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ABSTRACT

FM Synthesis is a well-known algorithm used to generate
complex timbre from a compact set of design primitives.
Typically featuring a MIDI interface, it is usually imprac-
tical to control it from an audio source. On the other hand,
Differentiable Digital Signal Processing (DDSP) has en-
abled nuanced audio rendering by Deep Neural Networks
(DNNs) that learn to control differentiable synthesis lay-
ers from arbitrary sound inputs. The training process in-
volves a corpus of audio for supervision, and spectral re-
construction loss functions. Such functions, while being
great to match spectral amplitudes, present a lack of pitch
direction which can hinder the joint optimization of the pa-
rameters of FM synthesizers. In this paper, we take steps
towards enabling continuous control of a well-established
FM synthesis architecture from an audio input. Firstly, we
discuss a set of design constraints that ease spectral opti-
mization of a differentiable FM synthesizer via a standard
reconstruction loss. Next, we present Differentiable DX7
(DDX7), a lightweight architecture for neural FM resyn-
thesis of musical instrument sounds in terms of a compact
set of parameters. We train the model on instrument sam-
ples extracted from the URMP dataset, and quantitatively
demonstrate its comparable audio quality against selected
benchmarks.

1. INTRODUCTION

Sound generation and transformation tools are ubiquitous
in music composition and production. The electronic syn-
thesizer has enabled musicians to access forms of timbre
beyond the capabilities of acoustic or amplified instru-
ments. Chowning’s FM Synthesis [1] is a widely used
technique that is flexible to create complex, harmonic and
inharmonic spectra from a reduced set of controls. Its long-
standing presence in the audio industry has shaped tradi-
tional and contemporary sound design techniques [2–4]
across musicians and producers, with a wide number of
current commercial synthesizer keyboards, modules and
software plugins featuring it.
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For most of its history, the digital synthesizer has been
inextricably associated with the MIDI keyboard. Several
historical technical and social factors contributed to mak-
ing the keyboard the de-facto control interface for the syn-
thesizer [5]. The legacy of this association continues to
steer synth design, favouring triggers and envelope gener-
ators over continuous control strategies.

Developing alternative interfaces for controlling digital
synthesis remains an active area of research [6]. Many such
digital musical instruments (DMIs) are based on mappings
between sensor data and synthesis parameters [7, 8]. An
alternative approach uses features extracted from the audio
signal of an acoustic instrument to control a digital syn-
thesis process. In that context, previous works employed
audio signals from musical instrument as oscillators [9], in
a configuration that can be seen as a special application of
Adaptive Digital Audio Effects [10, 11].

More recently, Neural Audio Synthesis (NAS) algo-
rithms have employed Deep Neural Networks (DNNs) to
map audio features to synthesizer parameters, in tasks such
as realistic audio synthesis from a compact set of control
signals [12–14], timbre transfer from one instrument to an-
other [15, 16] and enhancement of symbolic musical ex-
pression [17]. While the results are impressive, we observe
that the employed synthesis architectures are overly com-
plex, featuring dozens of time-evolving parameters that
hinder intervention, with users defaulting to indirect meth-
ods to intervene with the synthesis process, such as net-
work bending [18].

We are interested in an audio-based, continuous control
technique for a well-established synthesis architecture, that
can potentially offer musicians similar sound design primi-
tives and outcomes available to keyboard players. Further-
more, we want the model to be compatible with live use,
therefore it should be able to work in real-time.

In this work, we take steps towards enabling in-
terpretable sound design controls for NAS algorithms,
and present Differentiable DX7 (DDX7), a causal and
lightweight DNN architecture that maps continuous audio
features to the synthesis parameters of a well-known FM
synthesizer. We train DDX7 in single instrument datasets
and evaluate its resynthesis performance against selected
benchmarks. We provide full source code, and an online
supplement 1 with audio examples and a preliminary anal-
ysis of the model’s real-time execution capabilities.

1 https://fcaspe.github.io/ddx7
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2. BACKGROUND

2.1 Linear FM Synthesis

Linear FM modulation for audio signals, originally de-
scribed by Chowning [1] in the early 1970s, is a well-
known sound design technique that powered the first mas-
sively available and commercially successful digital syn-
thesizer, the Yamaha DX7, defining an era in music pro-
duction [2]. Since then, it that has retained a fair amount
of attention by the research community [19], being present
in a variety of topics from timbre semantic analysis [13],
to empirical [4] and computer assisted sound design [20],
and adaptive effects [11]. Commercially, manufacturers
continue to release as of today a sizable number of new
instruments based on this technology [21, 22].

