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ABSTRACT 
 

 

 Today’s world consists of many ways to communicate information.  One of 

the most effective ways to communicate is through the use of speech.  

Unfortunately many loose the ability to converse.  This in turn leads to a large 

negative psychological impact.  In addition, skills such as lecturing and singing 

must now be restored via other methods. 

 The usage of text-to-speech synthesis has been a popular resolution of 

restoring the capability to use oral speech.  Text to speech synthesizers convert 

text into speech.  Although text to speech systems are useful, they only allow for 

few default voice selections that do not represent that of the user.  In order to 

achieve total restoration, voice conversion must be introduced. 

 Voice conversion is a method that adjusts a source voice to sound like a 

target voice.  Voice conversion consists of a training and converting process.  

The training process is conducted by composing a speech corpus to be spoken 

by both source and target voice.  The speech corpus should encompass a variety 

of speech sounds.  Once training is finished, the conversion function is employed 

to transform the source voice into the target voice.  Effectively, voice conversion 

allows for a speaker to sound like any other person.  Therefore, voice conversion 

can be applied to alter the voice output of a text to speech system to produce the 

target voice. 
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 The thesis investigates how one approach, specifically the usage of voice 

conversion using Gaussian mixture modeling, can be applied to alter the voice 

output of a text to speech synthesis system.  Researchers found that acceptable 

results can be obtained from using these methods.  Although voice conversion 

and text to speech synthesis are effective in restoring voice, a sample of the 

speaker before voice loss must be used during the training process.  Therefore it 

is vital that voice samples are made to combat voice loss. 
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CHAPTER 1:  INTRODUCTION 
 

 

 Restoration of speech involves many aspects of the science and 

engineering fields.  Topics to study in the restoration process include speech 

science, statistics, and signal processing.  Speech science provides the 

knowledge of the formation of voice.  Statistics help to model the characterization 

of spectral features.  Also, signal processing provides the techniques to produce 

voices using mathematics.  When combining the knowledge of these areas, the 

complexity of voice restoration can be fully understood and solved. 

 

1.1 Motivation 

 A fast effective method to express ideas and knowledge is through the use 

of oral speech.  The actor can use his or her voice to help explain the story that 

people are watching.  The salesperson describes the product to the purchaser 

orally.  The singer belts the lyrics of the song with its powerful vocals.  All are 

common examples of when people use their verbal skills.  Now consider the 

following examples.  An actor perishes before the completion of the animated 

television series or movie that he/she was starring.  Laryngitis affects a 

telemarketer shortly before the start of the workday.  The singer finds out that 

soon he or she will undergo throat surgery, with unavoidable damage to oral 

communication.   
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 Each of these scenarios involve one similar problem; that each person 

loses the ability to communicate vocally.  What makes this problem even more 

complex is that without oral speech, each person must now rely on other means 

to maintain their previous occupations.  Unfortunately however, what other 

means do they have to continue normality?  How do the producers continue with 

the movie without their leading actor?  Will the telemarketer suffer slow sales 

now that speech can no longer be used?  Can the singer preserve his or her 

flourishing singing career? 

 One possible solution to restoring the voices in people is by employing 

text to speech synthesis.  Text to speech synthesis enables an oral presentation 

of text.  These synthesizers follow grammatical rules to produce the vocal sound 

equivalent of the text being “read”.  The sounds are created from recording 

human sound pronunciations.  Each sound is then concatenated together to 

produce the word orally.  Sound recording however is a lengthy and precise 

procedure.  In addition, the overall output yields a foreign voice unlike that of 

people whom have lost their voice. 

 Therefore, text to speech synthesis cannot solely be used to resolve the 

examples stated.  Instead, by integrating a text to speech synthesizer along with 

voice conversion, the overall system will achieve the voice that was lost.  In 

essence, voice conversion implies that one voice is modified to sound like a 

different voice.  By identifying the parameters of any voice, those parameters can 

be altered to mimic the voice of the people in the aforementioned examples.  If 
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voice conversion techniques are integrated, it will help allow the producers to 

premiere their movie to the public audience, guarantee a profit for the 

telemarketer’s earnings, and enable the singer to record multi-platinum songs. 

 Although the concept is fundamentally simplistic, human speech is 

unfortunately complex, resulting in fairly intricate methodology.  The complexity 

arises because people speak with varying dialects of the same language, 

accents, and at times even alter their own pronunciation of the same sound.  

These complexities in human speech presents added challenges for voice 

conversion techniques.   

 These challenges require further studying in speech processing.  

Numerous institutions are providing proposals for research in voice conversion 

because of the benefit it can impart on millions of people.  The increase in grants 

for voice conversion research requires a demand for more students.  Students 

seeking a rich and substantial graduate thesis can be greatly rewarded by 

focusing their studies in the field of speech processing in voice conversion.   

 

1.2 Fundamentals of Speech 

 In order to understand the techniques discussed in this thesis, the 

fundamentals of speech must first be introduced.  Speech can be broken down to 

various levels such as the acoustic, phonetic, phonological, morphological, 

syntactic, semantic, and pragmatic as defined in [1].  The most mentioned levels 

will be the acoustic, phonetic, and phonological.  Topics such as the source filter 
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model and graphical interpretations of speech are also fully analyzed to provide 

additional solid comprehension of the terms and techniques used for the thesis 

study.  The section on the Source Filter model will provide answers to questions 

such as how speech is produced, and how can speech be modeled.  Finally a 

section on graphical interpretations of speech signals will allow the reader to 

understand how to read the graphs provided throughout the thesis. 

 

1.2.1 The Levels of Speech 

 The acoustic level defines the speech to be developed when the 

articulatory system experiences a change in air pressure, and is comprised of 

three aspects, the fundamental frequency, intensity and the spectral energy 

distribution which signifies the pitch, loudness, and timbre respectively.  These 

three aspects are obtained when transforming the speech signal into an electrical 

signal using a microphone.  After attaining the electrical signal, digital signal 

processing techniques can then be used to extract the three traits. 

 The phonetic level begins the introduction of the phonetic alphabet.  The 

phonetic alphabet represents pronunciation breakdowns for various sounds.  

Each language has a unique phonetic alphabet.  The phonological level then 

interprets the phonetic alphabet to phonemes.  Phonemes represent a functional 

unit of speech.  This is the level that bridges the phonetics to higher-level 

linguistics.  The combination of phonemes can then be interpreted to the 

morphological level, where words can be formed and studied based on stems 
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and affixes.  Syntax restricts the formulations of sentences.  The syntax level 

helps to reduce the number of sentences possible.  The semantic level is an 

additional level to help shape a meaningful sentence.  This level is needed 

because the syntax is not an acceptable criterion for languages.  Semantics is 

the study of how words are related to one another.  Pragmatics is an area that 

encompasses presuppositions and indirect speech acts. 

 The levels strongly associated with this thesis are the acoustic, phonetic, 

and phonological.  These levels help describe the sounds that allow for speech 

development.  The other levels only constitute the comprehension of speech, 

which is controlled by the input of the user, and therefore does not need to be 

studied further. 

 

1.2.2 Source Filter Model  

 Speech is the result of airflow, vibrations of the vocal cords, and blockage 

of the airflow due to the mouth.  Organically, the airflow provides the excitation 

needed for the vocal cords to shape the excitation into a phoneme.  This results 

in the fact that speech can be modeled into a linear system shown in Figure 1. 
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Figure 1:  Linear system of the Source Filter model. 

 

 The method of looking at speech as two distinct parts that can be 

separated is known as the Source Filter model of speech [2].  The Source Filter 

model consists of the transfer function and the excitation.  The transfer function 

contains the vocal tract.  The excitation contains the pitch and sound.  The 

excitation, or the source, can either be voiced or unvoiced.  Voiced sounds 

include vowels and indicate a vibration in the vocal cords.  Unvoiced sounds 

mimic noise and have no oscillatory components.  Examples of unvoiced 

phonemes include /p/, /t/, and /k/. 

 In order to apply the Source Filter model, first assume that the n th sample 

of speech is predicted by the past p samples such that  

  .)()(ˆ
1
∑
=

−=
p

i
i insans  (1) 

Then an error signal can define the error between the actual and predicted 
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The goal is to minimize the error signal, so that the predicted signal matches the 

actual signal.  The task of minimizing )(nε  is to find the ia s, which can be done 

using an autocorrelation or covariance method.  Now the error signal defined in 

(2) can be found.  Next the z -transform of (2) is taken to produce 

  .)()(1)()()()(
11

zAzSzazSzzSazSzE
p

i

i
i

p

i

i
i =⎥

⎦

⎤
⎢
⎣

⎡
−=−= ∑∑

=

−

=

−  (3) 

The results of (3) produces two linear systems that describe the Linear Prediction 

Coding (LPC) process and the Source Filter model shown in Figure 2a and 

Figure 2b respectively. 

