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ABSTRACT 

Machine learning has become popular in recent years as a solution to various problems such as fraud 

detection, weather prediction, improve diagnosis accuracy, and more. One of its goals is to find the 

model that best explains the problem. Among the several alternatives on how to accomplish that, 

significant attention has been laid on the matter of accuracy using stacking ensembles: the objective 

is to produce a more accurate prediction by combining the predictions of various estimators. This 

model has often been exhibiting a superior performance in contrast to its single counterparts. Because 

the process of choosing the best model for a given problem can be time-consuming, a necessity to 

automatize the machine learning process has emerged. Different tools allow this, including TPOT, a 

Python library that uses genetic programming to optimize the machine learning process, evolving 

pipelines randomly created until the best one is found, or a previously fixed maximum number of 

generations for the given problem is reached. Genetic programming is a field of machine learning that 

uses evolutionary algorithms to generate new computer programs, and it has been shown successful 

in quite a few applications. TPOT uses several machine learning algorithms from the Sklearn Python 

library. It also features some ensembles, such as Random Forest or AdaBoost. Currently, stacking 

ensembles are not implemented yet on TPOT, and, considering its current accuracy rates, the objective 

of this thesis is to implement stacking ensembles in TPOT. After we implemented stacking ensembles 

successfully in TPOT, we performed some experiments with different datasets and noticed that for 

almost all of them, TPOT has comparable performance to TPOT with stacking ensembles. Also, we 

observed that, when using the light dictionary version of TPOT, the results of the Stacking configuration 

improved for two datasets since it used weaker learners.   

Keywords: Machine learning, Ensembles, Genetic programming, TPOT 
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1. INTRODUCTION 

 

Alan Turing is known as the father of computer science. In 1950, Turing published an essay titled 

“Computing Machinery and Intelligence” [1]. He considered the question “Can machines think?” and 

proposed a game called imitation game, where the idea is to find if a machine can be labelled as human 

according to a series of questions asked by an interrogator. In this essay, Turing also analyzed how 

machines can learn or how they can be taught concluding that the learning process can appropriately 

be guided by evolution. Turing identified the power of how evolution could be used to solve problems 

and create intelligent behaviors. Although Turing never developed a machine that could genuinely 

learn, he was one of the first to believe that it was possible. 

The origin of machine learning is attributed to psychologist Frank Rosenblatt, who created a machine, 

called Perceptron, to recognize the letters of the alphabet inspired by the human nervous system. This 

machine became the first prototype for Artificial Neural Networks [2]. Later, in 1980 Kunihiko 

Fukushima proposed a multilayer convolutional Neural Network [3]. In the early XXI century, the idea 

of machine learning became popular due to big data and the necessity to reduce computational time 

[4]. 

As Machine learning progressed, so did the interest to research and improve on different approaches, 

such as scaling up supervised learning, reinforcement learning, the learning of complex scholastic 

models and, enhancing the classification accuracy using ensemble methods [5]. Stacking ensemble was 

introduced by Wolpert in 1992 [6],  which aim is to minimize the error rate and maximize accuracy. It 

uses meta-classifiers to learn how to combine the prediction from one or more base models. In 1996, 

Breiman presented a paper called bagging predictor [7], a technique to generate multiple versions of 

a predictor to get a more accurate aggregated predictor built on bootstrap replicates of the learning 

set. The outputs are combined by plurality vote. In the same year, Freund and Schapire published a 

new boosting algorithm [8]. This method combines multiple weak learners to create a strong one by 

learning the mistakes made by the previous learner. In this sense, boosting can considerably reduce 

the error of any weak learning algorithm. The interest in ensembles increased because this method 

showed a better performance compared to single classifiers.  

In the same way, in the 1950s and 1960s, the interest in evolution as an optimization tool increased 

[9]. Holland [10] was the first to introduce the concept of genetic algorithms in 1975, and in 1992 Koza 

introduced the concept of genetic programming [11]. There is a substantial difference between genetic 

programming and genetic algorithms. Whereas genetic algorithm typically uses a fixed-length string 

representation of solutions, genetic programming uses a hierarchical representation of computer 

programs. In nature, the individuals more able to adapt to the different conditions of the environment 

will have better odds to survive and reproduce over the weaker ones. This is the concept of natural 

selection introduced by Charles Darwin [12]. Genetic Programming is a machine-learning approach 

that is inspired by this principle. The algorithm starts creating an initial population with random 

individuals or programs that tries to solve a given problem. Then, the quality, or fitness, of each 

individual in the population is assessed. The fittest individuals are more likely to survive and reproduce. 

Their offspring will pass on to the next generation. After that, the individuals in the new generation 
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are also evaluated and the selection process is iterated. This process continues until either a previously 

fixed maximum number of generations is reached, or the algorithm finds a satisfactory solution for the 

given problem. 

Machine learning has achieved excellent results in different areas, such as computational vision, 

natural language processing, finance, medicine, etc. However, the machine learning process can be 

labored and time-consuming because it can be difficult to design effective features, choose the 

appropriate machine learning algorithm and optimize it. On that account, it is necessary to create a 

tool that allows us to automatize throughout this process. This process is called Auto Machine learning 

(AutoML). It can help to save time, improve accuracy, make the process more reproducible, and make 

the process scalable. There are several tools to automate Machine Learning processes, such as Auto-

Sklearn [13], PyCaret [14], TPOT [15] and so on. 

TPOT (Tree-based pipeline optimization) is a tool that allows us to automatize the machine-learning 

processes using genetic programming [15]. In TPOT, the individuals are machine learning pipelines 

composed of selectors, preprocessors, and classifiers. TPOT uses Sklearn [16], a Python package for 

machine learning, and for the genetic programming process, it uses the Python package DEAP [17]. 

TPOT has several machine learning algorithms, among which we can find some ensembles, such as 

Random Forest, AdaBoost, XGBoost, and others. However, stacking ensembles have not been 

implemented yet in TPOT. Therefore, this project aims to incorporate stacking ensembles into TPOT 

since they have often shown better performance than other algorithms.   

