24,458 research outputs found

    ALIGNMENT OF BUSINESS STRATEGY AND SUPPLY CHAIN MANAGEMENT: a study of medium-to-large-sized internationalized German companies from an international business student perspective

    Get PDF
    In an increasingly globalized world, effective supply chain management and its alignment with a company’s business strategy is seen as a firm’s competitive advantage. Existing studies, which were conducted in internationally known companies, suggest three main strategies: Lean, agile and leagile supply chain strategies. Lean supply chain strategies in markets with a stable demand follow a cost-minimizing approach. Agile supply chain strategies in markets with an unpredictable demand focus on differentiation, innovation and flexibility in order to fulfill customer-specific demand. Finally, leagile supply chain strategies try to combine lean aspects for a base demand and agile aspects for more customer specification. This study researches internationalized medium-to-large-sized German companies with the purpose of understanding how companies can improve their supply chain management from an international business perspective. Results are based on the analysis of qualitative data collected through 14 semi-structured interviews with employees from the SC or business department. Findings suggest that lean, agile and leagile supply chains exist as described in the literature. Furthermore, the supply chain strategies called ‘project’ SC and ‘capable’ SC were found. Project SCs are used for a fixed period of time in order to conduct customer-specific ventures. They are a specialized version of agile SCs with the difference that they are constructed from scratch. Capable SCs are characterized by delivery reliability and speed and customer closeness in markets with predictable demand. They can be considered an advancement of leagile SCs. Furthermore risk- hedging SC management was researched. Moreover, the changes in strategies over the years were examined and the meaning of increased automation and usage of computerized systems in the context of industry 4.0 were questioned. The results show that changes and technology play different roles according to industry. In conclusion the findings cannot be generalized due to the small sample size. However, the results give an insight into current supply chain management strategies that can lead to the practical implication of integrating the customer more in the SC. In the future SCs could have increased transparency, flexibility, and simultaneity. Further quantitative research is recommended.fi=OpinnĂ€ytetyö kokotekstinĂ€ PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=LĂ€rdomsprov tillgĂ€ngligt som fulltext i PDF-format