 

 
Figure 2:  The linear system representation of (a) the LPC process and (b) the 

Source Filter model. 
 

 Speech signals can be encoded using LPC based on the Source Filter 

model.  LPC is used to analyze speech signals )(ns  by first estimating the 

formants with the filter )(zA  [3].  The formants are the peaks of the spectral 

)(nε  )(
1
zA  )(ns

 

)(ns
 

)(zA  )(nε
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envelopes of which pertain to the vocal tract filter indicated by 
)(

1
zA

.  Then the 

effects of the formants are removed to estimate the source signal )(nε .  The 

remaining signal is also called the residue. 

 The formants can be determined from the speech signal that is described 

by Equation 1 is called a linear predictor, hence the term Linear Prediction 

Coding.  The coefficients ia  of the linear predictor characterize the formants of 

the spectral envelope.  These coefficients are estimated by reducing the mean-

squared error of Equation 2. 

 

1.2.3 Graphical Interpretations of Speech Signals 

 There are two basic waveforms to represent speech signals.  Figure 3 

represents a time waveform of a speech signal.  The horizontal axis indicates 

time while the vertical axis indicates amplitude of the signal, which can be 

inferred as the loudness.  The only visible information that can be extracted from 

this type of graph is when silences and spoken speech occurs. 

 

 
Figure 3:  Time waveform representation of speech. 
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 However, by transforming the time waveform into the frequency domain, 

further information can be obtained.  Figure 4 shows how voiced and unvoiced 

graphs differ in the frequency domain.  When observing the spectral envelope, 

formants appear as peaks and valleys, the latter are called antiformants.  Voice 

parts contain formants with low pass spectra, with about one formant per 

kilohertz of bandwidth.  Formant properties of unvoiced parts are high-pass. 

 

 
Figure 4:  Fourier transforms of [a] (top) and [ʃ] (bottom) 

from the French word baluchon [1]. 
 

 One final representation is the spectrogram, which has time dimensions 

on the horizontal axis, and frequency dimensions on the vertical axis.  



 10

Phoneticians can interpret these graphs to obtain the phonemes uttered.  Voiced 

harmonics will appear as horizontal strips. 

 

 
Figure 5:  Spectrogram of the spoken phrase “taa baa baa.” 

 

1.3 Organization of Thesis 

 In order to effectively emphasize the ideas and processes used in this 

thesis, the organization of the thesis is crucial.  Consequently, the simplest 

method for comprehension is by analyzing the concept of restoring speech into 

three sections – the text to speech synthesizer, the training process, and the 

conversion process.  The thesis was broken down into these sections because 

each section represents a complex step in restoring oral speech.  In order to 

restore speech in people, a text to speech synthesizer is used to convert text into 

speech.  The foreign voice produced from the text to speech synthesizer must be 

trained against the target speech.  The variables derived from the training 

process help develop a conversion function.  The conversion function is then 

used as the final step to alter the voice. 
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 Chapter 2 is used to familiarize the reader about voice conversion before 

covering the training and conversion sections.  The first section, the text to 

speech synthesis, is exclusively discussed in Chapter 3.  Chapter 3 will examine 

in-depth the science behind text to speech synthesis.  Chapter 4 begins the 

explanation of the theory of the final two sections, the training and converting 

process.  Evaluations of the results from studies are addressed in Chapter 5.  

Chapter 6 provides a discussion on the restoration of voice with future ideas and 

problems confronted. 
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CHAPTER 2:  VOICE CONVERSION SYSTEMS 
 

 

 Voice conversions systems can provide for many beneficial solutions to 

current voice loss problems.  Unlike voice modification, where speech sounds 

are simply transformed to create a unique sound, voice conversion is created 

from a specific set of changes required to mimic the voice of another.  These 

changes mostly are based on the spectral mapping methods between a source 

and target speaker.  Conversion systems can differ based on their statistical 

mapping and their conversion function.  Some conversion systems use mapping 

codebooks, discrete transformation functions, artificial neural networks, Gaussian 

mixture models (GMM), or a combination of some of them [4]. 

 

2.1 Phases of Voice Conversion 

 The basic objective of all voice conversion systems is to modify the source 

speaker so that it is perceived to sound like a target speaker [5].  In order to 

execute the proper modification, the voice conversion system must follow specific 

phases.  Each voice conversion system has two key phases, a training phase 

and a conversion phase.  Figure 6 represents a flow chart of the typical voice 

conversion system. 
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Figure 6:  Flow diagram of voice conversion with phase indication. 
 

2.1.1 Training 

 The training phase establishes the proper mapping needed for the 

conversion parameters.  Typically, this phase is achieved by the utterance of a 

speech corpus spoken by both the source speaker and the target speaker.  The 

phonemes from each speech corpus are converted to vectors and then undergo 

force alignment.  The forced aligned vector samples from each speaker are used 

to map the proper phonemes, so that improper phoneme pairing does not occur.  

This means that the /p/ phoneme of the source speaker will not map to the /b/ 

phoneme of the target speaker. 

 The complexity of the speech corpus will affect how well training occurs.  

Speech corpora with a low variety of phonemes will yield poor conversion 

parameters, therefore producing a badly mimicked speaker.  Speech corpora 

with numerous different phonemes are not simply sufficient in producing 

favorable conversion parameters.  The speech corpus should not just only 
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Target Speaker 
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Conversion 
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include many different phonemes, but repetition of phonemes that can help mold 

an affective copy of the target speaker. 

 

2.1.2 Converting 

 The conversion parameters computed during the training process are 

used to develop the conversion function.  The goal of the conversion function is 

to minimize the mean squared error between the target speaker and the modified 

speaker based on the source speaker.  The conversion function can be 

implemented using mapping codebooks, dynamic frequency warping, neural 

networks, and Gaussian mixture modeling [6].  Depending on the method used, 

the vectors of the source are inputted into the function for conversion.  The 

predicted target vectors indicate the spectral parameters of the new voice.  The 

pitch of the speaker’s residual is adjusted to match the target speaker’s pitch in 

average value and variance.  Both the spectral parameters and the modified 

residual are then convolved to form the new modified voice [7]. 

 

2.2 Varieties of Voice Conversion Systems 

 The training process can be completed using various methods.  One 

method is called the vector quantization method.  Vector quantization is a 

method to lower the dimensional space by using codebooks.  The source and 

target speaker vectors are converted to codebooks that carry all acoustical traits 
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of each speaker.  Now, instead of mapping the speakers, the codebooks are 

mapped [8].  The other method employs artificial neural networks to perform the 

mapping [9].  This method uses the formants for transformation.  The method of 

using Gaussian mixture models will be discussed in detail in Chapter 4.  

 

2.2.1 Voice Conversion Using Vector Quantization 

 The vector quantized method maps the spectral parameters, the pitch 

frequencies, and the power values.  The spectral parameters are mapped first by 

having each speech corpus vector quantized (coded) by words.  Then the 

correspondence of the same words are determined using dynamic time warping 

– a method of force alignment.  All correspondences are accumulated into a 

histogram which acts as the weighting function for the mapping codebooks.  The 

mapping codebooks are defined as a linear combination of the target vector. 

 The pitch frequencies and the power values are mapped similarly to the 

spectral parameters except that one, both pitch frequencies and power values 

are scalar quantized, and two, pitch frequencies use the maximum occurrence in 

the histogram for the mapping codebook.  The conversion phase using vector 

quantization first begins with the utterance of the source speaker.  The voice is 

analyzed using LPC.  The spectrum parameters and pitch frequencies/power 

values obtained are vector quantized and scalar quantized respectively using the 

target codebooks generated during training.  The decoding is carried out by using 

the mapping codebooks to ultimately produce the voice of the target speaker.  
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Figures 7 and 8 provide a visual description of the voice conversion system using 

vector quantization. 

 

 

Figure 7:  Training of voice conversion using vector quantization. 
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Figure 8:  Conversion phase using vector quantization. 
 

2.2.2 Voice Conversion Using Artificial Neural Networks 

 Another alternative voice conversion system relies on the use of artificial 

neural networks [9].  Neural networks consists of various layers of nodes that 

carry a weighted value determined by network training.  The output of each node 

is computed using a sigmoid function.  Neural networks have non-linear 
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that a feed forward neural network is trained using the back propagation method 

to yield a function that transforms the formants of the source speaker to those of 

the target speaker. 

