the curl of a vector may be simplified using: 

                   A B A B B A A B B A   ; (C.11)

which when applied to the electric and magnetic fields gives  

     

     

2

2

1

2
1

2

     

     

E E E E E

B B B B B




. (C.12)

After some rearranging Eq. (C.10) becomes: 

        2 2
0 0 0 0

0 0

1 1 1

2V

dV
t

   
 

   
              


S
F E E E E B B E B  

 

(C.13)

To attempt to gain some physical insight into this other method of expressing the total 

force, one may observe that the second to last term of Eq. (C.13) expresses the gradient of 

potential energy integrated over a volume, a term common when describing forces.  The last 

term in the expression deals with the time dependent change in momentum; and the first two 

terms deal with the non-gradient/non-conservative forces due to the vectoral nature of 

electromagnetic fields.   

In terms of simplifying calculations, the expression for the force in Eq.(C.13) may be 

expressed in a tensorial form: 
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        2 2
0 0

0 0

1 1 1

2
 

 
 

          
 

T E E E E B B E B    , (C.14)

where the elements of T can be found as: 

2 2
0

0

1 1 1

2 2jk j k jk j k jkT E E E B B B  


         
   

. (C.15)

This Tensor T T is known as the Maxwell stress tensor.  The total force may be written now in a 

much more compact expression: 

0 0

V

dV
t

       
S

F T . (C.16)

Making use of the divergence theorem, one may eliminate the volume integral, and instead 

calculate the surface integral: 

0 0

V

d
d dV

dt
   F T a S . (C.17)

Writing the force in this form allows the individual terms to be interpreted as the first term 

corresponding to an integrated shear and pressure at the surface of the object, and the second 

relating to the integrated change in momentum throughout the volume. 

C1.      Electromagnetic Force on a Dipole 

When the size of a scattering particle is much smaller than the wavelength of the exciting 

field, the scattered radiation may be treated as that of an electric dipole.  As the interaction of 

small spheres was discussed many times throughout this dissertation, calculating the analytical 

expression for the total force on such an object is also of interest.  The Lorentz force on an 

electric dipole can be most easily derived by treating the dipole as a pair of equal and opposite 
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charges.  To characterize this charge distribution, it is useful to define the electric dipole 

moment, generally defined as: 

    3
0 0 0

V

d p r r r r . (C.18)

For an array of point charges, the dipole moment becomes: 

   
N

j j
j

q p r r r , (C.19)

which for the two equal and opposite point charges depicted in Figure C-1, is simply  

   q   p r r r . (C.20)
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Figure C-1  Schematic of an electric dipole as two equal and opposite point charges.  These two 
point chares, q+ and q- give rise to a dipole moment p. 

From Eq.(C.1) for the force, one can separate the contributions to the total force as that 

due the electric field, and that of the magnetic field.  The total force due to the electric field is 

found as: 

    elec q   F E r E r . (C.21)

Performing a Maclaurin expansion around r=0: 
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   
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r

F E r E r r E r E r r

F r r E r r r

 


 (C.22)

We can recognize the presence of the dipole moment, allowing the total electric force to 

be written as: 

   0elec  F p E . (C.23)

Now, looking to the magnetic fields contribution to the force in Eq.(C.1) for a dipole gives:  

   mag

d d
q q

dt dt
 

    
r r

F B r B r . (C.24)

Again performing a Maclaurin expansion around r=0 gives: 

         
     2 2

0 0

0 ,

mag

mag

d d
q O q O

dt dt

d
q O

dt

 
 

 
 

     

 
   

 

r r
F B r B r

r r
F B r r

. (C.25)

Substituting in again the electric dipole moment and neglecting the higher order terms 

gives:  

      0 0 0mag

d d

dt dt t

              
p

F B p B p B . (C.26)

Combing Eq. (C.23) and Eq.(C.26) gives the total force on a single electric dipole in 

terms of fields evaluate at the center: 

   d

dt t

        
F p E p B p B . (C.27)

Using Maxwell’s equations ( t   B E ), the above equation simplifies to: 

      d

dt
      F p E p B p E . (C.28)
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A further simplification may be found using the identity in Eq.(C.11) 

                   p E p E E p p E E p   . (C.29)

If the dipole moment if fixed in space, the spatial derivatives are 0, Eq.(C.29) simplifies to: 

          p E p E p E  . (C.30)

A fixed dipole moment also means      p E p E  , such that the force expression is now: 

   d

dt
   F p E p B . (C.31)

Since for our application we are concerned with optical fields, the particle dynamics will 

respond to the time averaged field. For time harmonic fields,    0, expt i t    p r p , 