    A K-Chart based implementation framework to attain lean & agile manufacturing

    Full text link
    [EN] Lean manufacturing has always ensured production optimization by eliminating wastes, and its implementation has helped in improving the operational performance of the organization since it eliminates the bottlenecks from the processes, thus making them efficient. In lean scenarios, the focus is on “waste” elimination, but in agile manufacturing, the focus is on the ability of comprehension of changing market dynamics and the resilience. One of the major factors in the combined implementation of lean and agile approaches is inadequate planning, monitoring and lack of awareness regarding changing market trends, and this can be countered by utilizing the effective tool of K-Chart. Through a systematic literature review, the authors establish the requirement of effective planning and monitoring in the implementation of integrated lean and agile approach, concluding that K-Chart is a handy tool to adopt for their effective implementation. The result provides a new vision of lean implementation through K-Chart, whereas it provides clarity to practitioners by presenting a K-chart based implementation framework for achieving favourable results. Being a literature review the research work can be validated through a case study approach in future through a comparative analysis between various implementation techniques and K-Chart.Zaheer, S.; Amjad, M.; Rafique, M.; Khan, M. (2020). A K-Chart based implementation framework to attain lean & agile manufacturing. International Journal of Production Management and Engineering. 8(2):123-135. https://doi.org/10.4995/ijpme.2020.12935OJS12313582Abdullah, M. K., Mohd Suradi, N., Jamaluddin, N., Mokhtar, A. S., Abu Talib, A., & Zainuddin, M. F. (2006). K-chart: a tool for research planning and monitoring. J. of Quality Management And Analysis, 2(1), 123-130.Abdullah, M. K., Suradi, N. R. M., Jamaluddin, N., Mokhtar, S., Talib, A. R. A., & Zainuddin, M. F. K-chart: a tool for research planning and monitoring, 7.Abdulmalek, F. A., & Rajgopal, J. (2007). Analyzing the benefits of lean manufacturing and value stream mapping via simulation: A process sector case study. International Journal of Production Economics, 107(1), 223-236. https://doi.org/10.1016/j.ijpe.2006.09.009Abu, F., Gholami, H., Saman, M. Z. M., Zakuan, N., & Streimikiene, D. (2019). The implementation of lean manufacturing in the furniture industry: A review and analysis on the motives, barriers, challenges, and the applications. Journal of Cleaner Production, 234, 660-680. https://doi.org/10.1016/j.jclepro.2019.06.279Alfaris, M., Edikuncoro, G., Savitri, A., Yogiari, D., & Sulistio, J. (2019). A Literature Review of Sustain Enterprise Resource Planning. Paper presented at the IOP Conference Series: Materials Science and Engineering. https://doi.org/10.1088/1757-899X/598/1/012128Anand, G., & Kodali, R. (2010). Development of a framework for implementation of lean manufacturing systems. International Journal of Management Practice, 4(1), 95. https://doi.org/10.1504/IJMP.2010.029705Anvari, A., Ismail, Y., & Hojjati, S. M. H. (2011). A Study on Total Quality Management and Lean Manufacturing: Through Lean Thinking Approach. World applied sciences journal, 12(9), 1585-1596.Baker, P. (2006). Designing distribution centres for agile supply chains. International Journal of Logistics Research and Applications, 9(3), 207-221. https://doi.org/10.1080/13675560600859136Baramichai, M., Zimmers, E. W., & Marangos, C. A. (2007). Agile supply chain transformation matrix: an integrated tool for creating an agile enterprise. Supply Chain Management: An International Journal, 12(5), 334-348. https://doi.org/10.1108/13598540710776917Bhamu, J., & Singh Sangwan, K. (2014). Lean manufacturing: literature review and research issues. International Journal of Operations & Production Management, 34(7), 876-940. https://doi.org/10.1108/IJOPM-08-2012-0315Bhasin, S., & Burcher, P. (2006). Lean viewed as a philosophy. Journal of Manufacturing Technology Management, 17(1), 56-72. https://doi.org/10.1108/17410380610639506Botti, L., Mora, C., & Regattieri, A. (2017). Integrating ergonomics and lean manufacturing principles in a hybrid assembly line. Computers & Industrial Engineering, 111, 