2,194 research outputs found

    Development of an Algorithm for Multicriteria Optimization of Deep Learning Neural Networks

    Get PDF
    Nowadays, machine learning methods are actively used to process big data. A promising direction is neural networks, in which structure optimization occurs on the principles of self-configuration. Genetic algorithms are applied to solve this nontrivial problem. Most multicriteria evolutionary algorithms use a procedure known as non-dominant sorting to rank decisions. However, the efficiency of procedures for adding points and updating rank values in non-dominated sorting (incremental non-dominated sorting) remains low. In this regard, this research improves the performance of these algorithms, including the condition of an asynchronous calculation of the fitness of individuals. The relevance of the research is determined by the fact that although many scholars and specialists have studied the self-tuning of neural networks, they have not yet proposed a comprehensive solution to this problem. In particular, algorithms for efficient non-dominated sorting under conditions of incremental and asynchronous updates when using evolutionary methods of multicriteria optimization have not been fully developed to date. To achieve this goal, a hybrid co-evolutionary algorithm was developed that significantly outperforms all algorithms included in it, including error-back propagation and genetic algorithms that operate separately. The novelty of the obtained results lies in the fact that the developed algorithms have minimal asymptotic complexity. The practical value of the developed algorithms is associated with the fact that they make it possible to solve applied problems of increased complexity in a practically acceptable time. Doi: 10.28991/HIJ-2023-04-01-011 Full Text: PD

    Metaheuristic design of feedforward neural networks: a review of two decades of research

    Get PDF
    Over the past two decades, the feedforward neural network (FNN) optimization has been a key interest among the researchers and practitioners of multiple disciplines. The FNN optimization is often viewed from the various perspectives: the optimization of weights, network architecture, activation nodes, learning parameters, learning environment, etc. Researchers adopted such different viewpoints mainly to improve the FNN's generalization ability. The gradient-descent algorithm such as backpropagation has been widely applied to optimize the FNNs. Its success is evident from the FNN's application to numerous real-world problems. However, due to the limitations of the gradient-based optimization methods, the metaheuristic algorithms including the evolutionary algorithms, swarm intelligence, etc., are still being widely explored by the researchers aiming to obtain generalized FNN for a given problem. This article attempts to summarize a broad spectrum of FNN optimization methodologies including conventional and metaheuristic approaches. This article also tries to connect various research directions emerged out of the FNN optimization practices, such as evolving neural network (NN), cooperative coevolution NN, complex-valued NN, deep learning, extreme learning machine, quantum NN, etc. Additionally, it provides interesting research challenges for future research to cope-up with the present information processing era

    OFA2^2: A Multi-Objective Perspective for the Once-for-All Neural Architecture Search

    Full text link
    Once-for-All (OFA) is a Neural Architecture Search (NAS) framework designed to address the problem of searching efficient architectures for devices with different resources constraints by decoupling the training and the searching stages. The computationally expensive process of training the OFA neural network is done only once, and then it is possible to perform multiple searches for subnetworks extracted from this trained network according to each deployment scenario. In this work we aim to give one step further in the search for efficiency by explicitly conceiving the search stage as a multi-objective optimization problem. A Pareto frontier is then populated with efficient, and already trained, neural architectures exhibiting distinct trade-offs among the conflicting objectives. This could be achieved by using any multi-objective evolutionary algorithm during the search stage, such as NSGA-II and SMS-EMOA. In other words, the neural network is trained once, the searching for subnetworks considering different hardware constraints is also done one single time, and then the user can choose a suitable neural network according to each deployment scenario. The conjugation of OFA and an explicit algorithm for multi-objective optimization opens the possibility of a posteriori decision-making in NAS, after sampling efficient subnetworks which are a very good approximation of the Pareto frontier, given that those subnetworks are already trained and ready to use. The source code and the final search algorithm will be released at https://github.com/ito-rafael/once-for-all-

    Evolving Ensembles with TPOT

    Get PDF
    Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Data ScienceMachine learning has become popular in recent years as a solution to various problems such as fraud detection, weather prediction, improve diagnosis accuracy, and more. One of its goals is to find the model that best explains the problem. Among the several alternatives on how to accomplish that, significant attention has been laid on the matter of accuracy using stacking ensembles: the objective is to produce a more accurate prediction by combining the predictions of various estimators. This model has often been exhibiting a superior performance in contrast to its single counterparts. Because the process of choosing the best model for a given problem can be time-consuming, a necessity to automatize the machine learning process has emerged. Different tools allow this, including TPOT, a Python library that uses genetic programming to optimize the machine learning process, evolving pipelines randomly created until the best one is found, or a previously fixed maximum number of generations for the given problem is reached. Genetic programming is a field of machine learning that uses evolutionary algorithms to generate new computer programs, and it has been shown successful in quite a few applications. TPOT uses several machine learning algorithms from the Sklearn Python library. It also features some ensembles, such as Random Forest or AdaBoost. Currently, stacking ensembles are not implemented yet on TPOT, and, considering its current accuracy rates, the objective of this thesis is to implement stacking ensembles in TPOT. After we implemented stacking ensembles successfully in TPOT, we performed some experiments with different datasets and noticed that for almost all of them, TPOT has comparable performance to TPOT with stacking ensembles. Also, we observed that, when using the light dictionary version of TPOT, the results of the Stacking configuration improved for two datasets since it used weaker learners

    Multiobjective optimization of classifiers by means of 3-D convex Hull based evolutionary algorithms

    Get PDF
    The receiver operating characteristic (ROC) and detection error tradeoff (DET) curves are frequently used in the machine learning community to analyze the performance of binary classifiers. Recently, the convex-hull-based multiobjective genetic programming algorithm was proposed and successfully applied to maximize the convex hull area for binary classification problems by minimizing false positive rate and maximizing true positive rate at the same time using indicator-based evolutionary algorithms. The area under the ROC curve was used for the performance assessment and to guide the search. Here we extend this research and propose two major advancements: Firstly we formulate the algorithm in detection error tradeoff space, minimizing false positives and false negatives, with the advantage that misclassification cost tradeoff can be assessed directly. Secondly, we add complexity as an objective function, which gives rise to a 3D objective space (as opposed to a 2D previous ROC space). A domain specific performance indicator for 3D Pareto front approximations, the volume above DET surface, is introduced, and used to guide the indicator -based evolutionary algorithm to find optimal approximation sets. We assess the performance of the new algorithm on designed theoretical problems with different geometries of Pareto fronts and DET surfaces, and two application-oriented benchmarks: (1) Designing spam filters with low numbers of false rejects, false accepts, and low computational cost using rule ensembles, and (2) finding sparse neural networks for binary classification of test data from the UCI machine learning benchmark. The results show a high performance of the new algorithm as compared to conventional methods for multicriteria optimization.info:eu-repo/semantics/submittedVersio
    corecore