   0, expt i t    E r E , and    0, expt i t    B r B .  The time averaged force is then 

found from: 

           
2 * * * *

0

1

2

d
d t

dt





       F p p E E p p B B . (C.32)

After integration, the time averaged force is found to be: 

   * *
0 0 0 0

1

2

d

dt
       

F p E p B . (C.33)

For a time harmonic field, 0 0d dt i p p , such that the force is found as: 

   * *
0 0 0 0

1

2
i      F p E p B . (C.34)

Similarly taking the time derivative of the magnetic field, and also substituting into 

Maxwell’s equations, * *
0 01 i  B E , allows the force from a single dipole is found in terms 

of the dipole moment and electric field 



 

 
 
 
 

 

183

    * *
0 0 0 0

1

2
       F p E p E . (C.35)

C2.      Different, Equivalent, Expressions for the Electromagnetic Force on a Dipole 

As stated earlier, due to the many coupled equations in electromagnetics, there are 

different, equivalent, means to express the total electromagnetic force.  Depending on the 

situation, different methods will allow for different interpretation to the physical origin of the 

behavior. 

For a dipole, the electric dipole moment may also be expressed as a function of both the 

exciting field and the intrinsic tensorial polarizability: 

*
0 0p E . (C.36)

For spherical particles, the polarizability may be treated as a scalar.  Substituting a scalar 

polarizability describing the dipole moment into Eq.(C.35) gives:    

    * *
0 0 0 0

1

2
        F E E E E . (C.37)

Looking in the ith direction, the force is may be recast as: 

 *1

2
i

iF   E E , (C.38)

however, this form makes physical interpretation rather difficult.  Separating the force the two 

components of Eq. (C.37) as: 

 

  

1 2

*
1

*

2

1

2
1

2





 

    

     

F F F

F E E

F E E

 . (C.39)
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Applying some basic vector calculus identities, other forms may be found.  As in general 

the polarizability is a complex, one physically intuitive means of expressing the force would be 

in terms of the real and imaginary parts of the polarizability.  Working first on 1F , separating 

the terms gives: 

            * * *1 1 1

2 2 2
           E E E E E E   . (C.40)

Expanding the real part of the first part gives: 

       * * *1

2
     E E E E E E  , (C.41)

After which we may apply the vector identity of Eq.(C.11) to give the relationship: 

         * * * * *          E E E E E E E E E E   , (C.42)

such that Eq.(C.41) becomes: 

       2* * *1

2
        E E E E E E E . (C.43)

Now, 1F  may now be written as: 

           2 * * *
1

1 1
 

2 2
             F E E E E E E E . (C.44)

Turning out attention to 2F , and applying a similar expansion of the real and imaginary 

part of the polarizability gives: 

        
    

* *
2

*

1 1

2 2
1

                                                -
2

 



        

   

F E E E E

E E

 (C.45)

Again expanding the first term gives: 
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       * * *1

2
        E E E E E E , (C.46)

which upon substituting into Eq.(C.45) yields: 

           * * *
2

1 1

2 2
            F E E E E E E . (C.47)

Combining Eq.(C.44) and Eq.(C.47), the total force is found to be: 

           2 * *1 1 1

2 2 2
             F E E E E E . (C.48)

As a final substitution, consider again Maxwell’s equations and that * *
0i  E H  

          2 * *01 1

2 2 2

            F E E H E E . (C.49)

Assuming time harmonic fields, time averaging Eq.(C.9), the time averaged Poynting vector is 

 *1

2
  S E H , (C.50)

which we may readily identify in Eq.(C.49), such that we have: 

        2 *
0

1 1

2 2
           F E S E E . (C.51)

This is the conventional 3 term separation of the forces due to an applied electric field 

onto a single dipole[73,120,121].  The first term known as the gradient force depends on the 

gradient of the intensity of the field; also as this term depends is the only component depending 

on the real part of the polarizability, the real part does not see the phase of the field.  The second 

term is depends on the time averaged energy flux of the applied field.  This term is usually 

referred to as the radiation pressure, and depends on the imaginary part of the polarizability; 

therefore, as the work accomplished by this force is considered loss, it is a nonconservative 

force.  The third term is usually unnamed in the literature, however; recently it was shown that it 
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is related to the spin momentum of the applied field [74].  Let us expand the third term of the 

force as:   

           * * *1

2 4

i 
       E E E E E E   . (C.52)

Using the identity:        B A A B A B A B B A             , one can write: 

       * * * * *         E E E E E E E E E E     For applied fields where 0 E , 

substituting the identity into Eq.(C.52) gives: 

