7,367 research outputs found

    Multi-Player Diffusion Games on Graph Classes

    Full text link
    We study competitive diffusion games on graphs introduced by Alon et al. [1] to model the spread of influence in social networks. Extending results of Roshanbin [8] for two players, we investigate the existence of pure Nash equilibria for at least three players on different classes of graphs including paths, cycles, grid graphs and hypercubes; as a main contribution, we answer an open question proving that there is no Nash equilibrium for three players on (m x n) grids with min(m, n) >= 5. Further, extending results of Etesami and Basar [3] for two players, we prove the existence of pure Nash equilibria for four players on every d-dimensional hypercube.Comment: Extended version of the TAMC 2015 conference version now discussing hypercube results (added details for the proof of Proposition 1

    Learning the Structure and Parameters of Large-Population Graphical Games from Behavioral Data

    Full text link
    We consider learning, from strictly behavioral data, the structure and parameters of linear influence games (LIGs), a class of parametric graphical games introduced by Irfan and Ortiz (2014). LIGs facilitate causal strategic inference (CSI): Making inferences from causal interventions on stable behavior in strategic settings. Applications include the identification of the most influential individuals in large (social) networks. Such tasks can also support policy-making analysis. Motivated by the computational work on LIGs, we cast the learning problem as maximum-likelihood estimation (MLE) of a generative model defined by pure-strategy Nash equilibria (PSNE). Our simple formulation uncovers the fundamental interplay between goodness-of-fit and model complexity: good models capture equilibrium behavior within the data while controlling the true number of equilibria, including those unobserved. We provide a generalization bound establishing the sample complexity for MLE in our framework. We propose several algorithms including convex loss minimization (CLM) and sigmoidal approximations. We prove that the number of exact PSNE in LIGs is small, with high probability; thus, CLM is sound. We illustrate our approach on synthetic data and real-world U.S. congressional voting records. We briefly discuss our learning framework's generality and potential applicability to general graphical games.Comment: Journal of Machine Learning Research. (accepted, pending publication.) Last conference version: submitted March 30, 2012 to UAI 2012. First conference version: entitled, Learning Influence Games, initially submitted on June 1, 2010 to NIPS 201

    Supercooperation in Evolutionary Games on Correlated Weighted Networks

    Full text link
    In this work we study the behavior of classical two-person, two-strategies evolutionary games on a class of weighted networks derived from Barab\'asi-Albert and random scale-free unweighted graphs. Using customary imitative dynamics, our numerical simulation results show that the presence of link weights that are correlated in a particular manner with the degree of the link endpoints, leads to unprecedented levels of cooperation in the whole games' phase space, well above those found for the corresponding unweighted complex networks. We provide intuitive explanations for this favorable behavior by transforming the weighted networks into unweighted ones with particular topological properties. The resulting structures help to understand why cooperation can thrive and also give ideas as to how such supercooperative networks might be built.Comment: 21 page

    Evolutionary games on graphs

    Full text link
    Game theory is one of the key paradigms behind many scientific disciplines from biology to behavioral sciences to economics. In its evolutionary form and especially when the interacting agents are linked in a specific social network the underlying solution concepts and methods are very similar to those applied in non-equilibrium statistical physics. This review gives a tutorial-type overview of the field for physicists. The first three sections introduce the necessary background in classical and evolutionary game theory from the basic definitions to the most important results. The fourth section surveys the topological complications implied by non-mean-field-type social network structures in general. The last three sections discuss in detail the dynamic behavior of three prominent classes of models: the Prisoner's Dilemma, the Rock-Scissors-Paper game, and Competing Associations. The major theme of the review is in what sense and how the graph structure of interactions can modify and enrich the picture of long term behavioral patterns emerging in evolutionary games.Comment: Review, final version, 133 pages, 65 figure

    Nash Equilibria in Reverse Temporal Voronoi Games

    Full text link
    We study Voronoi games on temporal graphs as introduced by Boehmer et al. (IJCAI 2021) where two players each select a vertex in a temporal graph with the goal of reaching the other vertices earlier than the other player. In this work, we consider the reverse temporal Voronoi game, that is, a player wants to maximize the number of vertices reaching her earlier than the other player. Since temporal distances in temporal graphs are not symmetric in general, this yields a different game. We investigate the difference between the two games with respect to the existence of Nash equilibria in various temporal graph classes including temporal trees, cycles, grids, cliques and split graphs. Our extensive results show that the two games indeed behave quite differently depending on the considered temporal graph class
    corecore