481-491. https://doi.org/10.1016/j.cie.2017.05.011Carvalho, H., Azevedo, S. G., & Cruz-Machado, V. (2012). Agile and resilient approaches to supply chain management: influence on performance and competitiveness. Logistics Research, 4(1-2), 49-62. https://doi.org/10.1007/s12159-012-0064-2Chen, J. C., Li, Y., & Shady, B. D. (2010). From value stream mapping toward a lean/sigma continuous improvement process: an industrial case study. International Journal of Production Research, 48(4), 1069-1086. https://doi.org/10.1080/00207540802484911Christian, P.H., Zimmers Jr, E.W. (1999). Age of agile manufacturing puts quality to the test. Quality Progress, 32(5), 45.Chun Wu, Y. (2003). Lean manufacturing: a perspective of lean suppliers. International Journal of Operations & Production Management, 23(11), 1349-1376. https://doi.org/10.1108/01443570310501880Constantinescu, C., Matarazzo, D., Dienes, D., Francalanza, E., & Bayer, M. (2014). Modeling of system knowledge for efficient agile manufacturing: Tool evaluation, selection and implementation scenario in SMEs. Procedia CIRP, 25, 246-252. https://doi.org/10.1016/j.procir.2014.10.035Costantino, N., Dotoli, M., Falagario, M., Fanti, M. P., & Mangini, A. M. (2012). A model for supply management of agile manufacturing supply chains. International Journal of Production Economics, 135(1), 451-457. https://doi.org/10.1016/j.ijpe.2011.08.021Duguay, C. R., Landry, S., & Pasin, F. (1997). From mass production to flexible/agile production. International Journal of Operations & Production Management, 17(12), 1183-1195. https://doi.org/10.1108/01443579710182936Elkins, D. A., Huang, N., & Alden, J. M. (2004). Agile manufacturing systems in the automotive industry. International Journal of Production Economics, 91(3), 201-214. https://doi.org/10.1016/j.ijpe.2003.07.006Elnadi, M. (2015). An innovative framework for implementing lean principles in product-service system.Fagerholm, F., Ikonen, M., Kettunen, P., MĂŒnch, J., Roto, V., & Abrahamsson, P. (2015). Performance Alignment Work: How software developers experience the continuous adaptation of team performance in Lean and Agile environments. Information and Software Technology, 64, 132-147. https://doi.org/10.1016/j.infsof.2015.01.010Gani, W., & Limam, M. (2013). On the use of the K-chart for phase II monitoring of simple linear profiles. Journal of Quality and Reliability Engineering, 2013. https://doi.org/10.1155/2013/705450Ghobadian, A., Talavera, I., Bhattacharya, A., Kumar, V., Garza-Reyes, J. A., & O'Regan, N. (2020). Examining legitimatisation of additive manufacturing in the interplay between innovation, lean manufacturing and sustainability. International Journal of Production Economics. 219, 457-468. https://doi.org/10.1016/j.ijpe.2018.06.001Ghobakhloo, M., & Azar, A. (2018). Business excellence via advanced manufacturing technology and lean-agile manufacturing. Journal of Manufacturing Technology Management, 29(1), 2-24. https://doi.org/10.1108/JMTM-03-2017-0049Goldsby, T. J., Griffis, S. E., & Roath, A. S. (2006). MODELING LEAN, AGILE, AND LEAGILE SUPPLY CHAIN STRATEGIES. Journal of Business Logistics, 27(1), 57-80. https://doi.org/10.1002/j.2158-1592.2006.tb00241.xGrewal, C. (2008). An initiative to implement lean manufacturing using value stream mapping in a small company. International Journal of Manufacturing Technology and Management, 15(3-4), 404-417. https://doi.org/10.1504/IJMTM.2008.020176Gunasekaran, A. (1998). Agile manufacturing: Enablers and an implementation framework. International Journal of Production Research, 36(5), 1223-1247. https://doi.org/10.1080/002075498193291Gunasekaran, A. (1999). Agile manufacturing: A framework for research and development. International Journal of Production Economics, 62(1-2), 87-105. https://doi.org/10.1016/S0925-5273(98)00222-9Gunasekaran, A., Lai, K., & Edwincheng, T. (2008). Responsive supply chain: A competitive strategy in a networked economy. Omega, 36(4), 549-564. https://doi.org/10.1016/j.omega.2006.12.002Gunasekaran, A., Yusuf, Y. Y., Adeleye, E. O., & Papadopoulos, T. (2018). Agile manufacturing practices: the role of big data and business analytics with multiple case studies. International Journal of Production Research, 56(1-2), 385-397. https://doi.org/10.1080/00207543.2017.1395488Gunasekaran, A., Yusuf, Y. Y., Adeleye, E. O., Papadopoulos, T., Kovvuri, D., & Geyi, D. A. G. (2019). Agile manufacturing: an evolutionary review of practices. International Journal of Production Research, 57(15-16), 5154-5174. https://doi.org/10.1080/00207543.2018.1530478Hines, P., & Rich, N. (1997). The seven value stream mapping tools. International journal of operations & production management, 17(1), 46-64. https://doi.org/10.1108/01443579710157989Immawan, T., Arkeman, Y., & Maulana, A. (2015). Sustainable supply chain management for Make To Stock-Make To Order production typology case study: batik industry in Solo Indonesia. Supply Chain Management (SSCM), 7(11).Inman, R. A., Sale, R. S., Green, K. W., & Whitten, D. (2011). Agile manufacturing: Relation to JIT, operational performance and firm performance. Journal of Operations Management, 29(4), 343-355. https://doi.org/10.1016/j.jom.2010.06.001Iskanius, P., Haapasalo, H., & Page, T. (2006). Requirements for change in a traditional industry to be competitive: transformation towards an agile supply chain. International Journal of Agile Systems and Management, 1(3), 258. https://doi.org/10.1504/IJASM.2006.010942Ismail, H. S., & Sharifi, H. (2006). A balanced approach to building agile supply chains. International Journal of Physical Distribution & Logistics Management, 36(6), 431-444. https://doi.org/10.1108/09600030610677384Jasiulewicz-Kaczmarek, M. (2013). Sustainability: Orientation in Maintenance Management: Case Study. In P. Golinska (Ed.), EcoProduction and Logistics (pp. 135-154). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-23553-5_9Jin‐Hai, L., Anderson, A. R., & Harrison, R. T. (2003). The evolution of agile manufacturing. Business Process Management Journal, 9(2), 170-189. https://doi.org/10.1108/14637150310468380Keyte, B., & Locher, D. A. (2004). The complete lean enterprise: Value stream mapping for administrative and office processes: Productivity Press. https://doi.org/10.1201/b16650Khalfallah, M., & Lakhal, L. (2020). The impact of lean manufacturing practices on operational and financial performance: the mediating role of agile manufacturing. International Journal of Quality & Reliability Management. https://doi.org/10.1108/IJQRM-07-2019-0244Khodeir, L. M., & Othman, R. (2016). Examining the interaction between lean and sustainability principles in the management process of AEC industry. Ain Shams Engineering Journal.Konecka, S. (2010). Lean and agile supply chain management concept in the aspect of risk management. LogForum, 6(4), 23-31.Koskela, L. (1992). Application of the new production philosophy to construction (72). Stanford: Stanford University. Retrieved from http://www.leanconstruction.org.uk/media/docs/Koskela-TR72.pdfKumar, S., Choudhary, A., Kumar, M., Shankar, R., & Tiwari, M. (2006). Kernel distance-based robust support vector methods and its application in developing a robust K-chart. International Journal of Production Research, 44(1), 77-96. https://doi.org/10.1080/00207540500216037Leite, M., & Braz, V. (2016). Agile manufacturing practices for new product development: industrial case studies. Journal of Manufacturing Technology Management, 27(4), 560-576. https://doi.org/10.1108/JMTM-09-2015-0073Lian, Y.-H., & Van Landeghem, H. (2007). Analysing the effects of Lean manufacturing using a value stream mapping-based simulation generator. International Journal of Production Research, 45(13), 3037-3058. https://doi.org/10.1080/00207540600791590Losonci, D., Demeter, K., & Jenei, I. (2011). Factors influencing employee perceptions in lean transformations. International Journal of Production Economics, 131(1), 30-43. https://doi.org/10.1016/j.ijpe.2010.12.022Mamat, R.C., Md Deros, B., Ab Rahman, M.N., Khalil Omar, M., Abdullah, S. (2015). Soft Lean Practices for Successful Lean Production System Implementation in Malaysia Automotive Smes: A Proposed Framework. Jurnal Teknologi, 77(27). https://doi.org/10.11113/jt.v77.6910Maqbool, Y., Rafique, M. Z., Hussain, A., Ali, H., Javed, S., Amjad, M. S., . . . Atif, M. (2019). An Implementation Framework to Attain 6R-Based Sustainable Lean Implementation-A Case Study. IEEE Access, 7, 117561-117579. https://doi.org/10.1109/ACCESS.2019.2936056Marodin, G., Frank, A. G., Tortorella, G. L., & Netland, T. (2018). Lean product development and lean manufacturing: Testing moderation effects. International Journal of Production Economics, 203, 301-310. https://doi.org/10.1016/j.ijpe.2018.07.009Martin, C., & Towill, D. R. (2000). Supply