Linear FM synthesis is actually a phase modulation
technique aimed at generating different timbres with few
parameters and low computational resources. Expressed in
term of sine waves, the instantaneous FM modulated signal
can be written as shown in Equation 1, where fc is the car-
rier frequency, fm is the modulator frequency and I is the
modulation index. In this work, we denote this particular
linear phase modulation technique simply as FM Synthe-
sis.

y(t) = sin(2πfct+ Isin(2πfmt)) (1)

The side-bands of an FM signal are equally spaced
around the carrier frequency, and their separation deter-
mined by fm, while the number of harmonics depends on
the modulation index and follows a Bessel function of the
first order (Equation 2).

y(t) =

n=+∞∑
n=−∞

Jn(I)sin(2π(fc + nfm) · t) (2)

By controlling the modulation indexes and ratios, users
can generate rich and complex timbre with a small set of
oscillators modulated in frequency. For instance, the sim-
ple modulator-carrier setup can be extended with a new
carrier that is modulated by the output of the previous pair.
This stacked arrangement spreads the bands of the initial
modulator-carrier pair across another carrier, adding a new
layer of complexity to the timbre. Furthermore, outputs
from many stacks can be mixed in an additive approach.
Next, by setting the frequency ratio r in such a way that
fc = r · fm, with r ∈ Q, FM generates harmonic spectra.

2.2 The DX7 Synthesizer

The Yamaha DX7 synthesizer is probably the best-known
FM synthesizer, and it features a linear FM synthesis archi-
tecture that has been previously used by other synth models
as well, making it an excellent candidate for integration to
a continuous control strategy.

The sound of the DX7 is generated by six frequency-
modulated sinusoidal oscillators, and it is programmed by
means of setting up a patch. For each oscillator, a patch de-
scribes their routing (i.e. how the oscillators are intercon-
nected in a stacked or additive fashion), the Attack-Decay-
Sustain-Release (ADSR) envelope generator parameters

and the frequency ratios with respect to the note that is be-
ing played. Fixed frequencies can also be assigned to the
oscillators. The ADSR parameters control the output levels
of each oscillator; affecting their output volume or modu-
lation index depending on their interconnection. Finally,
in the DX7, the oscillators’ frequency ratios and routing
remain fixed during audio rendering. Sound dynamics are
generated mainly by the ADSR envelopes controlling the
volume or modulation index of the carriers and modulators
respectively.

2.3 Sound Matching

Sound matching is the process of estimating a set of syn-
thesis parameters that approximate a given audio signal as
best as possible. The task of matching an audio input to
synthesizer controls is not new especially for FM, where
evolutionary methods have been used to optimize a patch
for a particular given sound [20, 23].

More recently, DNNs have been studied for supervised
sound matching from an annotated dataset of patches and
synthesized audio excerpts. The approaches include clas-
sification [24], where the network predicts a patch based
on an input spectrogram, variational inference [25], with
the DNN learns an invertible mapping between a dataset
of audio and patches, and multi-modal analysis [26] that
employs multiple aggregated audio features for prediction.

While these methods are effective, they usually process
long audio windows on the order of seconds, required to
estimate the values of the ADSR envelope generator. Fur-
thermore they can only estimate parameters from audio ex-
cerpts at specific pitch values. These approaches are not
suitable for continuous control of a synthesizer from an
audio signal.

2.4 Neural Audio Synthesis

DNNs can capture complex relations from a dataset. This
can be exploited in a generative approach to produce re-
alistic sounding audio. Neural Audio Synthesis (NAS) al-
gorithms employ DNNs as powerful synthesizers that can
capture structure and nuances from a corpus of music and
produce new audio with similar characteristics during in-
ference. Furthermore, these algorithms can be conditioned
at train or inference time, modifying the output on-the-fly.

Since the introduction of the seminal autoregressive ar-
chitectures Wavenet [27] and SampleRNN [28], the NAS
field has included generation approaches such as Genera-
tive Adversarial Neural Networks (GANs) [29–31], proba-
bilistic models [32,33] and style transfer methods [15,34].
Furthermore, a branch of the field has focused on con-
trollable music generation, in an effort to bring interaction
possibilities to users, with NAS algorithms supporting con-
trol inputs such as MIDI [17], timbre descriptors [29] and
pitch and loudness signals [12–14].

