29,041 research outputs found

    How epigenetic evolution can guide genetic evolution (abstract)

    No full text
    The expression level of a gene in future generations can be modified both by genetic mutations and by the attachment of methyl groups to the DNA. Since the DNA methylation pattern along a genome is inherited, methylation patterns constitute a significant epigenetic inheritance mechanism that is subject to evolution by natural selection. The variation rate of methylation patterns is generally higher than that of DNA which suggests that evolution of methylation patterns might be more rapid than that of genetic evolution. But, common consequences of methylation, such as reduced expression of methylated genes, could also be produced by genetic changes and these would have higher heritability. The question we address in this work is how the evolution of epigenetic methylation-dependent phenotypes might interact with the evolution of genetic DNA-determined phenotypes. There is no biological mechanism known to directly transfer methyl groups into equivalent DNA changes. However, in principle an indirect mechanism could cause evolved methylation patterns to enable the subsequent evolution of equivalent genetic patterns in a manner analogous to the Baldwin effect (Baldwin, Am. Nat., 30:441-451, 1896; Jablonka et al, TREE, 13:206-210, 1998). The Baldwin effect describes how non-heritable acquired characteristics can influence the evolution of equivalent genetic characteristics without any direct Lamarckian inheritance of acquired characters. This occurs because the ability to acquire or learn a new behaviour changes the selective pressures acting on genetic changes. Specifically, genetic changes that support this behaviour, e.g. by reducing learning time by making a small part of the behaviour genetically innate, may be selected for when the learning mechanism is present even though these same genetic changes may not be selected for when the learning mechanism is absent. Over generations, the modified selection pressures so produced can cause genetic assimilation of a phenotype that was previously acquired, even to the extent of making the acquisition mechanism subsequently redundant. Thus a learned behaviour can guide the evolution of an equivalent innate behaviour (Hinton & Nowlan, Complex Systems, 1: 495-502, 1987). In the Baldwin effect a rapid mechanism of lifetime adaptation guides the relatively slow genetic evolution of the same behaviour. By analogy, Jablonka et al have suggested that “genetic adaptations may be guided by heritable induced or learnt phenotypic adaptations”. Here we hypothesise that “inherited epigenetic variations may be able to ‘hold’ an adapted state for long enough to allow similar genetic variations to catch up”, as they put it, even if the epigenetic variations are not induced or learnt but simply evolved by natural selection on methylation patterns. We assume that an individual may only express one phenotype in its lifetime, but that a given genome will persist relatively unchanged on a timescale that allows its methylome to adapt by natural selection. Thus, in contrast to the Baldwin effect, in this case two mechanisms of evolution by natural selection are coupled — one acting at a different variation rate from the other. We present a simple model to illustrate how a rapidly evolving methylome can guide a slowly evolving but highly-heritable genome. This is used to show that methylome evolution can enable genetic evolution to cross fitness valleys that would otherwise require multiple genetic changes that were each selected against. This finding suggests that the relatively rapid evolution of methylation patterns can produce novel phenotypes that are subsequently genetically assimilated in DNA evolution without direct transfer or appeal to induced phenotypes. This can enable the genetic evolution of new phenotypes that would not be found by genetic evolution alone, even if methylation is not significant in the ultimate phenotype

    Evolution and Culture

    Get PDF
    The goal of cross-cultural psychology to identify and explain similarities and differences in the behavior of individuals in different cultures requires linking human behavior to its context (Cole, Meshcheryakov & Ponomariov, 2011). In order to specify this relation, the focus is usually on the sociocultural environment and how it interacts with behavior. Since cross-cultural psychology also deals with the evolutionary and biological bases of behavior, this focus on culture has regularly led to an unbalanced view (Berry, Poortinga, Breugelmans, Chasiotis & Sam, 2011). Too often, biology and culture are seen as opposites: what is labeled as cultural is not biological and what is labeled as biological is not cultural (Chasiotis, 2010, 2011a). This article will first introduce the central concepts of natural and sexual selection, adaptation, and the epigenetic (open) genetic processes in evolutionary biology, and indicate their psychological implications. It will then argue that biology and culture are intricately related. Finally, empirical evidence from diverse psychological research areas will be presented to illustrate why the study of the evolutionary basis is as essential as the analysis of the sociocultural context for the understanding of behavior. Due to space restrictions, cultural transmission will be the only research area which is addressed in more detail (more examples of evolutionary approaches in intelligence, personality, and behavior genetics and their implications for cross-cultural research can be found on the website accompanying Berry et al., 2011; see also further readings section)

    Developmental Systems Theory as a Process Theory

    Get PDF
    Griffiths and Russell D. Gray (1994, 1997, 2001) have argued that the fundamental unit of analysis in developmental systems theory should be a process – the life cycle – and not a set of developmental resources and interactions between those resources. The key concepts of developmental systems theory, epigenesis and developmental dynamics, both also suggest a process view of the units of development. This chapter explores in more depth the features of developmental systems theory that favour treating processes as fundamental in biology and examines the continuity between developmental systems theory and ideas about process in the work of several major figures in early 20th century biology, most notable C.H Waddington

    Modulating signaling networks by CRISPR/Cas9-mediated transposable element insertion