        * *1

2 4

i       E E E E . (C.53)

From which, one may recognize the time averaged spin flux density  *0

4S i




 L E E .  Upon 

substituting in the spin flux density into Eq.(C.53) gives: 

        *

0

1

2 S

 


      E E L . (C.54)

Writing the total force gives: 

       2

0
0

1

2 S

   


       F E S L . (C.55)

The force as expressed in this way allows one to discuss the different physical origins of 

both the conservative and non-conservative components.  The total force is now thought of as: 

 

 

   

2

0

0

1

2

grad press spin

grad

press

spin S



 

 


  

  

 

  

F F F F

F E

F S

F L

. (C.56)
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D.      Sub-sampling and Non-Gaussian Statistics 

 Consider some random process X  composed of n  independent elements.  Each of the 

elements is a random variable picked from the same governing distribution.  We would like to 

evaluate how the statistics (moments) of the ensemble X  evolve with the number of elements 

making the ensemble.  The random process X  can be defined as: 

    1 2, ,...j nX n x x x , (D.1)

having n  independent elements.  The first moment of X is defined as: 

    xE x xf x dx



   , (D.2)

for some probability distribution  xf x .  To find how the first moment evolves with n , 

we can define a new random variable that acts as the first moment of the random process X  

 
1

1 n

j
j

z x
n

  . (D.3)

The mean of z1 is then found using Eq.(D.2): 

 
   1

1

1 n

j j j
j

E z x f x dx
n






 
  

 
 . (D.4)

if each of the elements of the ensemble has the same distribution, then the average first 

moment of 1z  ( X ) is simply: 

    1E z xf x dx 



  . (D.5)

Eq.(D.5) shows that regardless of the number of elements in a subsampled distribution, 

and independent of the governing probability distribution, the mean is constant with sampling.   
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Another useful characteristic is the standard deviation, defined as the square root of the 

variance( var  ), where the variance is defined as: 

        2 2 2 2var [ ] x xE x x f x dx x f x dx  
 

 
       . (D.6)

To find the variance, we can again define a random variable to represent the variance of 

X  

 2

2
2

1 1

1 1n n

j j
j j

z x x
n n 

 
   

 
  , (D.7)

however, because of the correlation between the first and second moment becomes important for 

a small number of elements, the calculation is not as straight forward as the mean.  Another way 

of representing Eq.(D.7) as a summation is: 

 

 2
2 1 2

1 1,

1 1 1
( ,... ) 1

n n

n j j k
j k k j

z g x x x x x x
n n n  

           
    

  , (D.8)

where we have separated the terms dealing with 2x  and x .  The end goal is to calculate 

the moments of 2z .  Because the elements of X are independent the integrals necessary to 

calculate the moments are separable; moreover, because each the elements are identically 

distributed, and      1 2 1 3 ... a bE x x E x x E x x  , we can write 2z  in terms of the correlation of 

some arbitrary random variable bx  of the same distribution independent of jx , and remove the 

sum over k . 

 
' 2
2 1 2

1

1 1 1
( ,... ) 1

n

n j j b
j

n
z g x x x x x x

n n n

         
 , (D.9)

Now '
2z  is simply a sum of independent random variables with a distribution different 

than that of the elements.  As we saw in Eq.(D.4), for a sum of identically distributed 
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independent random variables, the mean is simply n times the average of one of them.  Therefore 

can write the expectation value in terms of two arbitrary independent elements of X ax  and bx : 

 
   ' 2 2

2

1 1 1
1 1a a b a a bE z nE x x x E x x x

n n n
                        

, (D.10)

  To calculate the expectation value of 2z , we can use the characteristic function method 

[122], where the characteristic function for a function of random variables is defined in terms of 

joint probability distribution function.  

 
      21

, 1 exp ,s a a b x a b a bs n is x x x f x x dx dx
n

 

 

     
    , (D.11)

As can be seen in Eq.(D.11) the characteristic function, and therefore the average 

variance of the ensemble X as a function of n depends on the governing probability distribution, 

unlike the first moment.  Therefore, as a simple example, we will look at a Gaussian distributed 

random variable having a PDF: 

 

   2

2
00

1
exp

22
x

x
f x




  
   

 
, (D.12)

where here  and 0  are the mean and standard deviation for an infinite number of elements.  