2.5 Differential Digital Signal Processing

Differential Digital Signal Processing (DDSP) [12] is one
approach for efficient, high quality audio rendering from



a compact set of input controls. It biases a DNN towards
generating and processing audio by the insertion of signal
processing elements, such as oscillators and filters, in the
network structure. These are implemented using differen-
tiable operators from a neural network training framework
and therefore can back-propagate gradients during train-
ing.

DDSP methods have been successfully employed in
resynthesis and tone transfer [16] tasks, where they are
conditioned on a set of time-evolving inputs, including
the fundamental frequency of the target signal, and gen-
erate audio on a frame-by-frame basis. Some approaches
such as the Neural Source Filter (NSF) [14, 35] or the
Neural Waveshaper [13] learn to control a non-linear filter
that shapes a harmonic source towards a particular target
sound. Other DDSP architectures [12, 17] directly drive
a Harmonic plus Noise (HpN) synthesizer [36], effectively
learning a mapping between the input controls and the syn-
thesizer parameters that generate the output.

While the previous resynthesis architectures can gener-
ate realistic tone transfer, there is little users can do to ma-
nipulate the resulting audio other than controlling the pitch
and loudness inputs. The DNN controls spectral modelling
algorithms, which do not have musically meaningful pa-
rameters. In this work, we present a differentiable FM syn-
thesizer module that features a compact set of well-known
sound design controls driven by a DNN, enabling a poten-
tial user intervention into the synthesis process.

While the idea of differentiable FM is not new, we have
not been able to find published literature with details and
evaluations of systems employing it. We highlight two web
repositories, one involving a 2-oscillator FM optimization
strategy of audio excerpts [37] and another presenting an
extension of the original DDSP project with a Differen-
tiable FM synthesizer [38], where the experiments fail to
reproduce musical instrument sounds. Our approach im-
poses a set of constraints on the FM synth that allows a
DNN to generate instrument sounds.

2.6 Training objective for DDSP resynthesis

The training process for the DDSP algorithms usually in-
volves a multi-scale spectral (MSS) loss function that in-
cludes the L1 distance of the amplitude spectrograms of a
synthesized and a target audio excerpt, in linear and loga-
rithmic form [12]. This function is used as a reconstruction
loss, with the DDSP model aiming to replicate the target
spectra during training.

Despite its widespread use, the MSS loss and more gen-
erally, spectral-based distance metrics present pitch-based
failure modes that can conspire against the generalization
capabilities of NAS algorithms when trained with gradient
descent, as demonstrated by Turian et. al. [39]. The au-
thors show how such functions fail to propagate informa-
tive gradients for fine-tuning oscillator frequencies towards
a frequency target due to fine grained ripple on the loss
surface. Furthermore, they indicate that for the MSS dis-
tance, jointly optimizing amplitude and frequency gener-
ates misleading gradients for both tasks; this loss function

can match spectral amplitudes only when the harmonics of
target and prediction are aligned in frequency.

We argue that the MSS loss works well for DDSP be-
cause of two main reasons: Firstly, these models drive
highly parameterized spectral modelling synthesizers with
fine control on the output, either in the form of filter-
distortion DNNs [14, 35], multiple parallel waveshapers
[13], or the HpN synthesizer [12]. Secondly, and most
importantly, all DDSP resynthesis architectures require as
conditioning the fundamental frequency from the target
signal, extracted with an estimator [40]. This ensures a har-
monic alignment between the target and the prediction, and
effectively avoids the problem of having to optimize pitch
using gradient descent and the MSS loss during training.

A loss function that cannot propagate informative gra-
dients cannot be employed to train a DNN. This is par-
ticularly disadvantageous for the case of FM generation,
where the synthesis parameters include the modulation in-
dex I and the frequency ratios r that determine distance
between the side-bands and the carrier. A small mismatch
on ratio estimation can generate an unwanted vibrato-like
effect, due to small frequency differences between oscilla-
tors. A big mismatch can hinder the joint optimization of
the harmonics’ positions and amplitudes. A DNN that does
not learn how to precisely control the ratios could very eas-
ily incur either of those problems.

3. METHOD

In this section, we propose a set of constraints that ease
training of a DNN with a differentiable FM synthesizer.
Next, we present DDX7, a NAS architecture for FM syn-
thesis controlled by a Temporal Convolutional Network
(TCN) [41]. We train the DDX7 model for FM resynthesis
of musical instrument sounds. This effectively results in a
DX7 patch that is playable by an arbitrary audio input. A
diagram of the architecture is shown in Figure 1.