Train stacking ensembles can be an arduous process since it requires to make combinations of single 

algorithms, and the hyperparameters of all these algorithms should be tuned before combining them. 

Additionally, it is necessary to find the best algorithm to combine the prediction made for the previous 

one. AutoML can be handy with staking ensembles since it can automatically select the models to use 

and determine the best way to combine the predictions.  

The expected result of this project is to successfully incorporate stacking ensembles into TPOT, 

improve the accuracy of the models that TPOT produce, and give the TPOT users an accessible way to 

implement this estimator. If the initial objectives will be met, TPOT will have more variety in terms of 

algorithms, have a model that typically outperforms single models and traditional ensembles, and 

provide a simple way to tune and train stacking ensembles. 

In this thesis, we present the results of the study, and this document is organized as follows. The 

second chapter of this document shall feature a brief introduction to what machine learning is, and we 

will introduce the concept of ensembles, including their different types. The focus of this chapter will 

be Stacking ensembles. Also, we will discuss different research made in Auto Machine Learning. The 

third chapter will focus on genetic programming, where we will explain how the genetic programming 

process is carried out and we will present how TPOT works. The fourth chapter contains information 

about the datasets and the parameters used for the experiments as well as the implementation of 

Stacking ensembles in TPOT. The fifth chapter contains the results and the analysis of the experiments. 

Finally, the sixth chapter contains the conclusion and discusses the future work to be considered for 

the project.   
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2. MACHINE LEARNING 

Machine learning is the process to extract patterns from data. This technique learns automatically from 

a model the relationships between the feature variables and the target variable and then obtains 

predictions for new instances. In other words, it is possible to build data-driven models that are more 

accurate and reliable than traditional models. 

Machine learning can be defined as: 

“Field of study that gives computers the ability to learn without being explicitly programmed.” 

Arthur Samuel, 1959 

Machine learning can be categorized into three groups: supervised learning, where the machine is 

provided with training data that includes both the input data and the desired output. The machine 

then can learn and generalize from this data to produce the desired output for new data; unsupervised 

learning, where the machine is only provided with input data and is not given any desired output. The 

machine must then learn to recognize patterns and structure in the data to produce useful results; 

reinforcement learning is where the machine is given a set of rules or objectives and must learn how 

to achieve them by trial and error. This type of learning is often used in artificial intelligence 

applications.  

Figure 2.1 Types of Machine Learning  

There most common problems in supervised learning are classification and regression. Classification is 

when the target is a class or label. For instance, classifying an email as spam or not, classifying a 

document according to a class, image classification, or fraud detection. Regression is when the target 

is a continuous variable, for example, weather forecasts, predictions of house prices or sales in a 

company, among others. 

The process to build a supervised learning problem is divided into four steps (Figure 2.2). The first one 

is data preparation. In this step, the cleaning of the data, treatment of nulls, feature transformation, 

and feature selection all take place. The second step is modelling according to the problem distinct 

machine learning algorithms can be selected and trained in the dataset, after which the performance 

of each model is recorded. There are different metrics to measure the model’s performance, such as 

accuracy, F1 score, precision, recall for classification and RMSE, R^2, and MAE, for regression. In the 
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third step, the best model is evaluated in the test dataset to assess its performance and consistency. 

Finally, predictions are made in unseen data.  

 

Figure 2.2 Machine Learning process  

2.1. ENSEMBLE METHODS 

One of the most crucial topics in Machine Learning research has been the improvement of accuracy by 

learning ensemble methods. The main interest in this area stems from how stacking ensembles 

outperform individual classifiers [5]. 

Ensemble models are meta-algorithms that combine other machine learning models into a single 

predictive one. The goal of ensemble methods is to construct a collection of classifiers that are both 

diverse and accurate. Two classifiers are diverse if the errors made by them are uncorrelated [18]. 

There are different ensemble methods, such as bagging, boosting, and stacking. 

In bagging, ensembles are made of estimators built on a bootstrap (a resampling method that uses 

random sampling with replacement) replicates of the training. Outputs are combined by majority vote. 

The training process is in parallel [7]. One example of bagging is random forest: this is an ensemble of 

decision trees, and the vote of each decision tree has the same weight. 

In boosting, a weak algorithm can be boosted into a strong one. The training cannot be done in parallel; 

instead, it is made as an iterative process, where the new model is influenced by the performance of 

the previous one. In this sense, the new model focuses on the mistakes of the previous one. The 

predictions are combined using a weighted majority vote [8]. For instance, AdaBoost creates a stump 

(a tree with one node and two leaves), and each stump considers the previous stump’s mistakes. 

2.1.1. Stacking Ensemble 

In 1992 Wolpert [6] introduced the concept of stacking generalization. The main objective was to 

maximize accuracy and minimize error. Wolpert said that stacked generalization can be seen as a more 

sophisticated version of cross-validation since it involves training a second machine-learning algorithm 

on the guesses of the original algorithm. Moreover, stacked generalization can be used with a single 

generalizer, in this case, it corrects the errors made by that generalizer. 

This technique consists of a combination of multiple machine learning algorithms, known as level-0 

(base) models, and the data used for training these models is the level-0 data. Then, the output of each 

model in level-0 is combined into a new dataset (level-1 data), and a learning algorithm is used in the 
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new dataset. This learning algorithm was called by Wolpert level-1 generalizer but is also called a 

combiner or meta-classifier [19].  

Ting and Witten [19] exposed that as a meta-classifier is preferable to use a multi-response linear 

regression algorithm over a decision tree, Naïve Bayes classifies, K-nearest neighbors, and majority 

vote. Furthermore, linear regression can be easily interpreted which gives it more advantage over the 

other learning algorithms. Also, they found that it is better to use output class probabilities than class 

predictions. 