Because jx  and 0x  are independent there joint distribution is simply the multiplication of there 

mutual distributions.  Plugging in the Gaussian distribution into Eq.(D.11) the characteristic 

function is found as: 

 
   

12 2 2
4 2 20 2
0 02 2 4

0 0

1
, 1 exp 1+ -2is

2is -1-ss

s
s n s

n

   
 

       
   

, (D.13)

After finding the characteristic function, the thN  moment is found from [122]:   
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   

0

N
NN

N s
E x i s

s 

      
, (D.14)

The first moment of z2, the variance of X having n elements is: 

 
2
0

1
var

n

n


 . (D.15)

Taking the square route, finally gives us that the standard deviation as a function of the 

number of elements n in the ensemble X  is found as: 

 
  0

1n
n

n
 

 . (D.16)

We can also look at how the shape changes with n  by calculating the contrast, giving us: 

 

 
1

1
n

nnC n C
n












  , 
(D.17)

Thus, as we can see, for any subsampling of the distribution, the contrast is always smaller than 

the governing distribution.  
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E.      Additional Details for SSP 

E1.      Polynomial Expressions for SSP 

In this Appendix we present the exact form of the polynomials    n
ijP   that enter the 

expressions for the second order moments  2
ijM  in Eq.(8).  In obtaining these results, an 

ensemble average was applied to the product of two intensities i jI I  and then terms containing 

different orders of  1, and 2.  where collected. 
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where the following notations were used:  
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 2 2cos ( ), cos ( ),L K     

1 2 31 , 1 , 1Q K L KL Q L KL Q K KL          . 

(E.4)

The meaning of angles   and   is that depicted in Figure 6-1. 

E2.      Derivation of Rotation of Unknown Incident Field Angle 

There are possible solutions in the case before, however, the equations are not unique 

when L=K, when we are at 45 degree incidence:  If we rotate every measured M by the same 

angle, we would not lose any of the statistics, so in order to find a useful angle we look at the 

first moment and define a useful angle, also in doing this we can eliminate 1 of our 5 unknowns 
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We would like a case when the cross terms are very small for the first moment.  So there 

exist and rotation such that: 

 1 1 1M RM R  (E.6)
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If we are willing to live with sacrificing a little statistical information that will exist in the 

phase, we can make the condition of the real part equal to zero so we can find this unknown 

angle zeta 
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If we have another measurement at 45 degrees with respect to our other orthogonal 

measurements, we can look at this ExEy term.  Also if we look at only the real part of ExEy…  
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All of the moments we are looking at deal with having distributions for 2 orthogonal 

directions.  We can now write these distributions as a function of this new angle, and the three 

measurement distributions taken 
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E3.      Numerically Modeling Near-field Excitation 

There are many different approaches taken to approximate the fields generated in 

emission mode NSOM [123].The simplest model consists of considering the tip to act as a 

electric dipole.  This approximation may describe some of the characteristics of the fields far 

from the tip, however the influence of the tip aperture has a dramatic effect very close to the 

probe.  However, this model can be useful in approximating the coupling between the scattered 

light and the probe.  Another model that has been proposed makes use of the coupled dipole 

approximation discussed earlier [124].  In this situation, the tip is modeled by an array of dipoles 

with properties corresponding to the core, cladding and metallic coating.  This method is a better 

way to model the tip, however the actual dimensions of the aperture and thickness of the coating 

are unique for individual tips and in the statistical situations we are concerned with, perhaps such 

a robust model may not be needed.   

The most common method of modeling the tip is to consider the fields generated from 

diffraction from a small aperture in a perfectly conducting screen.  This was first derived by 

Bethe [125], and then corrected for the near-field by Bouwkamp [110].  The Bethe-Bouwkam 

solutions are both valid in there respective regions.  To have such a mode for our coupled dipole 

excitation, we require the possibility to calculate the fields at any point and have a continuous 

field between them.  There have been a few attempts to join the fields predicted by both 

solutions, however the different approaches take varying amounts of time to calculate and in 

most cases involve numerically evaluating double integrals.       
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The Bouwkamp solution for the field inside the aperture is: 

  (E.13)

From vector diffraction theory, knowing the field in the aperture, we can find it and at arbitrary 

point in the half space z>0 [72] 
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In general, the field at any location in space can be calculated by solving: 
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Where the distance R is defined as: 
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As can be seen in Eq.(E.15), a singularity arises when ρ = a due to the diverging fields 

defined at the edge of the aperture.  It is possible to avoid this diverging integral by integrating 

by parts which gives our final expressions for the tip excitation 
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As a simple demonstration, we can examine the behavior of the above expression for 

both the near and far-fields seen in Figure E-1. 
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Figure E-1 Plot of magnitude of field for different models of field generated by diffraction from 
a small aperture.  Bouwkamp, magnetic dipole, magnetic + crossed electric dipole, and the 

solutions found from evaluating numerically Eq.(E.17) – Eq.(E.19) 
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