3.1 Differentiable DX7

Our aim is to provide continuous control possibilities for a
well-known FM synthesizer. We choose the Yamaha DX7
for its lasting influence on musical practice.

Considering the DX7 patch design, we observe that
when fixing the frequency ratios and the routing of the os-
cillators, all the harmonics and overtones that can be gen-
erated take a fixed position in the spectrum. This patch
constraint can allow the synthesis model to propagate in-
formative gradients from the MSS reconstruction loss, pro-
vided the FM partials are pre-aligned with the ones of the
target audio by means of pitch conditioning, as in the case
of DDSP resynthesis.

We propose a control scheme for an FM synthesizer
where a DNN controls the modulation indices and volume
of the oscillators. The oscillator routing and frequency ra-
tios remain fixed. One problem may arise when consider-
ing the maximum values that the modulation index I can
take. For different ranges of I , the Bessel functions can
create local minima during spectral optimization due to



Figure 1. The DDX7 architecture employs a TCN decoder conditioned on a sequence of pitch and loudness frames to drive
the envelopes of a few-oscillator differentiable FM synthesizer that features a fixed FM configuration with fixed frequency
ratios, effectively mapping continuous controls of pitched musical instruments to a well-known synthesis architecture.

Figure 2. Absolute amplitudes of the first three harmonics
generated by FM in function of I .

their oscillatory nature. In the DX7, the modulation in-
dex envelopes can take values of as much as 4π [42], but
only for I < 1.83, are the Bessel functions strictly mono-
tonic, with the carrier just exchanging energy with the side-
bands, as shown in Figure 2. We analyze the effect of the
maximum ranges through experiments in Section 5.

We implement the FM modulation algorithm in Py-
torch, and adapt it manually for the different FM config-
urations that are tried in this work. Each configuration de-
fines a fixed oscillator routing and a set of frequency ratios.

3.2 TCN Decoder

TCNs have been successfully employed a number of se-
quential modelling tasks, including for audio processing
and generation [14, 27, 43]. These are fully-convolutional
networks that employ 1-dimensional convolutions and ex-
ponentially growing dilations to efficiently model long se-
quences within their receptive field [41]. We choose TCNs
for our DDX7 implementation for their fast training capa-
bilities and good sequential modelling performance.

In our FM resynthesis problem, we aim to map a set of
synchronous input sequences of pitch f01, ..., f0T ∈ R and
loudness ld1, ..., ldT ∈ R to the controls of our constrained
synthesizer, i.e. the output levels ol1, ..., olT ∈ R6 of the

six oscillators. We define the parameterized mapping func-
tion fθ as shown in Equation 3, where the conditioning se-
quence c1, ..., cT ∈ R2 is obtained by concatenating along
a new dimension both pitch and loudness sequences, σ(.)
is the sigmoid activation function and Amax is the maxi-
mum output level value that the envelopes can take for that
oscillator, as shown in Equation 4, where Imax is a hy-
perparameter describing the maximum modulation index
range that the system can realize.

ôl1, ... ˆolT = Amax · σ(fθ(c1, ...cT )) (3)

Amax =

{
1 if carrier
Imax otherwise

(4)

We implement our mapping function fθ with a simple,
causal TCN architecture following [41], with 2 input and
6 output channels, processed by 5 TCN residual blocks
with skip connections and 128 hidden channels each. Each
residual block features two convolutional layers of kernel
size 3, and the dilation increases by a factor of 2 in each
block. Weight normalization, dropout with probability of
0.5 and ReLU activation functions are used throughout the
network, with the exception of the output layer that fea-
tures a sigmoid layer. This yields a relatively lightweight
decoder, with about 400k parameters, and a receptive field
T of 125 pitch and loudness frames.

3.3 Learnable Reverb

We employ a differentiable reverb module, similar to the
one employed for the DDSP decoder [12], featuring learn-
able mix and decay parameters, and a trainable impulse
response of 1 second length. This is used to estimate
the room response of the dataset recordings, decoupling it
from the FM sound generation block. It is applied directly
to the FM synthesizer output and it is jointly optimized
with the DNN during training.