Stacked generalization is prone to overfitting, particularly when the level-0 models are highly 

correlated unless the meta-classifier is smooth. As Ting and Witten showed to avoid this issue is 

appropriate to use multi-response linear regression. However, Reid and Grudic [20] demonstrated that 

overfitting can be avoided through regularization using Ridge regression, lasso regression or elastic net 

regression. These techniques result in a sparse linear model, which means that only a small number of 

classifier posterior predictions are used in stacking generalization. This can lead to improving accuracy 

since it reduces the chance of overfitting.  

In summary, the combiner should be a simple model, interpretable and use regularization. 

Nevertheless, there is no one best combiner for stacked generalization; the best combiner will depend 

on the data and the specific classification task. 

Contrary to bagging, in stacking the estimators are different and they are trained on the same data set. 

Opposed to boosting, stacking uses a single model to combine the predictions from the models in level-

0, it is not a sequence of estimators that learn from the previous mistakes. 

 

Figure 2.3 Stacking Ensemble 

Stacking ensembles have been applied to different fields showing excellent performance. For instance, 

earthquake-casualty prediction. The stacking ensemble used for this prediction was composed using 

different combinations of base learners such as CART, Naïve Bayes, k-nearest neighbor, and random 

rorest. The results showed an outstanding performance of stacking ensembles over popular machine 
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learning methods, and it was possible to reduce the MSE by 8.10% compared to a gradient boosting 

decision tree [21].  

Moreover, stacking ensembles were used for early diagnosis of Parkinson’s disease. For this purpose, 

a two-layer stacking ensemble was created. The first layer was composed of 4 classifiers: support 

vector machine, random forest, K-nearest neighbor, and artificial neural network. The second layer 

was a logistic regression. The results showed that the stacking ensemble model had a better 

performance than single traditional models [22].  

Another application is to predict short-term electric energy demands. In this study, regression trees 

based on Evolutionary Algorithms, Artificial Neural Networks and Random Forests were selected as 

base learners, and Generalized Boosted Regression was the combiner. The results showed that 

compared to linear regression and decision tree, stacking ensembles always had better results [23]. 

2.2. AUTO MACHINE LEARNING (AUTOML) 

The machine learning process can be difficult and time-consuming because of the tunning of the 

algorithms, the appropriate selection and transformation of the features, and the election of the most 

suitable model for a given problem [24]. In Figure 2.4. we can see that choosing an appropriate 

machine learning algorithm involves several decisions.  

 

Figure 2.4 Algorithms in scikit-learn [25] 

AutoML aims to facilitate the machine-learning process. Then, AutoML automated features 

transformation, model selection and hyperparameters tuning to find a high-performing machine 

learning model [26]. AutoML can provide a solution for individuals who are not machine learning 

experts to find the best algorithm to make predictions. 
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AutoML has been used to solve different problems. Such as making predictions about diseases, 

including COVID-19, where it is crucial to track the number of cases, and it can help researchers to 

develop vaccines. A study was made using the H2O AutoML tool to analyse cases of COVID-19 in India. 

It was possible to find a suitable algorithm to predict diseases in a reasonable time [27]. AutoML can 

be essential to accelerate research in machine learning since making predictions about the spread of 

the disease can help decision-makers plan for and respond to an outbreak.  

Another research made in AutoML focuses on automated neural architecture search. Negrinho and 

Gordon [28]  propose a framework to automatically design and train deep neural network models. This 

framework has three main components: the model search space specification language, the model 

search algorithm, and the model evaluation algorithm. They use search algorithms such as random 

search, Monte Carlo tree search (MCTS), and sequential model-based optimization (SMBO). The results 

showed that MCTS and SMBO outperformance random search. 

There are different methods to automate machine learning processes: Bayesian processes allow 

finding an appropriate model for a given dataset [29]. Gaussian processes can be used to automate 

statistical modelling and exploratory data analysis. This method has a flaw which is its running time. 

Thus, this method is not scalable [30]. Similarly, it is possible to use genetic programming to automate 

machine learning processes.  

Moreover, different tools exist for AutoML, such as PyCaret, used to produce machine-learning models 

with the least possible amount of coding involved. It is practical for classification, regression, and 

clustering problems [14]. H2O AutoML is a tool made for non-machine learning experts, offering model 

expandability, and allowing for machine learning models building on big data [31]. TPOT is a Python 

library design to automate machine learning processes using genetic programming [15], which shall be 

discussed in the next section. 
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3. GENETIC PROGRAMMING 

Genetic programming (GP) is a field of evolutionary computation that uses evolutionary algorithms 

inspired by the Theory of Evolution of Charles Darwin [12]. The scope is to create high-quality programs 

that can solve problems without human intervention. GP is widely used in several fields, such as 

optimizing financial portfolios, routing telephone calls and scheduling airline flights. 

The interest in evolution as an optimization tool started in the 1950s and 1960s to solve engineering 

problems [9]. In 1962, Holland [32] proposed looking for an adaptive system as a population of 

programs. He highlighted the advantage of population programs to gain generalization instead of 

taking a single individual. After, in 1975 Holland [10] published a theoretical framework, in which he 

included the concepts of selection, crossover and mutation inspired by genetics. In 1985, Cramer [33], 

introduced an adaptive system for generating short sequential computer functions, one of which had 

a tree-like structure.  

Afterwards, the concept of Genetic Programming was published in Koza’s book in 1992 [11]. Koza 

rigorously aboard the notion of genetic programming and how to represent GP problems. 

Furthermore, Koza provides examples in his book of how problems that had been difficult or even 

impossible to solve using traditional methods were suddenly easy to solve using genetic algorithms. 

3.1.  GENETIC PROGRAMMING PROCESS 

The genetic programming process is as follows: The first step consists of randomly generating an initial 

population of computer programs (individuals). Then, each individual gets assessed according to their 

fitness. After that, the best individuals are selected according to their fitness. Therefore, these 

individuals are modified by genetic operators, such as mutation, crossover, or reproduction. Each of 

these operators is selected with a probability specified as a parameter. Then, the modified individuals 

are included in the new population. This process is iterated until a termination criterion is met, it can 

be an optimal solution, or the number of generations is exceeded. The steps of GP algorithms are 

shown in Algorithm 1 [34].  