 For the study in [9], the results indicated that the transformation of the 

vocal tract between two speakers is not linear.  Because of its nonlinear 

properties, the neural network was proposed for formant transformation.  In order 

to train the neural network, a discrete set of points on the mapping function is 

used.  If the set of points are correctly identified, the network will learn a 

continuous mapping function that can even transform input parameters that were 

not originally used for training.  The properties of neural networks also avoid the 

use of large codebooks.  The neural network described consists of one input 

layer with three nodes, two hidden layers of eight nodes each, and a three node 

output layer.  The basic algorithm for training consists of using the three formant 

values of the source as input.  Then the desired outputs are the formants 

extracted by the corresponding target.  The weights are computed using the back 

propagation method.  This three step process is repeated until the weights 

converge. 

 

2.3 Applying Voice Conversion to Text To Speech Synthesis 

 The knowledge gained from voice conversion can be applied to text to 

speech synthesis for a solution to voice loss.  If the source speaker is that of the 

output of the text to speech software, then the text to speech software will utter 
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phrases in the same voice as the target speaker.  Therefore, the text to speech 

software can be used to produce the voice of the target speaker assuming that 

training can be done with a sample of the target speaker.  Another additional 

feature of using a text to speech system as the source output is that the user will 

no longer be dependant on others for speech production.  Instead, the user can 

type the desired message in the text to speech. 
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CHAPTER 3:  TEXT TO SPEECH SYNTHESIS 
 

 

 Origins of synthesizers were adapted from mechanical to electrical means.  

It is important to note the specific type of system discussed in this thesis.  Most 

agree that text to speech synthesizers are mostly focused on the ability to 

automatically produce new sentences electrically, regardless of the language [1].  

Text to speech synthesizers may vary according to their linguistic formalisms.  

Like many new advances in technology, text to speech synthesis has its share of 

challenges.  Fortunately, there are many advantages of using this type of 

technology. 

 

3.1 From Mechanical to Electrical Speech Synthesizers 

 Speech synthesizers have come a long way since the early versions.  The 

history of synthesizers for speech began in 1779 when Russian Professor 

Christian Kratzenstein made a mechanical apparatus to produce the vowels /a/, 

/e/, /i/, /o/, and /u/ artificially [10].  These mechanical designs acted much like 

musical instruments.  The acoustic resonators were activated by blowing into the 

vibrating reeds.  These reeds function similarly to instruments such as clarinets, 

saxophones, bassoons, and oboes.  Kratzenstein helped pave the way for further 

studies into mechanical speech production. 
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 Following Kratzenstein’s inventions, Wolfgang von Kempelen introduced 

the “Acoustic-Mechanical Speech Machine.”  This invention took the artificial 

vowel apparatus a step further.  Instead of producing single phoneme sounds, 

von Kempelen’s machine allowed for some sound combinations.  Von 

Kempelen’s machine was composed of a pressure chamber to act as the lungs, 

a vibrating reed to mimic the vibrations of the vocal cords, and a leather tube to 

portray the vocal tract.   

 Much like Kratzenstein’s machine, von Kempelen’s machine required 

human stimulus for operation.  Unlike Kratzenstein’s machine, the air for the 

system was provided by the compression of the bellows.  Bending the leather 

tube would allow different vowels to be produced.  Consonants were achieved by 

finger constriction of the four passages.  Plosives sounds were generated using 

the mechanical tongue and lips.  The von Kempelen talking machine was 

reconstructed by Sir Charles Wheatstone during the mid 1800s, and displayed in 

Figure 9. 

 



 22

 
Figure 9: Wheatstone’s design of the von Kempelen talking machine [11]. 

 

 It is interesting to note that much more precise human involvement is 

required when using the von Kempelen method [11].  The right upper arm 

operated the bellows while the nostril openings, reed bypass, and whistle levers 

were controlled with the right hand.  The left hand controlled the leather tube.  

Von Kempelen stated that 19 consonants sound could be produced by the 

machine, although the quality of the voice may depend on who was listening.  

Through the study of the machine, von Kempelen theorized that the vocal tract 

was the main source of acoustics, which contradicted the previous belief that the 

larynx was the main source. 

 Scientists started electrical synthesis during the 1930s in hopes of 

performing automatic synthesis.  The first advancement of electrical synthesizers 

is considered to be the Voice Operating Demonstrator, or VODER [12].  
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Introduced by Homer Dudley, the synthesizer required skillful tact much like the 

von Kempelen machine.   

 The next major advancement of electrical synthesis was in 1960 when 

speech analysis and synthesis techniques were divided into system and signal 

approaches referred to in [13], with the latter approach focusing on reproducing 

the speech signal.  The system approach is also termed articulatory synthesis, 

while the signal approach is termed terminal-analogue synthesis.  The signal 

approach helped give berth to the formant and linear predictive synthesizers.  

Articulatory synthesizers were first introduced in 1958, with a full scale text to 

speech system for English developed by Noriko Umeda in 1968 based on this 

type of synthesis [14].  With the development by Umeda, commercial text to 

speech synthesis became a popular area of research.  The 1970s and 80s 

provided the first integrated circuit based on formant synthesis. 

 A popular invention came about during 1980 under the title of Speak & 

Spell from Texas Instruments, imaged in Figure 10.  This electronic reading aid 

for children is based on the linear prediction method of speech synthesis. 
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Figure 10:  Texas Instruments’ Speak & Spell popularized text to speech 

systems. 
 

3.2 Concatenated Synthesis 

 Most typical systems use concatenative processes that consist of 

combining an assortment of sounds to create the equivalent translation from text 

to vocals.  The concatenation provided during transcription is diverse.  Some 

systems concatenate phonemes while other systems concatenate whole words. 

 The functionality of the synthesizers relies greatly on the databases 

provided for concatenation.  Synthesizers used in airports require a verbalization 

of the time and date.  These systems therefore must be able to speak numbers 

and months.  Therefore a rather small database is required for this type of utility.  

However, reading e-mails, which is one use of text to speech systems, will result 

in an extremely large database. 
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 Concatenation is involved in the first process of text to speech conversion.  

Figure 11 refers to the processes occurring during text to speech conversion.  

Using text analysis, the synthesizer employs a variety of tools to determine the 

appropriate phoneme translation.  Linguistic analysis is used to apply prosodic 

conditions on the phonemes.  Prosody refers to certain properties of speech such 

as pitch, loudness, and duration [1].  After being processed for prosody, the 

phonemes carry prosodic elements in order to achieve a more natural and 

intelligible sound conversion.  Digital signal processing is usually used to 

generate the final speech output.  Note that there is no direct need to perform 

feedback analysis for synthesis. 

 

 
Figure 11:  The processes in text to speech transcription. 
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3.3 Challenges Encountered 

 There are many challenges for text to speech systems.  As high quality 

text to speech synthesis became more and more popular, researchers began to 

analyze the impact in society of such technologies.  As noted in [15], the 

“Acceptance of a new technology by the mass market is almost always a function 

of utility, usability, and choice.  This is particularly true when using a technology 

to supply information where the former mechanism has been a human.”  The 

main importance of utility refers to financial cost of using and producing such 

systems.  Certain text to speech systems require large databases and complex 

modeling that can increase cost production.  The usability is also a challenge.  

Although speech is intelligible, it is still limited to the lack of emotional emphasis.  

Stereotypical views of synthesizers are that they sound robotic and overall are 

inefficient to be introduced into societal practices. 

 Another challenge to text to speech synthesis is pronunciation, which 

occurs when the system is “reading.”  Although some languages, like Spanish, 

contain regular pronunciation rules, other languages, like English, contain many 

irregular pronunciations.  For example, the English pronunciation of the phoneme 

/f/ will differ when referring to the word “of,” in which the /f/ is pronounced more 

like /v/.  These irregular pronunciations can also be discovered in the alternate 

spelling of “fish” as “ghoti.”  The /gh/ indicates the ending of the word “tough,” the 

/o/ is pronounced similarly to the /o/ in “women,” and finally the /ti/ is spoken like 

in the word “fiction.” 
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 Pronunciation of numbers is also problematic.  There are various ways to 

pronounce the numbers 3421.  While the simple synthesis of “three four two one” 

may be practical for reading social security numbers or sequence of numbers, it 

is simply not practical for all occasions.  One occasion can refer to the “number 

three thousand four hundred twenty-one,” while another may need to imply the 

address of a house such as “thirty-four twenty-one.” 

 Other pronunciation hazards are common in the form of abbreviations and 

acronyms.  Some abbreviations such as the units for inches (in.) form a word in 

itself, relying on the system to know the correct understanding of when the 

proper pronunciation must be used.  Acronyms cause databases to become 

greatly complex.  As in the case of the pronunciation of the virus AIDS, it is 

simply pronounced as the word “aids,” not by the pronunciation of the letters “A,” 

“I,” “D,” and “S.” 

 A large amount of improper pronunciations arise from proper names.  