4. TRAINING

4.1 Loss function

The DDX7 architecture can be trained with a corpus of au-
dio from a musical instrument as supervision, employing
stochastic gradient descent on minibatches with a spec-
tral reconstruction objective. We employ the MSS re-
construction loss shown in Equation 5, where Si and Ŝi

are the magnitude spectrograms of the target and syn-
thesized audio respectively, ||.||1 denotes the L1 norm,
and i is a particular Fourier transform analysis window
on which the spectrogram is computed. We use i ∈
{64, 128, 256, 512, 1024, 2048} with an overlap of 75%
between windows.

L =
∑
i

(||Si − Ŝi||1 + ||logSi − logŜi||1) (5)

4.2 Dataset

We train our DDX7 models on audio samples of instru-
ments extracted from the University of Rochester Music
Performance (URMP) dataset [44], an audio-visual dataset
that contains classical pieces. We select the separated au-
dio stems for violin, flute and trumpet as our training data,
down-sample them to 16 kHz, remove silences and crop
the audio files to instances of 4 seconds. We extract the
A-weighted loudness [45] and fundamental frequency em-
ploying the CREPE [40] pitch estimator. We discard all
instances that yield a mean pitch confidence smaller than
0.85, with the exception of the flute corpus, for which we
relax the requirement down to 0.80 due to its short length.
We further normalize pitch and loudness values within a
range between 0 and 1.

We process each annotation with a hop size of 64 sam-
ples, yielding pitch and loudness sequences of 1000 frames
for each 4-second instance. The selection of hop size and
sample rate results in our TCN model featuring a recep-
tive field of 0.5 s, and dictates the frame rate at which it
drives the oscillators, 250 Hz. We linearly interpolate the
envelope frames before feeding them into the oscillators.
Finally, we separate the dataset into train, validation and
test sets with 0.75 / 0.125 / 0.125 splits respectively.

4.3 FM configurations

For each target instrument, we select a different FM config-
uration extracted from the original patch set of the Yamaha
DX7, which we retrieve from the web. 2 Then, we load
the patches in Dexed [46], a DX7 emulator, and audit them
searching for most similar to the target instruments. We
select "STRINGS 1" for violin, "FLUTE 1" for flute and
"BRASS 3" for the trumpet. We deploy the oscillator rout-
ing with the frequency ratios rounded up to one decimal
point (to avoid vibrato-like effects) as differentiable FM
modules, as shown in Figure 3. We do not deploy the oscil-
lator feedback feature of the DX7 in our implementation,
as it cannot be computed in parallel and we find it is very
slow to render using a standard for loop in Python.

2 http://bobbyblues.recup.ch/yamaha_dx7/

Figure 3. FM configurations used for training. Squares
indicate sinusoidal oscillators and their frequency ratios.

4.4 Training process

Our models are trained for 120k steps, with the Adam op-
timizer, set with an initial learning rate of 3e-4, decreasing
with a factor of 0.98 each 10k steps. We clip gradients to a
maximum norm of 2, and employ a batch size of 16.

5. EVALUATION

We evaluate the performance of DDX7 on the resynthesis
task, training the model on the flute, trumpet and violin
corpus, and evaluate its performance on selected bench-
marks with the Fréchet Audio Distance (FAD).

5.1 Fréchet audio distance

The Fréchet Audio Distance (FAD) presented by Kilgour
et. al. [47] serves as a quality metric for audio enhance-
ment, that correlates better with human listeners than SDR
(signal-to-distortion ratio) or spectral differences such as
the MSS loss. This is in line with other deep neural fea-
tures used in Computer Vision that are found to outperform
heuristic metrics by great margins [48]. It has been used to
assess synthesis quality in previous works [13,29,31]. The
FAD computes the Fréchet distance between multivariate
Gaussian distributions inferred from the embeddings of a
pre-trained VGGish model [49]. The compared distribu-
tions are generated from the embeddings of a corpus of
audio for evaluation and a "background" corpus of high
quality audio as reference.

5.2 Benchmarks

5.2.1 Maximum modulation index

We are interested into knowing which are the best modu-
lation index limits for which our model can successfully
render the instrument audio. Taking into account that opti-
mizing for a particular spectra may be difficult for the orig-
inal maximum modulation index range of the DX7 of 4π,
we train our model for each instrument with three differ-
ent maximum modulation index ranges for the oscillators:
Imax = {4π, 2π, 2}, including the original DX7 range,
a halved one and one limited at two, which includes the

http://bobbyblues.recup.ch/yamaha_dx7/


Figure 4. Ablated FM configurations.

global maximum of the first harmonic J1(I), but limits the
other Bessel functions to a space where they are strictly
monotonic. Finally, we load the corresponding configura-
tion for each instrument selected, and we train three ver-
sions of DDX7, to account for each of the values of Imax.