Genetic programming algorithm  

1. Randomly generate an initial population of computer programs (Individuals) from 
the primitives set.  
2. While a termination criterion is met (found and acceptable solution or other stop 
condition is met).  

a. Evaluate the fitness for each individual.  
b. Probabilistic selection of a set of individuals based on their fitness.  
c. Create new individuals by applying genetic operations (crossover, mutation, 
reproduction) to the selected individuals and insert them into a new population.  

Return: The best computer program    

Algorithm 1. Genetic programming  

3.1.1. GP Representation  

The most common representation is the syntaxis tree (tree-based GP).  In the tree, the nodes are called 

primitives and the leaves are terminals. Exists two kinds of terminals: constants, which remain the 
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same during the process of evolution, and arguments which are the program inputs. For instance, in 

the program min( x - 2*y,  x+ y), the constant is 2 and the arguments are the variables x and y.  In Figure 

3.1. we can see the tree representation of this program where the nodes are in yellow and the leaves 

in green.   

  
Figure 3.1 Tree based representation 

3.1.2. Initialization   

At the outset, population individuals are chosen randomly. There are different methods to generate 

the initial random population, the grow method, the full method, and ramped half-and-half method. 

For the full and the grow methods, the user needs to specify the maximum depth.  

Full method  

In this method, all the leaves need to have the same depth. The nodes are randomly chosen from the 

primitive set. In the last level the terminals are selected. As a result, every branch of the tree reaches 

the maximum depth. Figure 3.2 shows an example of this process. In this method, not all initial trees 

will have the same size, which means not all trees will have the same number of nodes.  

 

 
Figure 3.2 Full method with maximum depth 2 
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Grow method  

Opposite to the full method, in the grow method the initial trees can have different shapes and sizes. 

In this approach, nodes can be selected from the primitive set and from the terminals until the 

maximum depth is reached; in the last level, only terminals can be added to the tree.  

 
Figure 3.3 Grow method with maximum depth 2 

 

Ramped half-and-half method  

According to Koza, the techniques mentioned above may generate trees that are similar to each other 

[11]. So, the ramped half-and-half method was developed with the purpose to add diversity to the 

population. In this method, half of the initial population is generated with the full method and the 

other half uses the grow method.    

3.1.3. Selection   

A selection algorithm has the objective to choose one individual from the population. A selection 

algorithm has to be a process with repetition, and it has to be probabilistic. Also, all the individuals in 

the population must have the possibility to be selected. Individuals are chosen according to their 

fitness value, which is the ability each individual has to solve a problem. Thus, better individuals are 

more likely to have offspring than inferior ones. The most common selection algorithms are 

tournament selection, fitness proportion selection, and ranking selection. 

Tournament selection  

In tournament selection, there is a number n of randomly selected individuals, with uniform 

distribution from the population. Then, the selected individuals are compared with each other and the 

one with the best fitness is selected. n refers to the tournament size; this parameter establishes the 

selection pressure. As the selection pressure increases, superior individuals have a higher probability 

to survive or being selected. This algorithm can be more efficient than others since it is not necessary 

to evaluate the fitness function of all individuals in the population.  

Fitness proportional selection   
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This technique is also known as Roulette Wheel. In this method, every individual has a probability of 

being selected proportional to their fitness. Then, superior individuals have a higher probability to be 

chosen. Despite this method being easy to implement, posing the possibility of superior individuals 

being selected every time as parents, leading to a loss of diversity within the system.  

Ranking selection  

In this algorithm, individuals are sorted according to their fitness value, usually from worst to best. The 

probability to select an individual is directly proportional to the position in the ranking. One of the 

advantages of this algorithm is that it is not sensitive to differences in fitness in contrast to the fitness 

proportional selection algorithm. 

Multi-objective optimization 

In some cases, it is necessary to optimize more than one criterion at the same time. Known as multi-

objective optimization, and the most common one is Pareto optimality. For instance, in a classification 

problem, we want to select the model with the highest accuracy and the smallest number of 

parameters; in other words, we want to maximize the accuracy and minimize the number of 

parameters in the model. 

In a multi-objective optimization problem, the performance of a solution is determined by dominance. 

A solution dominates another one if the former one is not worse than the latter in all objectives and 

there is at least one strictly better objective. The goal of this algorithm is to find a set of non-dominated 

solutions. This set is called Pareto optimal set, and the boundary that separates the non-dominated 

solution from the dominated one is the Pareto front. 

NSGA-II (Non-dominated Sorting Genetic Algorithm) is an elitist multi-objective genetic scheme.  This 

algorithm has three main characteristics: it uses elitism; it also uses a diversity-preserving mechanism, 

that is the crowding distance (the average distance of its two neighbourhood solutions), and it 

emphasizes non-dominated solutions.  

3.1.4. Genetic operators 

After the best individuals are selected as the parents for the next generations, genetic operators are 

applied to them to create offspring solutions. There are two approaches for creating a new population: 

reproduction, which consists of copying the individual unmodified into the new population; and 

modification, which consists of applying a genetic operator (crossover or mutation) to the individual 

with a specific probability. Then the modified individuals are introduced to the new population. 

Moreover, there are cases when it is desired to preserve the best individual to insert into the new 

population, this is called Elitism. 

Crossover 

To add diversity to the population, the crossover operator produces a new child taking parts of each 

parent and adding said offspring into the new population. Some crossover operators tend to preserve 

the position of the genetic material, known as homologous crossover. The oldest homologous 

crossover in tree-based GP is one point crossover. In this operator, a common crossover point of the 
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parents is selected and then the corresponding subtrees are switched to obtain two children [35]. In 

Figure 3.4 we can see an example of a one-point crossover when the parents have different shapes. In 

these cases, one-point crossover selected the intersection from the parts of the trees in the common 

region, where both parents have the same shape. 

