14 research outputs found

    A modulation property of time-frequency derivatives of filtered phase and its application to aperiodicity and fo estimation

    Full text link
    We introduce a simple and linear SNR (strictly speaking, periodic to random power ratio) estimator (0dB to 80dB without additional calibration/linearization) for providing reliable descriptions of aperiodicity in speech corpus. The main idea of this method is to estimate the background random noise level without directly extracting the background noise. The proposed method is applicable to a wide variety of time windowing functions with very low sidelobe levels. The estimate combines the frequency derivative and the time-frequency derivative of the mapping from filter center frequency to the output instantaneous frequency. This procedure can replace the periodicity detection and aperiodicity estimation subsystems of recently introduced open source vocoder, YANG vocoder. Source code of MATLAB implementation of this method will also be open sourced.Comment: 8 pages 9 figures, Submitted and accepted in Interspeech201

    A Tutorial on Speech Synthesis Models

    Get PDF
    For Speech Synthesis, the understanding of the physical and mathematical models of speech is essential. Hence, Speech Modeling is a large field, and is well documented in literature. The aim in this paper is to provide a background review of several speech models used in speech synthesis, specifically the Source Filter Model, Linear Prediction Model, Sinusoidal Model, and Harmonic/Noise Model. The most important models of speech signals will be described starting from the earlier ones up until the last ones, in order to highlight major improvements over these models. It would be desirable a parametric model of speech, that is relatively simple, flexible, high quality, and robust in re-synthesis. Emphasis will be given in Harmonic / Noise Model, since it seems to be more promising and robust model of speech. (C) 2015 The Authors. Published by Elsevier B.V

    DDX7: Differentiable FM Synthesis of Musical Instrument Sounds

    Get PDF
    FM Synthesis is a well-known algorithm used to generate complex timbre from a compact set of design primitives. Typically featuring a MIDI interface, it is usually impractical to control it from an audio source. On the other hand, Differentiable Digital Signal Processing (DDSP) has enabled nuanced audio rendering by Deep Neural Networks (DNNs) that learn to control differentiable synthesis layers from arbitrary sound inputs. The training process involves a corpus of audio for supervision, and spectral reconstruction loss functions. Such functions, while being great to match spectral amplitudes, present a lack of pitch direction which can hinder the joint optimization of the parameters of FM synthesizers. In this paper, we take steps towards enabling continuous control of a well-established FM synthesis architecture from an audio input. Firstly, we discuss a set of design constraints that ease spectral optimization of a differentiable FM synthesizer via a standard reconstruction loss. Next, we present Differentiable DX7 (DDX7), a lightweight architecture for neural FM resynthesis of musical instrument sounds in terms of a compact set of parameters. We train the model on instrument samples extracted from the URMP dataset, and quantitatively demonstrate its comparable audio quality against selected benchmarks

    Estimation robuste de l'enveloppe spectrale d'un signal harmonique bruité

    Get PDF
    Les modèles sinusoïdaux de parole nécessitent l'estimation d'une enveloppe spectrale reliant les différents harmoniques. Une nouvelle méthode est développée ici ; elle repose sur un critère de vraisemblance pénalisée obtenu à partir du comportement statistique des carrés des amplitudes des sinusoïdes, estimés en présence de bruit de mesure. Un critère composite est développé afin de traiter les trames mixtes, dans lesquelles le signal utile de parole est composé de sinusoïdes et de bruit

    The listening talker: A review of human and algorithmic context-induced modifications of speech

    Get PDF
    International audienceSpeech output technology is finding widespread application, including in scenarios where intelligibility might be compromised - at least for some listeners - by adverse conditions. Unlike most current algorithms, talkers continually adapt their speech patterns as a response to the immediate context of spoken communication, where the type of interlocutor and the environment are the dominant situational factors influencing speech production. Observations of talker behaviour can motivate the design of more robust speech output algorithms. Starting with a listener-oriented categorisation of possible goals for speech modification, this review article summarises the extensive set of behavioural findings related to human speech modification, identifies which factors appear to be beneficial, and goes on to examine previous computational attempts to improve intelligibility in noise. The review concludes by tabulating 46 speech modifications, many of which have yet to be perceptually or algorithmically evaluated. Consequently, the review provides a roadmap for future work in improving the robustness of speech output