Our FM model learns to control the envelopes of 6 os-
cillators frame-wise. As a baseline, we assess the perfor-
mance of the common Harmonic plus Noise spectral mod-
elling synthesizer employed for resynthesis tasks. We train
a baseline pitch and loudness decoder that controls 121
frame-wise parameters of an HpN synthesizer, similar to
the original solo instrument DDSP Decoder [12], but im-
plemented in the same training framework as DDX7, to
ensure that we use exactly the same dataset, preprocessing
and frame rate. The model is roughly 11 times bigger than
DDX7, with about 4.5 M parameters. We train it for 120k
steps for parity with our model, with a batch size of 16,
and an initial learning rate of 1e-4, decreasing to a factor
of 0.98 for each 10k steps.

For evaluation with FAD, we generate background em-
bedding distributions of the complete audio corpus of each
instrument. Next, we generate embeddings distributions
from the resynthesized excerpts of the test set for each
model and instrument. We compute the FAD of these and
the original test set against their corresponding background
distribution. Results are shown in Table 1. We observe
that the HpN baseline outperforms our model in violin and
trumpet, but controlling 121 parameters instead of 6, and at
a higher computational cost. Surprisingly, DDX7 outper-
forms the baseline on flute, suggesting that our patch con-
straint approach can bias a DNN towards a usable FM tim-
bral space. We observe the best DDX7 performance is ob-
tained with Imax = 2 for flute and violin and Imax = 2π
for trumpet. This may be correlated with the different spec-
tra of the instruments, suggesting that the trumpet may re-
quire a bigger Imax for an improved reconstruction. Fi-
nally, for some configurations of Imax the models sound
unnatural and fail at the estimation of the room response.
We leave further analysis of this issue for future work.

5.2.2 Oscillator ablation test

We want to assess if our model is effectively optimized to
leverage all of the modulators for the reconstruction task.
We propose ablated versions of the previous patches with

Fréchet Audio Distance
Model Flute Violin Trumpet
Test Data 2.074 0.577 1.069
HpN Baseline 4.326 0.795 2.486
DDX7 (Imax = 2) 2.731 1.618 4.941
DDX7 (Imax = 2π) 3.281 2.148 3.326
DDX7 (Imax = 4π) 2.938 1.637 3.853

Table 1. FAD of resynthesis results for all models com-
puted against the background embedding distributions for
each instrument complete corpus. Best results are in bold
and best Imax configurations are underlined.

Instrument FM Configuration
6 4 "Y" 4x1 2x2 2

Flute 2.731 3.246 - - 3.364
Violin 1.618 - 1.877 5.620 8.270
Trumpet 3.326 2.943 - - 1.674

Table 2. FAD for complete and ablated patches on DDX7.

two and four oscillators, as shown in Figure 4. We train
the DDX7 models on the ablated patches using the opti-
mal Imax found with the previous benchmark and compare
their resynthesis quality with the FAD following the same
previous procedure. The results shown in Table 2 suggest
that the violin and flute model benefit from the extra de-
grees of freedom present with more oscillators. On the
other hand, the trumpet model works best with the small-
est configuration, possibly due to an incorrect patch selec-
tion that hindered the optimization process. Finally, the
2-oscillator trumpet model outperforms the HpN baseline,
suggesting that good results can be achieved with a small
number of frequency-modulated oscillators.

6. CONCLUSION

We presented DDX7, an approach for FM resynthesis of
musical instrument sounds that yields good reconstructions
controlling few parameters, with relatively smaller mod-
els. We have shown that FM with a patch constraint can
perform comparably well to a more complex baseline with
just 6, and even less oscillators; we hope this motivates fur-
ther research along this line, including for instance sound
matching techniques to find suitable configurations.

Current resynthesis architectures feature synthesizers
that are difficult to intervene in a musically meaningful
way. In contrast, DDX7 learns to control an FM syn-
thesizer that is common in the sound design practice. It
replaces the ADSR generator of the original DX7 with a
TCN that infers the envelopes from continuous control in-
puts. At runtime, it is possible to manipulate the timbre
on-the-fly, either by re-shaping the spectrum with the ra-
tios, altering dynamics on the envelopes, or by re-routing
the oscillators. Finally, the small model size and causal
temporal dependency make DDX7 an interesting candidate
for real-time implementation. We leave an exploration of
these affordances and possibilities for future work.
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