 

 Figure 3.4 One-point crossover 

Mutation 

Mutation operators modify just one parent solution. The most common mutation operators are point 

mutation, a node in the tree is randomly selected and swapped with another random node with the 

same arity. Shrink Mutation selects a random subtree and replaces it with a randomly created terminal; 

insertion mutation, on its part, adds a new subtree into the individual in a random position.  

3.2. TPOT 

Genetic programming can be applied to automate the machine learning process, this is the case of 

TPOT [15]. In this section, we are going to explain how the TPOT process works. 

TPOT is a tool to automate machine learning process. In the official document [15] is define as: 

“TPOT stands for Tree-based Pipeline Optimization Tool. Consider TPOT your Data Science Assistant. 

TPOT is a Python Automated Machine Learning tool that optimizes machine learning pipelines using 

genetic programming” 

TPOT uses the Python library scikit-learn to feature selection, transformation, and machine learning, 

as well as for genetic programming uses the Python package DEAP, to find the pipeline with the best 

performance for a given dataset. 
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In TPOT, the set of primitives (internal tree nodes) consists of machine learning operators, three to be 

exact: Pre-processor, Feature Selectors, and Models. The pre-processor operator modifies the data 

somehow and returns the modified data. Feature selection operators reduce the number of variables 

in the dataset by considering some criteria and then returns the modified data. Model operators store 

the predictions as a new feature and the classification of the pipeline. Additionally, TPOT has another 

operator that combines multiple copies of the dataset into a single dataset. 

To combine the primitives into a valid machine learning pipeline, TPOT uses tree-based pipelines and 

the GP algorithms to evolve them.  

3.2.1. TPOT process 

3.2.1.1. Initialization 

To initialize the process, TPOT chooses the operators in the configuration dictionary and starts to add 

them to the set of primitives. Then, it generates randomly grown trees with different depths, between 

one and three, where the root of each tree is a model operator (classifier or regressor). Then, each 

expression is processed and evaluated to ensure that they are valid ML pipelines (individuals) and to 

guarantee that the individuals are unique. This prevents TPOT from getting stuck on a bad pipeline and 

allows it to evaluate the score of each individual, which subsequently is added to the initial population 

until it has n tree-based pipelines, where n is the number of individuals within the population. 

 

Figure 3.5  TPOT individual for a classification problem 

Figure 3.5 shows an individual created by TPOT. The root is a KNeighborsClassifier (a model operator); 

the node is MaxAbsScaler (a pre-processor operator), and the terminals are the arguments taken by 

these two operators. The pipeline for this individual is:  

Pipeline(steps = [MaxAbsScaler(), KNeighborsClassifier(n_neighbors=11, p=2, weights=distance)]) 

3.2.1.2. Selection  

Each pipeline is evaluated according to its performance on the dataset. TPOT uses score metrics such 

as accuracy or negative MSE by default for classification or regression, respectively. TPOT uses multi-

objective fitness to minimize the number of operators and maximize the score. 
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Then, for every generation, TPOT selects n individuals according to the NSGA-II algorithm, where the 

pipelines are selected to minimize the number of operators in the pipeline and maximize the score. In 

every generation, the algorithm updates a Pareto Front of the non-dominated solutions. 

3.2.1.3. Variation 

For each generation, n offspring are produced. 10% of whom are crossovers with another individual 

using the one-point crossover operator. Two individuals are eligible for mating if they, at least, share 

one primitive. Only one of the offspring is added to the new population. If the population do not have 

individuals eligible for crossover, the mutation operator is applied to maintain diversity in the 

population. For instance, in Figure 3.6 we can see two pipelines that have as a common primitive a 

MultinomialNB (Naive Bayes classifier for multinomial models) applying one-point crossover, two 

offspring individuals are created, via exchanging the value of the alpha parameter. 

 

Figure 3.6 One-point crossover in TPOT 

The remaining 90% of individuals are modified by applying one of the three types of mutation 

operators in TPOT: Point mutation, which randomly replaces a chosen primitive from the individual 

with another random primitive from the set of primitives; insertion mutation consists of inserts a new 

operator at a random position in the individual; or shrink mutation, which shrinks an individual by 

randomly choosing an operator and replacing it with one of the operator’s arguments. It is possible to 

apply shrink mutation if the individual has more than one primitive. Each of these techniques has the 

same probability to be chosen (1/3). In Figure 3.7 we can see how TPOT applies these three types of 

mutation to different pipelines. 

Finally, if the individual is chosen for neither mutation nor crossover, TPOT applies reproduction. The 

individual is cloned and added to the offspring population. Every time a modified individual is created, 

TPOT checks if it is still a valid pipeline.  
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Figure 3.7 Mutation in TPOT 

The TPOT process continues until a prefixed number of generations is reached. The result is the best 

pipeline for a given dataset. 

TPOT can be used in different problems, such as classifying liver cancer on multiphasic MRI. In this 

research, two experiments were accomplished. One used manual analysis to select the optimal 

machine learning model and the other one used TPOT. The results showed that the performance of 

the two methods (manual and TPOT optimizations) was similar [36]. 
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4. METHODOLOGY 

4.1. DATASETS 

The first step in this project was the implementation of stacking ensembles into TPOT. To validate the 

results, we used several datasets to test the performance of TPOT with Stacking Ensembles for 

classification and regression problems and compare them against TPOT. 

The datasets used are the Fish market dataset, in which the objective is to predict the weight of a fish 

[37]; the Titanic dataset [38], in which the goal is to predict whether a passenger survived or not. Two 

datasets that have experimented overfitting (PPB and Bioavailability); House prices [39] to predict the 

real estate costs in Iowa; Newland [40], where the goal is to predict the income of the passengers (that 

is a binary rate); and the Weather dataset [41] to predict climate conditions (such as drizzle, rain, sun, 

snow, and fog). 