These words never have common pronunciation rules.  Therefore it is often 

difficult for synthesizers to produce a proper translation of a proper name 

correctly.  Such type of words would increase the complexity of the databases. 

 

3.4 Advantages of Synthesizers 

 Aside from the challenges discussed, text to speech systems can have 

positive impacts.  Areas greatly affected by such technologies include 

telecommunications, education, and disabled assistance. 
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 A large number of telephone calls will require very little human to human 

interaction.  Applying TTS software to telecommunication services makes it 

possible to relay information such as movie times, weather emergencies, and 

bank account data.  Currently such systems do exists.  Companies that employ 

TTS software include AMC theaters, Bank of America, and the National 

Hurricane Center. 

 The educational field can also benefit from TTS software.  The education 

field impacts everyone including young children to senior citizens.  Examples of 

uses include using it as an aide for pronunciation of words for beginning readers.  

Also, it can be provided as an aide for the assimilation of a new language. 

 As pertaining to the focus of this thesis, TTS software can help the 

disabled.  Voice disabled patients are not the only ones that can benefit.  TTS 

software coupled with optical character recognition systems (OCR) can give the 

blind access to vast amounts of written information previously not accessible. 
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CHAPTER 4:  VOICE CONVERSION USING GAUSSIAN MIXTURE 
MODELING 

 

 

 The main focus of this section is the theoretical explanation of the 

Gaussian Mixture Model (GMM) for voice conversion.  A background of GMM is 

provided to explain the reasons for choosing the GMM method.  The 

establishment of the features extracted from the speech is provided next.  

Mathematical explanations of the mapping technique are discussed, followed by 

the technical developments of the conversion function.  This chapter will provide 

mathematical expressions to prompt the reader into the theoretical aspects of 

GMM voice conversion. 

 

4.1 Gaussian Mixture Models 

 The description of a mixture of distributions is any convex combination 

described in [16] by 

 ∑∑
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,1,0,1,  (4) 

where if  denotes any type of distribution and ip  denotes the prior probability of 

class i .  When applied to Gaussian Mixture Models (GMMs), the distribution is a 

normal distribution with mean vector μ  and covariance matrix Σ , and expressed 

as ),;( ΣμxN .  A Gaussian distribution is a bell-shaped curve and are popular 
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statistical models used for data processing.  Basically, GMMs are used by mixing 

Gaussian distributions with varying means and variances to produce a unique 

contour with varying peaks.  GMM can be used to cluster the spectral distribution 

for voice conversion.  Each cluster will contain its own centroid, or mean.  The 

spread of the cluster is considered the variance.  Therefore, each cluster exhibits 

the qualities of a Gaussian distribution with a centroid μ  and a spread Σ .  Figure 

12 shows how data points are classified by GMM. 

 

 
Figure 12:  The clustering of data points using GMM with prior probabilities. 

 



 31

 The figure provides much insight in GMM.  The number of clusters refer 

the number of mixtures, often denoted by Q .  The number of mixtures can only 

be determined by the user, and not by the algorithm.  As one can deduce, the 

more mixtures involved, the more precise the classification, resulting in 

minimization of errors. 

 

4.2 Choosing GMM for Conversion 

 As discussed in [17], the GMM method was shown to be more efficient 

and robust than previously known techniques based on vector quantization (VQ).  

This is first shown in the comparison of relative spectral distortion of both 

methods shown in Figure 13.  Relative spectral distortion refers to the average 

quadratic spectral distortion of the mean squared error normalized by the initial 

distortion between both source and target speaker. 
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Figure 13:  Distortion between converted and target data (stars) and converted 
and source data (circles) for different sizes of (a) GMM and (b) VQ method [17]. 

 

 When studying the results in Figure 13, certain aspects can be made.  

First is that as the mixture component increases in (a), the spectral distortion 

decreases.  This infers that the converted signal produced is approximating the 

target speaker closer and closer.  Also, the converted signal increases in its 

distortion compared to the source speaker, meaning that the converted speech 

sounds less and less like the source speech when mixture components increase.  

When analyzing the results of the VQ method, the converted signal still 

approximates the target speech, but also approximates back to the source 

speech, which explains the apparent stabilization of distortion as extraction size 
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increases.  Also inferred from the results are that distortion values are much 

greater in the case of the VQ method where a codebook size of 512 vectors 

produced a distortion 17% higher than using a mixture component of 64 for the 

GMM method. 

 The advantages of using the GMM method include soft clustering and 

continuous transform.  Soft clustering refers to the characteristics of the mixture 

of Gaussian densities.  The mixture model allows for “smooth” transitions of the 

spectral parameters’ classifications.  This characteristic avoids the unnatural 

discontinuities in the VQ method caused by the vector jumps of classes, 

providing improved synthesis quality.  The characteristic of a continuous 

transform reduces the unwanted spectral distortions observed by the VQ method 

because the GMM method considers each class a cluster instead of a single 

vector.  No further studies of VQ methods have resolved the problems of 

discontinuities in using the VQ version as well as the GMM version does. 

 Additionally, the amount of assistance of the GMM method helped to 

determine the selection as well.  Since not as many studies were able to be 

found referring to other various methods of voice conversion, the choices for the 

thesis selection was limited.  Studies of [5], [6], [7], and [18] provided greater 

learning materials for voice conversion than those found for other methods. 
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4.3 Establishing the Features for Training 

 Bark scaled line spectral frequencies (LSFs) were established as the 

features for spectral mapping because of the following found in [5]: 

 

Table 1:  Properties of LSFs. 
1.  Localization in frequency of the errors meant that a badly predicted 
component affects only a portion of the frequency spectrum. 
 
2.  LSFs have good linear interpolation characteristics, which is essential to the 
conversion function. 
 
3.  LSFs relate well to formant location and bandwidth, which is relevant to 
speaker identity. 
 
4.  Bark scaling weighs prediction errors according to sensitivity of human 
hearing. 
 

Sections 4.3.1 and 4.3.2 provide the proof of Table 1. 

 

4.3.1 The Bark Scale 

 The Bark scale described in [19] refers to first 24 critical bands of hearing 

and ranges from 1 to 24 Barks and can be found by 

 ))
7500

arctan((5.3)00076arctan(.13 2ffBark += , (5) 

where f  is the frequency in Hz.  The Bark scale refers to Heinrich Barkhausen 

and his proposal of the subjective measurements of loudness [20].  Table 2 gives 

the corresponding frequency values of the Bark values.  The frequency range of 

the Bark values grows as the Bark number increases.  This then places less 
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emphasis on higher frequencies when spectral transforming because the range 

allows for larger variations.  This proves entry 4 in Table 1.  Lower Bark numbers 

have shorter frequency ranges for more precise computations. 

 

Table 2:  Corresponding frequencies of Bark values. 

Bark Values 
Frequency band 

edge (Hz), 
beginning with 0Hz 

1 100 
2 200 
3 300 
4 400 
5 510 
6 630 
7 770 
8 920 
9 1080 
10 1270 
11 1480 
12 1720 
13 2000 
14 2320 
15 2700 
16 3150 
17 3700 
18 4400 
19 5300 
20 6400 
21 7700 
22 9500 
23 12000 
24 15500 
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 In order to convert to a Bark scale, the LPC process is used to estimate 

the vocal tract filter 
)(

1
zA

.  In [21], an all pass warped bilinear transform is used 

to only affect the phase of the vocal tract filter with the mapping of  
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Equation 6 implies that each unit delay is substituted with the warped bilinear 

1~ −z , effectively transforming the z -domain into the modified z~ -domain.  While 

aB  is 1, the phase is calculated to be 
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The warping factor λ  is found to be .76 for Bark scaling in [19].  Therefore if the 

LSFs using the original z -domain were calculated from the spectrum, then 

Equation 7 will convert the z -domain LSFs to the Bark scaled LSFs. 

 

4.3.2 LSF Computation 

 Remember that the LPC technique requires )(zA  to be in the form of 
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In order for the filter 
)(

1
zA

 characterized by the vocal tract to be stable, the poles 

must be inside the unit circle in the z -domain [22].  Therefore, the zeros of )(zA  

must lie inside the z -domain unit circle.  The goal of LSFs is to find a 
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representation of the zeros that lie on the unit circle.  This is first done by finding 

the corresponding palindromic and antipalindromic equivalent of Equation 8 

noted by )(zP  and )(zQ  respectively. 

 In [23], a polynomial with degree M  can be defined as “palindromic” when 

  mMm ff −= , (9) 

and “antipalindromic” if 

  mMm ff −−= . (10) 

Properties of these types of polynomials include that the product of two 

palindromic or antipalindromic polynomials is palindromic.  The product of a 

palindromic and antipalindromic polynomial gives an antipalindromic polynomial. 