chain migration from lean and functional to agile and customised. Supply Chain Management: An International Journal, 5(4), 206-213. https://doi.org/10.1108/13598540010347334MartĂ­nez SĂĄnchez, A., & PĂ©rez PĂ©rez, M. (2001). Lean indicators and manufacturing strategies. International Journal of Operations & Production Management, 21(11), 1433-1452. https://doi.org/10.1108/01443570110407436Matt, D. T., & Rauch, E. (2013). Implementation of Lean Production in Small Sized Enterprises. Procedia CIRP, 12, 420-425. https://doi.org/10.1016/j.procir.2013.09.072McCullen, P., & Towill, D. (2001). Achieving lean supply through agile manufacturing. Integrated Manufacturing Systems, 12(7), 524-533. https://doi.org/10.1108/EUM0000000006232Mejabi, O. O. (2003). Framework for a lean manufacturing planning system. International Journal of Manufacturing Technology and Management, 5(5/6), 563. https://doi.org/10.1504/IJMTM.2003.003710Metternich, J., Bechtloff, S., & Seifermann, S. (2013). Efficiency and Economic Evaluation of Cellular Manufacturing to Enable Lean Machining. Procedia CIRP, 7, 592-597. https://doi.org/10.1016/j.procir.2013.06.038Moyano‐Fuentes, J., SacristĂĄn‐DĂ­az, M., & JosĂ© MartĂ­nez‐Jurado, P. (2012). Cooperation in the supply chain and lean production adoption: Evidence from the Spanish automotive industry. International Journal of Operations & Production Management, 32(9), 1075-1096. https://doi.org/10.1108/01443571211265701NĂ€slund, D. (2008). Lean, six sigma and lean sigma: fads or real process improvement methods?. Business process management journal, 14(3), 269-287. https://doi.org/10.1108/14637150810876634Nawanir, G., Kong Teong, L., & Norezam Othman, S. (2013). Impact of lean practices on operations performance and business performance: Some evidence from Indonesian manufacturing companies. Journal of Manufacturing Technology Management, 24(7), 1019-1050. https://doi.org/10.1108/JMTM-03-2012-0027Nesensohn, C. (2014). An innovative framework for assessing lean construction maturity. Liverpool John Moores University.Nordin, N., Deros, B.M., Wahab, D.A. (2010). A survey on lean manufacturing implementation in Malaysian automotive industry. International Journal of Innovation, Management and Technology, 1(4), 374.Nordin, N., Deros, B. M., Wahab, D. A., & Rahman, M. N. A. (2012). A framework for organisational change management in lean manufacturing implementation. Int. J. Services and Operations Management, 12(1), 101-117. https://doi.org/10.1504/IJSOM.2012.046676Pawlowski, K., & Pawlowski, E. (2015). Modern manufacturing practices and agile enterprise. Anticipated scope of implementation and empirical results from Polish enterprises. Procedia Manufacturing, 3, 464-471. https://doi.org/10.1016/j.promfg.2015.07.209Rafique, M. Z., Ab Rahman, M. N., Saibani, N., & Arsad, N. (2017). A systematic review of lean implementation approaches: a proposed technology combined lean implementation framework. Total Quality Management & Business Excellence, 30(3-4), 386-421. https://doi.org/10.1080/14783363.2017.1308818Rafique, M. Z., Ab Rahman, M. N., Saibani, N., Arsad, N., & Saadat, W. (2016). RFID impacts on barriers affecting lean manufacturing. Industrial Management & Data Systems, 116(8), 1585-1616. https://doi.org/10.1108/imds-10-2015-0427Rahani, A., & Al-Ashraf, M. (2012). Production flow analysis through value stream mapping: a lean manufacturing process case study. Procedia Engineering, 41, 1727-1734. https://doi.org/10.1016/j.proeng.2012.07.375Rahman, N. A. A., Sharif, S. M., & Esa, M. M. (2013). Lean Manufacturing Case Study with Kanban System Implementation. Procedia Economics and Finance, 7, 174-180. https://doi.org/10.1016/S2212-5671(13)00232-3Rahman, S., Laosirihongthong, T., & Sohal, A. S. (2010). Impact of lean strategy on operational performance: a study of Thai manufacturing companies. Journal of Manufacturing Technology Management, 21(7), 839-852. https://doi.org/10.1108/17410381011077946Rehman, A. U., Alkhatani, M., & Umer, U. (2018). Multi Criteria Approach to Measure Leanness of a Manufacturing Organization. IEEE Access, 6, 20987-20994. https://doi.org/10.1109/ACCESS.2018.2825344Robson, C., & McCartan, K. (2016). Real world research: John Wiley & Sons.Rohani, J. M., & Zahraee, S. M. (2015). Production line analysis via value stream mapping: a lean manufacturing