The cleaning process of the datasets consists of deleting null variables when applicable or imputing 

null observations with the mode, transforming categorical variables into numerical variables using One 

Hot Encoder and removing features such as ID, ticket number, and birthday, according to the dataset. 

The train size for each dataset was 0.75. 

The number of observations and features are presented in table 4.1. 

Dataset Type of the task No. Of Features No. Of 
Observations 

Titanic Classification 9 891 

Newland Classification 14 22,400 

Weather Classification 5 1,461 

Fish Regression 6 159 

House prices Regression 80 1,460 

Bioavailability Regression 241 359 

PPB Regression 626 130 

Table 4.1  Datasets used and their number of Observations and features 

4.2. PARAMETERS 

We decided to use the TPOT default parameters since they have shown excellent results [15] except 

for the population size and the number of generations. We used a population size of 20 since the 

running time was longer with a larger population size, and we selected 80 generations because the 

results remained steady after the 80th generation. Table 4.2 lists the parameters used. 
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Parameter Value 

Population size 20 

Generations 80 

Offspring size Population size 

Mutation rate 0.9 

Crossover rate 0.1 

Scoring Accuracy for classification and 
negative MSE for 

CV 5 

Config_dict Default and Light version 

Verbosity 2 

Table 4.2 Parameters and their values 

TPOT has predefined some dictionaries with different configurations to customize operators and 

parameters that TPOT selects during optimization. In this project, we work with the default and light 

settings.  In table 4.3, we can see the different dictionaries with their operators and values. 

Dictionary Operators Values 

Default configuration for 
classification 

(classifier_config_dict) 

Classifiers GaussianNB, BernoulliNB, MultinomialNB, 
DecisionTreeClassifier, ExtraTreesClassifier, 
RandomForestClassifier, 
GradientBoostingClassifier, KNeighborsClassifier, 
LinearSVC, LogisticRegression, XGBClassifier, 
SGDClassifier, MLPClassifier 

Default configuration for 
regression 

(regressor_config_dict) 

Regressors ElasticNetCV, ExtraTreesRegressor, 
GradientBoostingRegressor, AdaBoostRegressor, 
DecisionTreeRegressor, KNeighborsRegressor, 
LassoLarsCV, LinearSVR, RandomForestRegressor, 
RidgeCV, SGDRegressor 

Default configuration for 
classification and regression 

Preprocessors Binarizer, FastICA, FeatureAgglomeration, 
MaxAbsScaler, MinMaxScaler, Normalizer, 
Nystroem, PCA, PolynomialFeatures, RBFSampler, 
RobustScaler StandardScaler, ZeroCount, 
OneHotEncoder 

Default configuration for 
classification and regression 

Selectors SelectFwe, SelectPercentile, VarianceThreshold, 
RFE (just for classifiers), SelectFromModel 

Light configuration for 
classification 

(classifier_config_dict_light) 

Classifiers GaussianNB, BernoulliNB, MultinomialNB, 
DecisionTreeClassifier, KNeighborsClassifier, 
LogisticRegression 
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Light configuration for 
regression 

(regressor_config_dict_light) 

Regressors ElasticNetCV, DecisionTreeRegressor, 
KNeighborsRegressor, LassoLarsCV, LinearSVR, 
RidgeCV 

Light configuration for 
classification and regression 

Preprocessors Binarizer, FeatureAgglomeration, MaxAbsScaler, 
MinMaxScaler, Normalizer, Nystroem, PCA, 
RBFSampler, RobustScaler, StandardScaler, 
ZeroCount 

Light configuration for 
classification and regression 

Selectors SelectFwe, SelectPercentile, VarianceThreshold 

Table 4.3 Different configurations dictionaries with their operators and values 

 

4.3. IMPLEMENTATION 

The objective of this project is to implement heterogeneous ensembles into TPOT using stacking 

operators from the Sklearn library. To do that, we created a new configuration dictionary using either 

the default settings or the light version (as it can also be chosen).   

The models in each Stacking ensemble are chosen randomly from the given dictionary (default or light), 

and the number of models in each stacking randomly varies between one and three. In the first 

experiment, logistic and linear regression were chosen as combiners. Eventually, we decided to add 

more combiners such as decision trees and linear classifiers with stochastic gradient descent (SGD) 

learning for classification, as well as dummy regressors (using the median), linear models with SGD, 

Linear Support Vector regressor, and Ridge CV for regression. Combiners are chosen randomly for each 

stacking ensemble. We decided to implement linear models with SGD (SGDClassifiers) since it applies 

regularized linear model with SGD to build an estimator, SGD works well in large-scale datasets and is 

easy to implement [42]. 

For instance, an individual in TPOT with ensembles is as follows: 
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In this case, the root is a stacking classifier composed of three estimators and as a final estimator, it 

uses Logistic Regression. Also, it has another primitive that is a pre-processor called Feature 

Agglomeration. 

This process continues until we have the same number of stacking models in the new dictionary as the 

number of models in the initial configuration dictionary. For instance, if there are thirteen classifiers 

in the default configuration, then it will be thirteen stacking ensembles constructed with those 

classifiers, in the new dictionary. The preprocessors and selectors are the same as in the initial 

configuration dictionary. Once we have the new dictionary, the TPOT optimization process starts as 

usual. 

In the variation process, the same algorithms for crossover and mutation remain with the same 

crossover and mutation probabilities. For instance, the process of crossover is shown in Figure 4.1.  