 The next step is to prove that polynomials with zeros on the unit circle are 

either palindromic or antipalindromic.  It is easy to see that 1+x  and 1−x  are 

palindromic and antipalindromic respectively.  Now consider a second order 

polynomial with complex conjugate zeros on the unit circle, 
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Equation 11 is palindromic because of the condition in (9), and due to the 

properties of palindromics, any polynomial that has k  complex conjugate pairs 

on the unit circle will be the product of k  palindromic polynomials, resulting in a 

palindromic polynomial.  Further, when (11) is multiplied by 1+x  or 1−x , the 

result is a palindromic or antipalindromic polynomial respectively. 
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 Now that )(zP  and )(zQ  have been proven to contain zeros lying on the 

unit circle, Equation 8 for )(zA  can be written as the sum of a palindromic )(zP  

and antipalindromic )(zQ  [24].  That is 
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2
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where 
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and 
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Notice that )(zP  and )(zQ are of the order 1+M , and follow (9) and (10) 

respectively. 

 From [25], combining (13) and (14) by the factorization of Equation 11 

yields a set of equations such that 
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whenever M  is even, and 
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for the case when M  is odd. 

 Solving for the iθ s using Equation 8 yields the values used for the LSFs, 

and follows from (17) and (18) that 

  πθθθθ <<<<<< − MM 1210 L . (19) 

Notice that the values alternate between the )(zP  and )(zQ  zeros.   

 Figure 14 shows the magnitude response of a typical )(zP  and )(zQ  

solution set for 12=M .  Since the vocal tract filter 
)(

1
zA

 can be expressed by 

Equation 12, any badly predicted component is localized in frequency thereby 

proving entry 1 in Table 1.  Also due to Equation 12, it has been experimentally 

found in [1] that 
2

21 θθ +  is a good frequency indicator of formants, thus proving 

entry 3 in Table 1.  Finally, entry 2 from Table 1 can be proven because LSFs 

represent the same physical interpretation, which can be further explained in 

[26]. 
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Figure 14:  Magnitude response of )(zP  and )(zQ [25]. 

 

4.4 Mapping Using GMM 

 The source speech is gathered into N  frames each in the form of 

],,,[ 21 NxxxX L=  where nx  is the vector composed of the M  LSF features for 

the n th frame.  The target speech is gathered in the same way such that 

],,,[ 21 NyyyY L= .  Then the joint density ),( YXp  of the source and target vector 

is analyzed to form the 2N-dimensional vector ],,,[ 21 NzzzZ L= , where 

T
nnn ],[ yxz = .   

 GMM is used to model )(Zp  so that 
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where the 2N-dimensional Gaussian distribution ),;( kkN ΣμZ  is modeled by 
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 The parameters ),,( Σμα  can be obtained by the Expectation 

Maximization (EM) algorithm [27].  The EM algorithm first initiates values for the 

parameters.  Then the following formulas 
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where 2
nz  refers to an arbitrary element of nz  and 
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can be used to estimate the maximum likelihood of the parameters ),,( Σμα .  

Equations 22, 23, and 24 are the newly estimated parameters calculated from 

the old parameters through Equation 25.  Equation 25 also describes the 

conditional probability that a given vector nz  belongs to class kC  and is derived 

from the application of Bayes’ rule [28]. 

 Analyzing the entire space Z  is thereby analyzing all the N  frames of the 

joint density of the source and target speech.  This mapping essentially forms a 

histogram of the joint density.  In Figure 15, the mapping of Z  is shown, and is 
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read very much like a topographical map.  The horizontal axis indicates the 

M features of the source, while the vertical axis indicates those of the target 

speaker.  All the data from all frames is depicted in the figure.  The various colors 

on the plot is used to label the class of the data point.  Then, the class forms the 

generated Gaussian distribution.  The final forms a 3d mixture Gaussian curve 

for the distribution of )(Zp  and visually similar to that of a mountain range with 

various peaks and valleys. 

 

 
Figure 15:  The mapping of the joint speaker acoustic space through GMM [29]. 

 

4.5 Developing the Conversion Function for Vocal Tract Conversion 

 The goal of the conversion function is to minimize the mean squared error 

  ]))([( 2XY FEmse −=ε , (26) 

where E  is expectation.  If )(XF  is assumed to be a non-linear function, then 

Equation 26 can be solved using conditional expectation [30] such that 
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Since the term inside the integral in (27) is always positive, then the problem is 

simply a matter of minimizing that term.  The result is that the function that 

minimizes the mean squared error is the conditional expectation, and is often 

called the regression curve.  Therefore the regression curve for the joint 

Gaussian case will be 
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To find this, it is known that 
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resolving into the following expression for the conditional Gaussian distribution  
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From Equation 30 the expected value for the conditional distribution is found to 

be linear and of the form 
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The result of Equation 32 is applied to Gaussian mixtures by the weighting term 

of the probability the vector nx  belongs to a class kC .  The final conversion 

function is developed into 
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4.6 Converting the Fundamental Frequency F0 

 Recall the Source Filter model for speech is composed of the excitation 

signal )(nε  and the vocal tract filter )(/1 zA .  In order to execute a successful 

conversion, both of these components are converted to resemble the target 

speaker.  The vocal tract filter parameters were converted as discussed in 

Section 4.5.  The excitation is now the only parameter that must be converted 

before obtaining the final converted speech.  To do this, the source speaker’s 

fundamental frequency (F0) is scaled to match on average the target speaker’s 

F0.  The following expression, 

  tt
s

s
s

t f
f μσ

σ
μ

+
−

= 0
0 , (35) 

was used to convert to the source F0 to the projected target F0 [31].  The mean 

and standard deviations were calculated on all the F0 from the voiced frames in 
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the speech.  The F0 can be found using a variety of techniques such as the 

autocorrelation method and the cepstrum method. 

 

4.6.1 Defining F0 

 The F0 of a speaker refers to the vibrating frequency of the glottis.  In 

voiced sounds the glottis vibrates producing an excitation signal )(nε  that will 

appear as a periodic signal.  The F0 is then calculated from pitch period by 

  
0

10
T

F = . (36) 

Figure 16 is a typical excitation signal for voiced speech where the pitch period 

0T  is shown. 

 

 
Figure 16:  The excitation for a typical voiced sound [25]. 
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 The excitation signal for an unvoiced sound appears as noise with no 

periodic characteristics.  Since there is no period for unvoiced sounds, it has no 

F0.  Figure 17 shows the signal )(nε  for an unvoiced sound. 

 

 
Figure 17:  The excitation for a typical unvoiced sound [25]. 

 

The F0 varies from person to person.  In females, F0 ranges from 120 to 500 Hz, 

while the range varies from 50 to 250 Hz in men [32]. 

 

4.6.2 Extracting F0 

 The Autocorrelation method is a popular technique for finding the F0 in 

voiced segments.  If the F0 is to be estimated from )(ns  and the frame that ends 

at time instant m  with a frame length of T , then the autocorrelation is defined by 

  ∑
+−=

−=
m

Tmn

nsnsR
1

)()()( ττ , (37) 

where τ  is the time lag in samples [32].  Equation 36 reflects the similarity 

between the frame that starts at time instant 1+−= Tmn  to m  to the time shifted 

version.  The value for τ  that yields the largest value of the autocorrelation is 

determined to be the pitch period.  Figure 18 and Figure 19 show the speech 

waveform of a voiced sound with the autocorrelation respectively, where the 
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largest correlated value was found at τ = 71.  At an 8kHz sampling rate, this 

value corresponds to 113Hz. 

 

 
Figure 18:  The voiced waveform with periodic traits [32]. 

 

 
Figure 19:  The autocorrelation values of Figure 18 [32]. 

 



 48

 Another method for pitch extraction is by analyzing the waveform with the 

idea that baab logloglog += .  This is termed cepstral analysis [33].  The 

cepstrum of the signal can be computed by using the inverse Fourier Transform 

(FT) such that the F0 will appear as a large peak after about 2ms.  Figure 20 

shows the cepstrum of a voiced /i/ in “We were” where the largest peak is circled 

and occurs at 8.3ms for a F0 value of 120Hz. 

 

 
Figure 20:  Normalized cepstrum of the voiced /i/ in “we were” [33]. 

 

4.7 Rendering the Converted Speech 

 The first step for outputting the converted speech is to adjust the excitation 

signal with the scaled F0.  This can be done using PSOLA (Pitch Synchronous 

Overlap and Add).  In PSOLA, the signal is divided into short term analysis 

windows that often overlap.  Then in order to manipulate F0, some analysis 

windows are removed, thereby expanding or contracting the interval between 

periods.  The final step is to recombine the windows by means of overlapping 

and adding.  Figure 21 shows how this process affects the F0. 
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Figure 21:  Manipulating the F0 by means of PSOLA techniques [10]. 