process of color industry. Procedia Manufacturing, 2, 6-10. https://doi.org/10.1016/j.promfg.2015.07.002Rother, M., & Shook, J. (2003). Learning to see: value stream mapping to add value and eliminate muda: Lean Enterprise Institute.Sabbagh, O., Ab Rahman, M. N., Ismail, W. R., & Wan Hussain, W. M. H. (2016). Methodology implications in automotive product-service systems: a systematic literature review. Total Quality Management & Business Excellence, 28(13-14), 1632-1668. https://doi.org/10.1080/14783363.2016.1150169Sahwan, M. A., Rahman, M. N. A., & Deros, B. M. (2012). Barriers to Implement Lean Manufacturing in Malaysian Automotive Industry. Jurnal Teknologi, 59, 107-110. https://doi.org/10.11113/jt.v59.2571Salonitis, K., & Tsinopoulos, C. (2016). Drivers and barriers of lean implementation in the Greek manufacturing sector. Procedia CIRP, 57, 189-194. https://doi.org/10.1016/j.procir.2016.11.033Sartal, A., Llach, J., VĂĄzquez, X. H., & de Castro, R. (2017). How much does Lean Manufacturing need environmental and information technologies? Journal of Manufacturing Systems, 45, 260-272. https://doi.org/10.1016/j.jmsy.2017.10.005Saunders, M., Lewis, P., & Thornhill, A. (2009). Understanding research philosophies and approaches. Research methods for business students, 4, 106-135.Saunders, M. N. (2011). Research methods for business students, 5/e: Pearson Education India.Serrano Lasa, I., Ochoa Laburu, C., & de Castro Vila, R. (2008). An evaluation of the value stream mapping tool. Business process management journal, 14(1), 39-52. https://doi.org/10.1108/14637150810849391Seth, D., & Gupta, V. (2005). Application of value stream mapping for lean operations and cycle time reduction: an Indian case study. Production Planning & Control, 16(1), 44-59. https://doi.org/10.1080/09537280512331325281Sharifi, H., & Zhang, Z. (2001). Agile manufacturing in practice ‐ Application of a methodology. International Journal of Operations & Production Management, 21(5/6), 772-794. https://doi.org/10.1108/01443570110390462Sindhwani, R., & Malhotra, V. (2017). A framework to enhance agile manufacturing system. Benchmarking: An International Journal. https://doi.org/10.1108/BIJ-09-2015-0092Singh, B., Garg, S. K., & Sharma, S. K. (2011). Value stream mapping: literature review and implications for Indian industry. The International Journal of Advanced Manufacturing Technology, 53(5-8), 799-809. https://doi.org/10.1007/s00170-010-2860-7Srichuachom, U. (2015). The impact of lean approaches to support quality developments in Thailand: an investigation of a claim of universality of lean thinking. University of Southampton.Sriparavastu, L., & Gupta, T. (1997). An empirical study of just‐in‐time and total quality management principles implementation in manufacturing firms in the USA. International Journal of Operations & Production Management, 17(12), 1215-1232. https://doi.org/10.1108/01443579710182954Sundar, R., Balaji, A. N., & Kumar, R. M. S. (2014). A Review on Lean Manufacturing Implementation Techniques. Procedia Engineering, 97, 1875-1885. https://doi.org/10.1016/j.proeng.2014.12.341Swank, C. K. (2003). The Lean Service Machine. Harvard Business Review, 9.Tao, F., & Zhang, M. (2017). Digital twin shop-floor: a new shop-floor paradigm towards smart manufacturing. IEEE Access, 5, 20418-20427. https://doi.org/10.1109/ACCESS.2017.2756069TER JI-XI, J. (2013). Object Locator for People With Dementia (DEMICATOR). Universiti Teknikal Malaysia Melaka.Vonderembse, M. A., Uppal, M., Huang, S. H., & Dismukes, J. P. (2006). Designing supply chains: Towards theory development. International Journal of Production Economics, 100(2), 223-238. https://doi.org/10.1016/j.ijpe.2004.11.014Waters, C. D. J. (2007). Supply chain risk management: vulnerability and resilience in logistics. London ; Philadelphia: Kogan Page.Womack, J. P., & Jones, D. T. (1996). Beyond Toyota: How to Root Out Waste and Pursue Perfection. 13.Womack, J. P., Jones, D. T., & Roos, D. (1990). The Machine That Changed The World. New York, NY: Rawson Associates.Yadav, G., Luthra, S., Huisingh, D., Mangla, S. K., Narkhede, B. E., & Liu, Y. (2020). Development of a lean manufacturing framework to enhance its adoption within manufacturing companies in developing economies. Journal of Cleaner Production, 245, 118726. https://doi.org/10.1016/j.jclepro.2019.118726Yahaya, S.M.B. (201