    Voice Quality Modelling for Expressive Speech Synthesis

    Get PDF
    This paper presents the perceptual experiments that were carried out in order to validate the methodology of transforming expressive speech styles using voice quality (VoQ) parameters modelling, along with the well-known prosody ( 0 , duration, and energy), from a neutral style into a number of expressive ones. The main goal was to validate the usefulness of VoQ in the enhancement of expressive synthetic speech in terms of speech quality and style identification. A harmonic plus noise model (HNM) was used to modify VoQ and prosodic parameters that were extracted from an expressive speech corpus. Perception test results indicated the improvement of obtained expressive speech styles using VoQ modelling along with prosodic characteristics

    Voice Quality Modelling for Expressive Speech Synthesis

    Get PDF
    This paper presents the perceptual experiments that were carried out in order to validate the methodology of transforming expressive speech styles using voice quality (VoQ) parameters modelling, along with the well-known prosody (F0, duration, and energy), from a neutral style into a number of expressive ones. The main goal was to validate the usefulness of VoQ in the enhancement of expressive synthetic speech in terms of speech quality and style identification. A harmonic plus noise model (HNM) was used to modify VoQ and prosodic parameters that were extracted from an expressive speech corpus. Perception test results indicated the improvement of obtained expressive speech styles using VoQ modelling along with prosodic characteristics

    A review of state-of-the-art speech modelling methods for the parameterisation of expressive synthetic speech

    Get PDF
    This document will review a sample of available voice modelling and transformation techniques, in view of an application in expressive unit-selection based speech synthesis in the framework of the PAVOQUE project. The underlying idea is to introduce some parametric modification capabilities at the level of the synthesis system, in order to compensate for the sparsity and rigidity, in terms of available emotional speaking styles, of the databases used to define speech synthesis voices. For this work, emotion-related parametric modifications will be restricted to the domains of voice quality and prosody, as suggested by several reviews addressing the vocal correlates of emotions (Schröder, 2001; Schröder, 2004; Roehling et al., 2006). The present report will start with a review of some techniques related to voice quality modelling and modification. First, it will explore the techniques related to glottal flow modelling. Then, it will review the domain of cross-speaker voice transformations, in view of a transposition to the domain of cross-emotion voice transformations. This topic will be exposed from the perspective of the parametric spectral modelling of speech and then from the perspective of available spectral transformation techniques. Then, the domain of prosodic parameterisation and modification will be reviewed

    Discussion On Effective Restoration Of Oral Speech Using Voice Conversion Techniques Based On Gaussian Mixture Modeling

    Get PDF
    Today\u27s world consists of many ways to communicate information. One of the most effective ways to communicate is through the use of speech. Unfortunately many lose the ability to converse. This in turn leads to a large negative psychological impact. In addition, skills such as lecturing and singing must now be restored via other methods. The usage of text-to-speech synthesis has been a popular resolution of restoring the capability to use oral speech. Text to speech synthesizers convert text into speech. Although text to speech systems are useful, they only allow for few default voice selections that do not represent that of the user. In order to achieve total restoration, voice conversion must be introduced. Voice conversion is a method that adjusts a source voice to sound like a target voice. Voice conversion consists of a training and converting process. The training process is conducted by composing a speech corpus to be spoken by both source and target voice. The speech corpus should encompass a variety of speech sounds. Once training is finished, the conversion function is employed to transform the source voice into the target voice. Effectively, voice conversion allows for a speaker to sound like any other person. Therefore, voice conversion can be applied to alter the voice output of a text to speech system to produce the target voice. The thesis investigates how one approach, specifically the usage of voice conversion using Gaussian mixture modeling, can be applied to alter the voice output of a text to speech synthesis system. Researchers found that acceptable results can be obtained from using these methods. Although voice conversion and text to speech synthesis are effective in restoring voice, a sample of the speaker before voice loss must be used during the training process. Therefore it is vital that voice samples are made to combat voice loss
    corecore