 

 Once the excitation signal has been modified to attain the converted F0, 

the spectral parameters that characterize the vocal tract filter are convolved with 

the excitation signal.  This results in the final converted speech. 
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CHAPTER 5:  EVALUATIONS 
 

 

 In this Chapter, the various methods for evaluating the different voice 

conversion systems in current production is discussed.  There are many ways 

that these types of tests can be carried out.  These methods are mostly broken 

down into subjective tests and objective tests.  Subjective tests are evaluated by 

people listening to various sound files to determine the effectiveness of the voice 

converter.  Some examples of subjective tests are the ABX test and mean 

opinion score (MOS) tests.  Since these tests rely on opinions, other means for 

testing must be experimented in order to eliminate any biased effects.  Therefore 

objective tests are also staged to provide additional evaluations.  Objective 

results are mathematical measures for interpretation of the converted speech.  

Typical examples of objective tests include error tests and spectral distortion 

measures.  The following results are obtained from various types of voice 

converters. 

 

5.1 Subjective Measures of Voice Conversion Processes 

 The subjective measures for various voice conversion methods are 

provided to help develop a better understanding of the need for increased 

studies.  Listening tests can be executed through a variety of experimental 

conditions.  ABX tests are a common method for listening tests.  The main 
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response of this question is “is X closer to A or B?”  where A and B are treated as 

a control and variable respectively and X is used to measure the closeness to A 

or B. 

 Other common measures are mean opinion scores or MOS.  In MOS 

experiments, the subject is told to give their opinion on the condition based on a 

numeric scale, usually from one to five.  The subject must be given an example 

of a specific opinion in order to execute these tests.  Then the average of the 

responses is taken to indicate the success (or failure) of the experiment. 

 

5.1.1 Vector Quantization Results 

 Recall the description of the VQ method in Section 2.2.1 based on [8].  

The training size was 100 words.  The codebook size for the spectrum 

parameters was 256, with a 12th order LPC analysis.  The two experiments that 

will be mentioned evaluate the male to female and male to male conversion 

performance.  The first experiment helps to examine the contribution of the pitch 

and spectral parameters to speech individuality through a pair comparing test.  

Two different words were used as speech pairs for five different conversions 

resulting in a possible combination of 40 tests.  Twelve subjects were given the 

tests in a soundproof room.  The subjects were asked to rate the similarity of 

each pair of words according to “similar,” “slightly similar,” “difficult to decide,” 

“slightly dissimilar,” and “dissimilar.”  Table 3 gives the descriptions of the five 

experimental conditions. 
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Table 3:  Experiment 1 tests for male to female VQ conversion. 
Experiment 1: male to female conversions 
1.  Original male voice only (m) 
2.  Pitch conversion only (mp→fp) 
3.  Spectrum conversion only (ms→fs) 
4.  Pitch and spectrum conversion (m→f) 
5.  Original female voice only (f) 

 

The results are conducted using Hayashi’s fourth method of quantification [34].  It 

places the stimuli in a 2-dimensional plane according to the similarity between 

two stimuli, shown in Figure 22.  Each dot represents a type of voice conversion, 

and axis I and II represent pitch and spectrum differences respectively. 

 

 
Figure 22:  Space representation of listening test results for male to female 

conversion using VQ [8]. 
 

 The results show that the male to female (m→f) conversion lies close to 

the female only (f) voice, meaning that total conversion of the spectrum and pitch 

results in a voice similar to the female.  When looking at the mp→fp (pitch only) 

conversion, the stimuli lies to the bottom of axis I.  The stimuli is in the same 
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bottom half as the male only voice meaning that pitch only conversion is not 

efficient for voice conversion.  The same can be said about the spectrum only 

(ms→fs) conversion.  Therefore, it is favorable to convert both the spectrum and 

pitch. 

 The second experiment is of the ABX form with the each ABX question 

designed to evaluate the conversion between two male speakers.  Four words 

were included with each ABX question being comprised of three different words 

producing 48 different questions.  Table 4 gives the numerical results showing 

that identification is harder with male to male conversion.  This could also imply 

that generally good conversion was achieved. 

 

Table 4:  ABX evaluated results for male to male VQ conversion. 
Conversion Correct response % 

Male 1→Male 2 64.6 
Male 2→Male 1 63.6 
Male 1→Male 3 58.0 
Male 3→Male 1 56.8 

 

5.1.2 Voice Conversion using Least Squares GMM 

 Given that the results of the VQ method are favorable, GMM methods are 

now introduced since it has been shown in [17] that they are more robust than 

VQ methods.  The subjective results are taken from [28], which is based on the 

GMM of the source speaker only.  The conversion function parameters were 

found using the Least Squares technique.  Speech analysis and synthesis is 
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performed using the Harmonic plus Noise Model (HNM) where the speech signal 

is the effect of composing the sum of a purely harmonic signal and of a 

modulated noise [35]. 

 The conversion function is applied to the spectral envelopes of the 

harmonic aspects of the signal because the noise part was found to be less 

stringent to the individuality of the speaker.  Overall, the process converts the 

harmonics (voiced frames) using the conversion function, and the noise 

(unvoiced frames) by a corrective filter that models the difference between the 

average noise spectra between the target and source.   

The features extracted from the voiced frames used for conversion were 

computed from the amplitudes of the harmonics by the discrete regularized 

cepstrum method based on a warped frequency scale.  The feature order used 

for extraction from the voiced frame was 20.  Conversion was done between two 

male voices provided by the Centre National d’Etudes des Telecommunications 

based on phonemes in the French language.  About 20,000 training vectors were 

used for the training process resulting in 3.5 minutes of voiced speech. 

 The demonstration of success of the method is performed through two 

useful listening tests.  The first is the standard ABX test.  In this case, X was one 

of three types of conversions – pitch only and GMM using mixtures of 16 and 64 

with full conversions each.  A or B is an uttered sentence by the source or target 

speaker consisting of the same words.  X is a different sentence uttered, and 

subjects were asked to identify whether A or B is closest to X.  The pitch only 
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conversion found that only 18% of listeners made a correct identification.  The 

GMM full conversion method with 16 mixtures provided a dramatically increased 

percentage of identification with 83% of correct responses.  Increasing the 

mixture to 64 yielded a slight increase of 88%.  An additional ABX response was 

formed where A, B, and X uttered the same sentences and applied to GMM full 

conversion with 64 mixtures.  In this study, 97% were able to identify the correct 

response. 

 The second study is based on the MOS test, where subjects were asked 

to rate the overall performance based on a zero to nine scale with zero meaning 

“identical” and nine meaning “very different.”  Pairs of speech utterances were 

used along with all combinations of original speaker, target speaker, “pitch 

modified” speaker, and converted speaker using 16 and 64 GMM mixtures.  Each 

speech pair uttered a different sentence.  Subjects listened to the pair of speech 

utterance based on a type of conversion.  They were asked to rate the similarity 

of what they heard.  Figure 23 shows the results of the opinion test. 
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Figure 23:  Opinion test results of source speaker GMM with the Least Squares 

technique [28]. 
 

 Each type of conversion is labeled as “TT” for target to target, “SS,” 

source to source, “M2,” conversion of source using 64 GMM to target, “M1,” 

conversion of source using 16 GMM to target, “PT,” source pitch conversion to 

target, and “ST” for the source to target.  To understand this, imagine one 

sentence spoken by the source.  In a “SS” question, a different second sentence 

is uttered again by the source.  Answers given by the subjects should be 

relatively close to 0.  The “x” in the plot refers to the median value with the lines 

referring to the mean absolute deviation of the responses for the type of 

combination. 

 The figure shows that the pitch only method lies relatively close with the 

source to target combination.  Since “ST” refers to one sentence being uttered by 
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the source, and the other sentence being spoken by the target, responses should 

be in the 9 range.  This again shows that only changing the pitch is not sufficient 

enough for conversion.  Using GMM conversion helps the source sound more 

like the target speaker.  As in agreement with the results of the ABX test, with 64 

GMM allowing for a more similar sounding result than 16 GMM. 

 

5.1.3 Results of GMM Conversion of Joint Space 

 This method of voice conversion is done in [6], and is an expansion of [28] 

where instead of modeling only the source speaker distribution using GMM, the 

joint of the source and target is used.  The theory is that the joint density should 

lead to a more judicious allocation of mixtures for the regression. 