    Scrum2Kanban: Integrating Kanban and Scrum in a University Software Engineering Capstone Course

    Full text link
    Using university capstone courses to teach agile software development methodologies has become commonplace, as agile methods have gained support in professional software development. This usually means students are introduced to and work with the currently most popular agile methodology: Scrum. However, as the agile methods employed in the industry change and are adapted to different contexts, university courses must follow suit. A prime example of this is the Kanban method, which has recently gathered attention in the industry. In this paper, we describe a capstone course design, which adds the hands-on learning of the lean principles advocated by Kanban into a capstone project run with Scrum. This both ensures that students are aware of recent process frameworks and ideas as well as gain a more thorough overview of how agile methods can be employed in practice. We describe the details of the course and analyze the participating students' perceptions as well as our observations. We analyze the development artifacts, created by students during the course in respect to the two different development methodologies. We further present a summary of the lessons learned as well as recommendations for future similar courses. The survey conducted at the end of the course revealed an overwhelmingly positive attitude of students towards the integration of Kanban into the course

    Lean and green – a systematic review of the state of the art literature

    Get PDF
    The move towards greener operations and products has forced companies to seek alternatives to balance efficiency gains and environmental friendliness in their operations and products. The exploration of the sequential or simultaneous deployment of lean and green initiatives is the results of this balancing action. However, the lean-green topic is relatively new, and it lacks of a clear and structured research definition. Thus, this paper’s main contribution is the offering of a systematic review of the existing literature on lean and green, aimed at providing guidance on the topic, uncovering gaps and inconsistencies in the literature, and finding new paths for research. The paper identifies and structures, through a concept map, six main research streams that comprise both conceptual and empirical research conducted within the context of various organisational functions and industrial sectors. Important issues for future research are then suggested in the form of research questions. The paper’s aim is to also contribute by stimulating scholars to further study this area in depth, which will lead to a better understanding of the compatibility and impact on organisational performance of lean and green initiatives. It also holds important implications for industrialists, who can develop a deeper and richer knowledge on lean and green to help them formulate more effective strategies for their deployment

    Performance optimization of a leagility inspired supply chain model: a CFGTSA algorithm based approach

    Get PDF
    Lean and agile principles have attracted considerable interest in the past few decades. Industrial sectors throughout the world are upgrading to these principles to enhance their performance, since they have been proven to be efficient in handling supply chains. However, the present market trend demands a more robust strategy incorporating the salient features of both lean and agile principles. Inspired by these, the leagility principle has emerged, encapsulating both lean and agile features. The present work proposes a leagile supply chain based model for manufacturing industries. The paper emphasizes the various aspects of leagile supply chain modeling and implementation and proposes a new Hybrid Chaos-based Fast Genetic Tabu Simulated Annealing (CFGTSA) algorithm to solve the complex scheduling problem prevailing in the leagile environment. The proposed CFGTSA algorithm is compared with the GA, SA, TS and Hybrid Tabu SA algorithms to demonstrate its efficacy in handling complex scheduling problems

    The strategic integration of agile and lean supply

    Get PDF
    Lean supply is closely associated with enabling flow and the elimination of wasteful variation within the supply chain. However, lean operations depend on level scheduling and the growing need to accommodate variety and demand uncertainty has resulted in the emergence of the concept of agility. This paper explores the role of inventory and capacity in accommodating such variation and identifies how TRIZ separation principles and TOC tools may be combined in the integrated development of responsive and efficient supply chains. A detailed apparel industry case study is used to illustrate the application of these concepts and tools

    Influential factors of aligning Spotify squads in mission-critical and offshore projects – a longitudinal embedded case study

    Get PDF
    Changing the development process of an organization is one of the toughest and riskiest decisions. This is particularly true if the known experiences and practices of the new considered ways of working are relative and subject to contextual assumptions. Spotify engineering culture is deemed as a new agile software development method which increasingly attracts large-scale organizations. The method relies on several small cross-functional self-organized teams (i.e., squads). The squad autonomy is a key driver in Spotify method, where a squad decides what to do and how to do it. To enable effective squad autonomy, each squad shall be aligned with a mission, strategy, short-term goals and other squads. Since a little known about Spotify method, there is a need to answer the question of: How can organizations work out and maintain the alignment to enable loosely coupled and tightly aligned squads? In this paper, we identify factors to support the alignment that is actually performed in practice but have never been discussed before in terms of Spotify method. We also present Spotify Tailoring by highlighting the modified and newly introduced processes to the method. Our work is based on a longitudinal embedded case study which was conducted in a real-world large-scale offshore software intensive organization that maintains mission-critical systems. According to the confidentiality agreement by the organization in question, we are not allowed to reveal a detailed description of the features of the explored project

    Shipbuilding 4.0 Index Approaching Supply Chain

    Get PDF
    The shipbuilding industry shows a special interest in adapting to the changes proposed by the industry 4.0. This article bets on the development of an index that indicates the current situation considering that supply chain is a key factor in any type of change, and at the same time it serves as a control tool in the implementation of improvements. The proposed indices provide a first definition of the paradigm or paradigms that best fit the supply chain in order to improve its sustainability and a second definition, regarding the key enabling technologies for Industry 4.0. The values obtained put shipbuilding on the road to industry 4.0 while suggesting categorized planning of technologies
    • 

    corecore