    Get PDF
    In a recent past, transposable elements (TEs) were referred to as selfish genetic components only capable of copying themselves with the aim of increasing the odds of being inherited. Nonetheless, TEs have been initially proposed as positive control elements acting in synergy with the host. Nowadays, it is well known that TE movement into host genome comprises an important evolutionary mechanism capable of increasing the adaptive fitness. As insights into TE functioning are increasing day to day, the manipulation of transposition has raised an interesting possibility of setting the host functions, although the lack of appropriate genome engineering tools has unpaved it. Fortunately, the emergence of genome editing technologies based on programmable nucleases, and especially the arrival of a multipurpose RNA-guided Cas9 endonuclease system, has made it possible to reconsider this challenge. For such purpose, a particular type of transposons referred to as miniature inverted-repeat transposable elements (MITEs) has shown a series of interesting characteristics for designing functional drivers. Here, recent insights into MITE elements and versatile RNA-guided CRISPR/Cas9 genome engineering system are given to understand how to deploy the potential of TEs for control of the host transcriptional activity.Fil: Vaschetto, Luis Maria Benjamin. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba. Instituto de Diversidad y EcologĂ­a Animal. Universidad Nacional de CĂłrdoba. Facultad de Ciencias Exactas FĂ­sicas y Naturales. Instituto de Diversidad y EcologĂ­a Animal; Argentina. Universidad Nacional de CĂłrdoba. Facultad de Ciencias Exactas, FĂ­sicas y Naturales. CĂĄtedra de Diversidad Animal I; Argentin

    A systematic approach to cancer: evolution beyond selection.

    Get PDF
    Cancer is typically scrutinized as a pathological process characterized by chromosomal aberrations and clonal expansion subject to stochastic Darwinian selection within adaptive cellular ecosystems. Cognition based evolution is suggested as an alternative approach to cancer development and progression in which neoplastic cells of differing karyotypes and cellular lineages are assessed as self-referential agencies with purposive participation within tissue microenvironments. As distinct self-aware entities, neoplastic cells occupy unique participant/observer status within tissue ecologies. In consequence, neoplastic proliferation by clonal lineages is enhanced by the advantaged utilization of ecological resources through flexible re-connection with progenitor evolutionary stages

    Epigenetic regulation of adaptive responses of forest tree species to the environment

    Get PDF
    Epigenetic variation is likely to contribute to the phenotypic plasticity and adaptative capacity of plant species, and may be especially important for long-lived organisms with complex life cycles, including forest trees. Diverse environmental stresses and hybridization/polyploidization events can create reversible heritable epigenetic marks that can be transmitted to subsequent generations as a form of molecular “memory”. Epigenetic changes might also contribute to the ability of plants to colonize or persist in variable environments. In this review, we provide an overview of recent data on epigenetic mechanisms involved in developmental processes and responses to environmental cues in plant, with a focus on forest tree species. We consider the possible role of forest tree epigenetics as a new source of adaptive traits in plant breeding, biotechnology, and ecosystem conservation under rapid climate chang

    Motility at the origin of life: Its characterization and a model

    Full text link
    Due to recent advances in synthetic biology and artificial life, the origin of life is currently a hot topic of research. We review the literature and argue that the two traditionally competing "replicator-first" and "metabolism-first" approaches are merging into one integrated theory of individuation and evolution. We contribute to the maturation of this more inclusive approach by highlighting some problematic assumptions that still lead to an impoverished conception of the phenomenon of life. In particular, we argue that the new consensus has so far failed to consider the relevance of intermediate timescales. We propose that an adequate theory of life must account for the fact that all living beings are situated in at least four distinct timescales, which are typically associated with metabolism, motility, development, and evolution. On this view, self-movement, adaptive behavior and morphological changes could have already been present at the origin of life. In order to illustrate this possibility we analyze a minimal model of life-like phenomena, namely of precarious, individuated, dissipative structures that can be found in simple reaction-diffusion systems. Based on our analysis we suggest that processes in intermediate timescales could have already been operative in prebiotic systems. They may have facilitated and constrained changes occurring in the faster- and slower-paced timescales of chemical self-individuation and evolution by natural selection, respectively.Comment: 29 pages, 5 figures, Artificial Lif

    The Informational Model of Consciousness: Mechanisms of Embodiment/Disembodiment of Information

    Get PDF
    It was shown recently that information is the central concept which it is to be considered to understand consciousness and its properties. Arguing that consciousness is a consequence of the operational activity of the informational system of the human body, it was shown that this system is composed by seven informational components, reflected in consciousness by corresponding cognitive centers. It was argued also that consciousness can be connected to the environment not only by the common senses, but also by a special connection pole to the bipolar properties of the universe, allowing to explain the associated phenomena of the near-death experiences and other special phenomena. Starting from the characteristics of this model, defined as the Informational Model of Consciousness and to complete the info-communication panorama, in this paper it is analyzed the info-connectivity of the informational system with the body itself. The brain areas where the activity of each informational component are identified, and a definition of consciousness in terms of information is proposed. As the electrical connectivity by means of the nervous system was already proved, allowing the application of the analysis and developing tools of the information science, a particular attention is paid to the non-electrical mechanisms implied in the internal communication. For this, it is shown that the key mechanisms consists in embodiment/disembodiment processes of information during the inter and intra communication of the cells. This process can be modeled also by means of, and in correlation with specific concepts of the science and technology of information, referred to network communication structures, and is represented by epigenetic mechanisms, allowing the acquired trait transmission to the offspring generation. From the perspective of the informational model of consciousness, the human organism appears therefore as a dynamic reactive informational system, actuating in correlation with matter for adaptation, by embodiment/disembodiment processes of information
    • 

    corecore