 In [8], two male and a female speaker were selected from the Oregon 

Graduate Institute diphone database [36].  The training sets were constructed by 

performing a binary split VQ on all vectors of the source speaker database.  The 

vectors are composed of 16th ordered Bark scaled LSFs extracted from the 

frames of each diphone.  Diphones whose vectors were closest to one or more 

codewords of the VQ procedure were included in the training set.  Training set All 

consists of all the possible diphones in the database.  A GMM distribution with 1, 

2, 4, 8, and 16 mixtures was performed for each training set.  The conversion 

consisted of the spectral vectors followed by pitch modification.  For subjective 

tests, the mixture that gave the lowest error was used.  Table 5 contains the 

conditions for the three sets used for evaluations. 
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Table 5:  Training sets for LSF Joint GMM conversion. 
Set Diphones Vectors Time (s) Best Mixture 
1 32 470 4.5 2
2 123 1822 17.5 2
3 409 5980 53.6 16
All 1665 23308 197.6 16

 

 Two sets of ABX tests were performed.  The first ABX test presented 16 

stimuli where A and B were utterances by the source and target speaker, and X 

was the result of converting the source to the target.  The second ABX test 

compares the conversion performance to a “perfect mapping” that uses the target 

spectral vectors with the source speaker’s modified pitch.  ABX2 is a measure of 

spectral conversion independent to pitch.  An additional MOS test asked the 

subjects to rate the listening quality of 36 phrases on a 5 point scale: 1-bad, 2-

poor, 3-fair, 4-good, and 5-excellent.  The results are shown in Table 6. 

 

Table 6:  Subjective results of Joint GMM conversion. 
Test Set 1 (%) Set 2 (%) Set 3 (%) Set all (%) 

ABX1  
m1→m2 47.5 40 37.5 52.5

ABX1  
m→f 92.5 95 95 97.5

ABX2  
m1→m2 87.5 95.8 91.7 95.8

ABX2  
m→f 100 100 100 100

MOS  
m1→m2 3.7 4 4.1 4.2

MOS  
m→f 2.4 2.4 2.1 2.7
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 Interpreting the results, ABX1 for male to male conversion shows 

comparable findings to Table 4.  In fact, the researchers found that some 

subjects felt there had been a third male speaker involved.  However, the 

listening quality for male to male conversion was favorable averaging above 

“good.”  The male to female conversion resulted in more correct responses which 

shows the important role of pitch, but leads to a poorer listening quality compared 

to male to male conversion.  The average of listening quality in male to female 

conversion is slightly below “fair. 

 In the second ABX test, subjects related the converted speech to the 

“perfectly mapped” voice, which consists of the modified source pitch and the 

original target spectral envelope, and showed that a strong spectral relationship 

was formed.  This means that when the residual is ignored, the spectral 

conversion is quite successful.  Therefore more research must be done in pitch 

modification techniques (refer to Section 5.2.5). 

 

5.2 Objective Measure of Voice Conversion Processes 

 Objective measures quantify the performance of the voice conversion.  

Typical measures are based on relative spectral distortions.  Relative spectral 

distortion compares the distance between converted speech and the reference, 

with that between source and reference [37].  Spectral distortions themselves 

vary according to the differences in distances.  Therefore in objective measures, 
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calculations and formulations are critical and must be defined to fully 

comprehend the evaluation. 

5.2.1 Results of using Neural Networks in voice conversion 

 The neural network method of voice converting the formants [9] is 

revisited in this section to compare the objective results.  The network was 

trained using voiced sounds from continuous speech for a male to female 

conversion.  Fifty sentences were used making a total of about 500 formant 

vectors.  The first three formants (F1, F2, and F3) were extracted using the 

minimum phase group delay functions [38].  The conversion of the five English 

vowels /a/, /e/, /i/, /o/, and /u/ were used for utterances.  The percentage error is 

taken between the source and target speaker before conversion, and the target 

and transformed speech after conversion is executed.  The values are listed in 

Table 7. 

 

Table 7:  Formant percentage error before and after neural network conversion. 
 Percentage error between 

source and target voice 
 Percentage error between 

converted and target voice 
Vowels F1 F2 F3  F1 F2 F3 
A 22.0 12.0 13.1 7.3 9.0 5.9
E 11.0 15.9 7.8 5.8 5.2 2.8
I 15.1 12.3 9.8 5.0 6.2 3.8
O 12.3 7.9 10.4 7.9 6.0 3.8
U 15.5 10.2 19.3 5.3 6.2 4.6

 

 The drop in percentage errors indicates a smaller difference between the 

measured formants.  In every measurement after conversion was performed, the 
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trend of the formants of the converted speech draws closer to those of the target 

voice.  Table 7 data are taken from steady voiced speech, which is not a typical 

method of conversing.  Therefore a transition between the /a/ to /e/ was studied 

to determine the effectiveness of the transformation. 

 In Figure 24, the first three formants are extracted using a frame of 

25.6ms.  They are plotted according to time.  The top plot is the formant 

sequence of the transformed source voice, while the bottom plot is the actual 

target formant sequence.  As shown, the transformed data is relatively similar to 

that of the target data.   

 

 

 
Figure 24:  Formant sequence of /a/ to /e/ for transformation of source (top), and 

the target speaker (bottom) [9]. 
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5.2.2 VQ Objective Results 

 A side note is that VQ methods provided better results compared to neural 

networks methods in [39] (with GMM performing better than VQ methods).  The 

objective results in [8] are the spectral distortions between two speech samples 

of the source and target speaker’s, and of the converted speech and target 

speaker.  For all conversions, spectral distortion decreased in comparison to 

before conversion distortion (Table 8).  The male to female conversion provided 

the largest amount of spectrum change, while the female to female conversions 

provided the lowest spectral change.  Male to male conversions gave slightly 

better results in spectral distortions than their female counterparts.  It is also 

important to note that no formulaic method was mentioned in determining the 

spectral distortion between speakers. 

 

Table 8:  Spectral distortions of the VQ method. 
Speaker conversion Before 

conversion 
After 

conversion 
Female1→female2 0.2759 0.2109 
Female1→female3 0.2070 0.1489 
Male1→Male2 0.3364 0.1717 
Male1→Male3 0.2851 0.1550 
Male1→female1 0.6084 0.2193 

 

5.2.3 GMM Using Least Squares Objective Results 

In [28], researchers provided the measure for the average rms log-spectral 

distortion measured of a least squares conversion process with 
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where ω~  denotes the Bark scaled frequency function of Equation 7.  The 

features )(kp  are the cepstrum coefficients.  The distortion is then normalized 

according to the initial average distortion between both speakers.  The results 

are compared to various voice conversion processes (such as full, diagonal, VQ-

type, and VQ according to [8]) and then plotted with varying Gaussian mixtures in 

Figure 25.  As seen, GMM provides the largest spectral distortion reduction. 

 

 
Figure 25:  Spectral distortion measures as a function of mixture number of 

converted and target spectral envelope [28]. 
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 The final spectral shape of the converted and target speaker is also 

plotted to show the effectiveness of GMM in Figure 26.  Notice that the spectral 

envelope below 1.5kHz fits closer to the target than when at larger frequencies, 

given the spectral shape of the source below 1.5kHz.  This is in response to the 

Bark scale, where the lower frequencies have better resolution than larger 

frequencies. 

 

 
Figure 26:  Spectral envelope of source (dotted), converted(dashed), and 

target(solid) using 128 mixtures [28]. 
 

5.2.4 Joint Density GMM Voice Conversion Results 

 The distortion measure of [6] is the normalized mean squared error 
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Figure 27 compares the Least Squares technique with the Joint Density 

technique with male to male conversion.  For each set, the number of mixtures 

was increase when possible.  The mixtures range from one to 16 in powers of 
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two.  Although both methods have similar errors, the joint density method 

provided more reliable results when the training size was small compared to the 

Least Squares method.  For the smaller set sizes, Least Squares encounters 

problems during optimization, resulting in large errors.  This allows for the joint 

density method to use smaller training sizes for reasonable conversion results. 

 

 
Figure 27:  Normalized error for Least Squares and Joint Density GMM voice 

conversion [6]. 
 

5.2.5 Pitch Contour Prediction 

 The advancement for joint GMM voice conversion has yet determined a 

beneficial method of pitch modification.  Current methods only modify source 
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pitch according to Equation 35.  Using the average values and variance does not 

allow for robust transformation to the target pitch contour.  However, pitch 

prediction has been a new addition to the research in voice conversion [40]. 

 Pitch prediction relies on predicting the pitch contour of a speaker.  It 

works very similar to joint GMM conversion, except instead of predicting the 

target spectral envelope, the pitch contour of the source is predicted.  The 

training occurs on the joint space of the source spectral features and the given 

corresponding pitch contours using GMM.  Once the parameters are found, the 

conversion function can predict the pitch contour given an unseen spectrum.  

The conversion function is exactly as Equation 33.  This method can be applied 

to the converted spectrum, such that the predicted pitch contour of the converted 

spectrum is in essence the predicted pitch contour of the target speaker. 