 

Figure 4.1   One-point crossover using stacking ensembles  

Similarly, we can see in Figure 4.2 how mutation is applied in TPOT with stacking ensembles. 
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Figure 4.2 Mutation using stacking ensembles 
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5. RESULTS AND DISCUSSION 

5.1. IMPLEMENTATION OF ENSEMBLES  

To validate the implementation of stacking ensembles in TPOT, different runs were tested over the 

same datasets, using the same parameters, and comparing the results obtained with the standard 

version of TPOT and TPOT with stacking ensembles. For each generation, we obtained the CV score for 

the best individual. Then, the experiment is repeated for 10 iterations. To compare the results for each 

configuration, we calculated the Median Best Fitness (MBF), the median of the best score obtained at 

a given generation. To evaluate the statistical difference of the results obtained, we used the Wilcoxon 

rank-sum test at 5% on the last performed generation. The results obtained will be discussed in this 

section. The graphs were made using the Plotly library for Python 3. In the graphics, the label False 

indicates that the default TPOT configuration was used, and the label True signifies that TPOT with 

stacking ensembles was used. 

5.1.1. Comparison of results 

First, we used the default configuration dictionary in TPOT to create stacking ensembles using the pre-

defined models in this dictionary. In the first approach, Linear and Logistic Regressions were used as 

combiners, for regression and classification, respectively.  

Figure 5.1 shows the MBF for each dataset in the train and test sets. In the House Pricing and Fish 

datasets, we can see that the default configuration of TPOT is slightly better than using stacking 

ensembles. In the other datasets, however, there does not seem to be a clear difference between the 

two configurations.  

We can also see in Figure 5.1 that, for PPB and Bioavailability datasets, the Stacking configuration 

presents more overfitting, as we mentioned before these two datasets have experimented overfitting 

and when we add more learners to the base or level 0 in Stacking models, we obtain a more complex 

model and then it is more likely to be overfitted. 
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Figure 5.1 MBF for each configuration in the first approach  

Dataset Wilcoxon rank-sum test in 
train 

Wilcoxon rank-sum test in 
test 

Titanic 0.3447 0.9698 

Newland 0.1736 0.3846 

Fish 0.0393 0.8282 

House prices 0.0494 0.0343 

Bioavailability 0.3284 0.0756 

PPB 0.8065 0.2885 

Table 5.1 P-value for the Wilcoxon test for the train and test set in the first experiment  

Table 5.1 depicts the results of the Wilcoxon test for the train and test sets for the two configurations, 

“True” and “False”, of the previous figure. As we can see, the p-value for almost the entirety of the 

dataset is not statistically significant at 5%, except for the House Prices dataset. That is to say, the 

performance of TPOT with stacking is comparable to standard TPOT. 

Moreover, we measure the time each configuration takes to run (TPOT standard, TPOT with stacking 

ensembles) in each generation and for each iteration. We calculated the median of the running time 

obtained in each generation. We found out that running the code using Stacking takes twice as long or 

more than using the Standard configuration of TPOT. We can see the results in Figure 5.2. These results 

are expected since training stacking ensembles require, also training the base models of which it is 

composed. 
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Figure 5.2 Running time in the first experiment 

Consequently, we decided to add more combiners (level-1) as decision trees and linear classifiers 

with stochastic gradient descent (SGD) learning for classification, as well as dummy regressors (using 

the median), linear models with SGD, Linear Support Vector regressors, and Ridge CV for regression. 

This implementation was run over the Titanic and PPB datasets. We observe for the Titanic dataset 

the best combiner was Logistic Regression, and for the PPB dataset, the best combiners were Linear 

Regression and Ridge CV.  

 

Figure 5.3 MBF of each configuration using different combiners for the stacking model  

Dataset Wilcoxon rank-sum test in 
train 

Wilcoxon rank-sum test in 
test 

Titanic 0.2123 0.2122 

PPB 0.7054 0.6501 

Table 5.2 P-values of the Wilcoxon test in the test and train set for the configuration using different 
combiners for the stacking model 
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In Figure 5.3, we can see that the results obtained do not show a clear difference between the two 

configurations. Similarly, in Table 5.2 the Wilcoxon test does not present a statistical difference 

between the two configurations presented in Figure 5.3. 

In the same vein, we can see via Figure 5.4. that the running time using TPOT with Stacking is slower 

than the standard TPOT configuration. As we mentioned before, train stacking ensembles is time-

consuming, then these results are expected.  

 

Figure 5.4 Running time using different combiners for the stacking model 

As the results were not improving, we decided to delete the ensemble models (XGB, extra trees, 

random forest, and gradient boosting) from the initial default configuration dictionary to obtain 

stacking ensembles with simpler models, and we opted to keep different combiners. We ran the code 

using Titanic, Newland, Fish and House Pricing datasets. Furthermore, we included the Weather 

dataset since stacking ensembles have performed excellently for forecasting problems. We decided 

not to use PPB and Bioavailability since the running time was excessively high for these two datasets. 
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Figure 5.5 MBF of each configuration removing the ensembles models from the default configuration 
dictionary in TPOT 

Dataset Wilcoxon rank-sum test in 
train 

Wilcoxon rank-sum test in 
test 

Titanic 0.0025 0.6776 

Newland 0.0002 0.0004 

Weather 0.7913 0.0539 

Fish 0.0082 0.1509 

House prices 0.0025 0.0009 

Table 5.3 P-values of the Wilcoxon test in the test and train set for the configuration removing the 
ensembles models from the default configuration dictionary in TPOT 

Figure 5.5 shows that the best configuration is the default TPOT for all datasets except for the Weather 

dataset, for which it does not reflect a clear difference between the two configurations. We can 

confirm these results in Table 5.3, which shows that exists a statistical difference between the two 

configurations except for the test in the Titanic dataset, the Fish dataset, and the test and train in the 

Weather dataset. The best combiners for the Classification problems were logistic regression for the 

Titanic and Newland datasets, and SGDClassifier for the Weather dataset. Linear regression was the 

best combiner for regression problems. 

In Figure 5.6, we can see that the running time is similar for the Newland dataset, and for the other 

databases it took with the stacking configuration. 
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Figure 5.6 Running time of each configuration removing the ensembles models from the default 
configuration dictionary in TPOT 

As we found a difference between the two configurations, we decided to repeat the experiment using 

the light dictionary configuration in TPOT, considering it has weaker learners. The databases used for 

this experiment were Titanic, Fish, House Pricing, and Weather. We decided to include Bioavailability 

again to see if the results improve using weaker learners. 