 Results from [40] are given in Table 9.  The pitch prediction method is 

applied to a French female speaker of a training size of 25 min.  HNM is used as 

the speech model.  A 20th order cepstral coefficient extraction is used for the 

feature vectors.  The mixture is set to 64, and only the voiced frames are as input 

to the conversion function. 

 

Table 9:  Pitch contour prediction errors. 
Measure 0 – 150Hz 150 – 250Hz >250Hz All 

Mean (Hz) 0.6 -0.1 0.6 -0.02
Standard Dev. (Hz) 4.7 2.5 28.5 4.2
Occurrence (%) 11.4 87.4 1.2 100
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CHAPTER 6:  DISCUSSIONS 
 

 

 This section provides a brief analysis of the overall effect of using the 

discussed techniques for the restoration of voice.  Problems encountered and 

implementation methods provide further insight into the thesis topic.  A section on 

future work may also assist in the motivation of expanding current research 

projects focused in these similar areas of study. 

6.1 Introducing the Method to Solve Current Problems 

 In order to apply this technique for current use, the overall systems will 

depend on several processes.  First, the text to speech synthesizer converts the 

text into speech.  Then the output of the synthesizer is used to provide the 

source voice for the voice conversion process.  The spectral parameters are 

extracted from the conversion process to provide the signal processing for final 

speech generation.  A typical over all system will look like Figure 28. 
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Figure 28:  The overall voice restorer. 

 

 The methods to implement the restorer were done through a rough hands 

on means approach.  The speech corpus was inputted with text to produce the 

source voice.  The target voice is recording and gathered.  Each speaker signal 

is windowed to extract the LPC coefficients of the frame.  The voiced frames of 
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both speakers are specially analyzed for pitch extraction.  The LSFs are found 

from the LPC, and converted to Bark scale.  Features are then aligned by hand 

according to phonemes.  The EM algorithm is used to estimate the newly formed 

joint density space.  The conversion function is formed based on the EM 

parameters and a linear regression.  Then a desired converted sequence is 

formed from the TTS system.  The source sequence is processed similarly to 

training to extract the LSF features.  The converted features are found by 

inputting the source features into the conversion function.  The average and 

variance of the pitch is found from the voiced frames, and applied to transform 

the pitch of the inputted source sequence.  The newly found spectral features 

and the modified pitch are convolved to form the converted speech.  The 

disadvantages of using this type of method are that it is time consuming and 

doesn’t really achieve the independent human interaction desired. 

 Instead it would be more efficient for the system to rely heavily on speech 

recognition.  By extracting the phonemes of the speech corpus using speech 

recognition after synthesis, force alignment programs can also be preformed on 

the corpus.  This will ensure one to one matching of phonemes for training.  

Then, the forced aligned speech corpus could be voice converting, producing the 

final converted speech.  This method allows for less human dependence besides 

the text input required from the speaker. 

 Dynamic time warping algorithms allows for comparisons to be made 

between speech corpora that are not aligned.  Algorithms described in [41] can 
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be used to time warp the speech corpora.  In order to recognize the speech, 

programs such as Carnegie Mellon University’s SPHINX toolkit provided by the 

CMU Speech Group (http://www.speech.cs.cmu.edu/sphinx/tutorial.html) can be 

used.  Both of the software used in conjunction allow for the training process for 

voice conversion to begin.  The voice conversion process itself cab be utilized in 

MATLAB.  The final step of using signal processing techniques to obtain the 

converted speech still however produces programming challenges. 

 

6.2 Challenges Encountered 

 Being able to allow independent signal processing for the final voice 

output is still a challenge.  Current methods require adjustments of the pitch 

contour of the source speaker.  During this phase of the restorer, the quality of 

the voice is degraded.  In order to improve the quality of the voice, studies such 

as [29], begin by instantiating a speech corpus exclusively designed for voice 

conversion. 

 Another challenge arises in the determination of the quality between 

various voice conversion systems.  Since voice conversion systems vary by the 

methodology used to execute conversion, comparisons across systems are 

difficult to conclude.  Therefore a comparative assertion must be made in order to 

advance the efforts of voice conversion systems.  Baseline definitions can be 

made in the speech corpus used for training software.  Other baseline 

http://www.speech.cs.cmu.edu/sphinx/tutorial.html
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discriminators can be made in the selection of using the appropriate source voice 

for converting. 

 Potential abuse always surfaces with the advent of new technology.  Since 

the aim is to mimic the target speaker, identity issues evolve.  Speech 

recognition software is especially exposed to such abuse with no apparent 

solution.  However, companies that exploit the use of speech recognition use 

verbal passwords to help avert stolen identities.  Passwords are the first line 

methods for preventing abuse of voice restorers. 

 

6.3 Future work 

 Aspects of this thesis discussed methods of restoring voice.  Voice 

conversion techniques are relatively new, and have yet to become commonplace 

in society.  This allows for time to improve the current proposed systems to 

develop a more reliable system.  Easy changes such as stronger mapping 

models and performing the restoration without human interaction, may help 

provide better performance than that attained from the current restoration 

process. 

 The first improvement can be executed during the mapping training 

process.  During this process, the speech corpora are mapped using Gaussian 

mixture modeling.  GMM on joint density allowed for a more judicious allocation 

of mixtures components.  As previously discussed, neural networks and vector 

quantization are also realizable mapping methods.  Instead of asking which 
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method is more functional, the focus should be when a certain method is more 

functional.  By asking this question, we can realize a system that uses multiple 

mapping processes, and chooses the mapping process that provides the better 

performance when analysis is completed. 

 Another area for improvement is to refurbish the system to allow self-

training.  In the course of the training process, the speech corpora must be 

phonetically aligned, a process called force-alignment.  This is usually done by 

hand.  Force-aligning by hand meant that the user would have to splice the 

speech corpus by phonemes and extract the time occurrences.  Then the voice 

files are examined and literally aligned using the time occurrences recorded.  

Force aligning is a tedious process that can be easily substituted with speech 

recognition techniques. 

 Using speech recognition software and dynamic time warping algorithms 

can also force-align the speech corpora.  The ability to force-align the speech 

corpora without human interaction will be beneficial because the restoration 

process can now be packaged into a single computer program.  Combining the 

process into a single program can simplify the usage of the restoration process 

and helps achieve user-friendly status.   

 In addition, the computer program can now allow for multiple users.  When 

the training process becomes independent of human interaction, programmers 

can allow for detection of different users.  Sensing a different user will require a 

training prompt.  Once the new user enters the training prompt, they can now use 
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the voice restoration program when need be.  What is more remarkable is that 

this can allow organizations to compile training banks where anyone could have 

their voice stored on file for voice restoration. 

 The amendments of multiple models and independent human interaction 

vastly improve the quality and efficiency of the current restoration program.  

Multiple models can help improve mapping and conversion variables.  

Eliminating human interaction during the training process generates a single 

computer program capable of detecting multiple users and instant training of 

multiple voices.  Since the current restoration process is in the form of a program, 

the changes can easily be integrated in the software. 
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CHAPTER 7:  CONCLUSIONS 
 

 

 The methods for restoration of voice were discussed in full detail.  First, 

the use of text to speech synthesis is introduced to provide as the source voice in 

the system.  The target speaker sample of the spoken speech corpus is then 

used for training against the source voice.  Once training is completed, the 

conversion process begins by extracting the linear spectral frequencies of the 

source and target voice.  A Gaussian mixture model then is used to represent the 

joint density of the source and target vectors.  The parameters of the Gaussian 

mixture model are used to construct the conversion function that will help 

minimize the mean square error between the spectral parameters of the 

converted source voice and that of the desired target voice.  After obtaining the 

final converted linear spectral frequencies, the pitch of the source speaker’s 

residual is modified to match the average of the target speaker residual.  Both 

the modified residual and the linear spectral frequencies are convolved to 

produce the final converted speech. 

 Results from objective and subjective tests indicate that reasonable 

restoration can be achieved using a speech corpus of about one minute, and that 

increasing the length of time of the speech corpus increases the quality of 

restored speech.  Speech corpora should include a variety of phonetic content 

such as monophthongs, diphthongs, and fricatives.  Future improvements to 
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these techniques can result in the employment of “voice banks” that will store 

voice samples of spoken speech corpora by individuals whom wish to assure the 

restoration of their voice.  Streamlined programming will also help allow for 

multiple users to access the voice restoration system. 

 In all, the process to restore voice can be easily achieved by 

programmable means.  Voice conversion techniques will allow for improvement 

in the welfare of many that have lost or may loose their voice.  The psychological 

impacts of such a procedure are beneficial to the areas of science and 

engineering. 
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