In Figure 5.7, we can see that the configuration using stacking ensembles presents higher performance 

than the default configuration of TPOT for Newland and Weather datasets. In contrast, for the House 

Price dataset, it looks like the best configuration is the default one. On the other hand, for Titanic, Fish 

and Bioavailability datasets there does not seem to be a clear difference between the two 

configurations. We can confirm these results with the Wilcoxon test (Table 5.4), as it shows that there 

is a statistical difference between the two configurations for the Newland dataset, but for the House 

Price dataset, there is only a difference in the training dataset. In the same way, there is a statistical 

difference between the two configurations for the train set in the Weather database. However, for the 

Fish, Titanic, and Bioavailability datasets, there is no statistical difference between the two 

configurations in the test and train datasets. For this experiment, we observe that the best combiner 

for the classification problem was Logistic Regression, except for the Weather dataset for which the 

best combiner was SGDClassifier.  For the regression problems, the best combiner was Linear 

Regression. 
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Figure 5.7 MBF of each configuration using the light dictionary 

Dataset Wilcoxon rank-sum test in 
train 

Wilcoxon rank-sum test in 
test 

Titanic 0.8206 0.2123 

Newland 0.0233 0.0140 

Weather 0.0051 0.1858 

Fish 0.8205 0.1988 

House prices 0.0065 0.1306 

Bioavailability 0.7054 0.1124 

Table 5.4 P-values of the Wilcoxon test in the test and train set for the configuration using the light 
dictionary 

Additionally, in Figure 5.8, we can observe that the running time of the stacking configuration using 

the light dictionary is smaller than in the others experiments. However, the running time of the 

stacking configurations is longer than the running time of the default TPOT configuration.  
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Figure 5.8 MBF of the time with the configuration using the light dictionary 

To summarize, the experimental study was a success since stacking ensembles were satisfactorily 

implemented into TPOT. Moreover, we could obtain results for different datasets. In the beginning, 

the Stacking configuration was not statistically different from the default TPOT configuration; but by 

removing ensembles from the TPOT dictionaries or using weaker learners, we achieved a difference 

between the two configurations. Furthermore, in most cases, the TPOT configuration outperformed 

the Stacking Ensemble configuration. 
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6. CONCLUSIONS AND FUTURE WORKS 

The objective of this chapter is to present the conclusions about the project, discuss our approaches 

and the problems faced during its completion, and some possible improvements for the future. 

The main purpose of this project was to implement heterogeneous ensembles in TPOT, specifically 

stacking ensembles since they can improve predictive accuracy, reduce the error, and perform better 

than single algorithms. To implement stacking ensembles in TPOT, we created a new dictionary using 

the pre-existing TPOT algorithms in the default and light version dictionaries. The stacking ensembles 

are shaped by 1 or 3 algorithms that are chosen randomly from the TPOT’s dictionaries. Analogously, 

the meta-classifier is chosen randomly from a list of simple learners that are well known for giving 

good results as combiners, such as linear regression, Ridge regression, decision trees, and others. Once, 

the stacking ensembles are made the TPOT process starts as usual. 

During the experimental study, we compared the results obtained by TPOT using stacking ensembles 

and standard TPOT on eight different datasets. In the first stage, we used the default configuration 

dictionary and linear or logistic regression as combiners. Our results demonstrated that there is no 

statistical difference between the two configurations. In other words, TPOT with stacking has a 

comparable performance with standard TPOT. In the second examination, we added more algorithms 

to the combiner list to assess if the results improve. The results conclude that there is no improvement 

just adding more combiners. In view of the result not improving, we decided to remove the traditional 

ensembles (random forest, XGBoost, AdaBoost, and others) from the default configuration dictionary, 

to obtain stacking ensembles with weaker learners. From these results, we could conclude that exists 

a statical difference between the two configurations in some of the datasets. However, better results 

were obtained using standard TPOT for almost all the datasets. In the final stage, we used the light 

configuration dictionary to obtain stacking ensembles with simpler algorithms. The results showed a 

statistical difference between the two configurations in a few datasets. Slightly superior results were 

achieved with our configurations for two datasets. 

The present study confirmed the findings about the most suitable algorithms to use as combiners, 

demonstrating that linear regression and logistic regression were usually selected for the evolution 

process as the best combiners. A further finding is that linear models with stochastic gradient descent 

are also adequate combiners. There is no research showing the advantages of these algorithms as 

combiners in stacking ensembles. 

The results demonstrate that better results were achieved using weaker algorithms as base models. 

Also, the running time using TPOT with Stacking ensembles is longer than standard TPOT, as we 

expected. In this sense, it is recommendable to use the light configuration dictionary as the first 

approach to TPOT with stacking ensembles.  

Contrary to the findings of previous studies showing that stacking ensembles outperform another 

machine learning algorithm we did not find a general improvement using this technique. An 

explanation can be that we used simple databases which do not have complex patterns to find, such 

as Titanic and Fish. However, the performance of stacking ensembles depends on the database, and 
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we cannot conclude that they are not better than single machine learning algorithms. Ideally, these 

findings should be replicated in a study where we can use databases with more complex patterns.  

The major limitation of this study was the computational resource since stacking ensembles can be 

computationally intensive, and when TPOT evolves them, the process becomes time-consuming, 

taking twice as long as standard TPOT, which can make them impractical for some applications.  

Despite the limitations, these are valuable in light of TPOT now includes another machine learning 

algorithm that has been showing robustness in several applications and can provide TPOT users with 

another option to find the best solution for their machine learning problem. 

Future research should consider the potential effects of using TPOT with stacking ensembles with more 

complex databases. We believe that besides performing, future research should look for combining 

machine learning pipelines using stacking ensembles. Moreover, we would like to implement the 

optimization of the hyperparameters of machine learning models using simulated annealing with TPOT 

using stacking ensembles to optimize the hyperparameters used by them. 
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