367 research outputs found

    Sizing and Pre-stressing Force Optimization of Pre-stressed Concrete Beam Using Fast Multi Swarm Optimization

    Get PDF
    Nowadays, pre-stressed concrete is commonly used in many structural constructions, such as bridge and  building structures. Cross sectional area of the beam can be smaller if pre-stressed concrete beam is used compared to ordinary reinforced concrete one. In this case, it will have cost saving if we can optimized the structures. However, it must have a good technique for obtaining the optimum cross sectional area of the pre-stressed concrete beam, One of the optimization techniques that give a good result for optimization process is fast multi swarm optimization. In this paper, fast multi swarm optimization was used to obtain the optimum cross sectional area and optimum prestressing force of the pre-stressed concrete beam of simply supported condition. This study shows better result compared to the previous research when using similar objective functio

    Behavior of Optimized Castellated Beam Under Cyclic-Quasi Static Loading

    Get PDF
    Castellation process is one technique for increasing bending capacity for steel construction, especially in beam member. However, there are several parameters should be considered for obtaining an optimal castellated beam, such as opening space opening angle, opening ratio. This paper considered two cases optimized castellated beam which has been done before. Finite element analysis was performed for obtaining the behavior of optimized castellated beam. The previous research revealed that second case optimization was better than the first case optimization but in monotonic loading. Therefore, there must be a study for the optimized castellated beam on cyclic quasi-static loading condition. This study considered two optimized castellated beams subjected to cyclic quasi-static loading on cantilever beam to obtain the behavior of optimized castellated beam. The result shows that the second case optimization performance better than the first case optimization based on peak load and dissipation energy of the beam

    The Effects of Using Chaotic Map on Improving the Performance of Multiobjective Evolutionary Algorithms

    Get PDF
    Chaotic maps play an important role in improving evolutionary algorithms (EAs) for avoiding the local optima and speeding up the convergence. However, different chaotic maps in different phases have different effects on EAs. This paper focuses on exploring the effects of chaotic maps and giving comprehensive guidance for improving multiobjective evolutionary algorithms (MOEAs) by series of experiments. NSGA-II algorithm, a representative of MOEAs using the nondominated sorting and elitist strategy, is taken as the framework to study the effect of chaotic maps. Ten chaotic maps are applied in MOEAs in three phases, that is, initial population, crossover, and mutation operator. Multiobjective problems (MOPs) adopted are ZDT series problems to show the generality. Since the scale of some sequences generated by chaotic maps is changed to fit for MOPs, the correctness of scaling transformation of chaotic sequences is proved by measuring the largest Lyapunov exponent. The convergence metric γ and diversity metric Δ are chosen to evaluate the performance of new algorithms with chaos. The results of experiments demonstrate that chaotic maps can improve the performance of MOEAs, especially in solving problems with convex and piecewise Pareto front. In addition, cat map has the best performance in solving problems with local optima

    A Hybrid Multiobjective Discrete Particle Swarm Optimization Algorithm for Cooperative Air Combat DWTA

    Get PDF

    Metaheuristic design of feedforward neural networks: a review of two decades of research

    Get PDF
    Over the past two decades, the feedforward neural network (FNN) optimization has been a key interest among the researchers and practitioners of multiple disciplines. The FNN optimization is often viewed from the various perspectives: the optimization of weights, network architecture, activation nodes, learning parameters, learning environment, etc. Researchers adopted such different viewpoints mainly to improve the FNN's generalization ability. The gradient-descent algorithm such as backpropagation has been widely applied to optimize the FNNs. Its success is evident from the FNN's application to numerous real-world problems. However, due to the limitations of the gradient-based optimization methods, the metaheuristic algorithms including the evolutionary algorithms, swarm intelligence, etc., are still being widely explored by the researchers aiming to obtain generalized FNN for a given problem. This article attempts to summarize a broad spectrum of FNN optimization methodologies including conventional and metaheuristic approaches. This article also tries to connect various research directions emerged out of the FNN optimization practices, such as evolving neural network (NN), cooperative coevolution NN, complex-valued NN, deep learning, extreme learning machine, quantum NN, etc. Additionally, it provides interesting research challenges for future research to cope-up with the present information processing era

    Large-Scale Evolutionary Optimization Using Multi-Layer Strategy Differential Evolution

    Get PDF
    Differential evolution (DE) has been extensively used in optimization studies since its development in 1995 because of its reputation as an effective global optimizer. DE is a population-based meta-heuristic technique that develops numerical vectors to solve optimization problems. DE strategies have a significant impact on DE performance and play a vital role in achieving stochastic global optimization. However, DE is highly dependent on the control parameters involved. In practice, the fine-tuning of these parameters is not always easy. Here, we discuss the improvements and developments that have been made to DE algorithms. The Multi-Layer Strategies Differential Evolution (MLSDE) algorithm, which finds optimal solutions for large scale problems. To solve large scale problems were grouped different strategies together and applied them to date set. Furthermore, these strategies were applied to selected vectors to strengthen the exploration ability of the algorithm. Extensive computational analysis was also carried out to evaluate the performance of the proposed algorithm on a set of well-known CEC 2015 benchmark functions. This benchmark was utilized for the assessment and performance evaluation of the proposed algorithm

    Frequency Domain Design of Fractional Order PID Controller for AVR System Using Chaotic Multi-objective Optimization

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.A fractional order (FO) PID or FOPID controller is designed for an Automatic Voltage Regulator (AVR) system with the consideration of contradictory performance objectives. An improved evolutionary Non-dominated Sorting Genetic Algorithm (NSGA-II), augmented with a chaotic Henon map is used for the multi-objective optimization based design procedure. The Henon map as the random number generator outperforms the original NSGA-II algorithm and its Logistic map assisted version for obtaining a better design trade-off with an FOPID controller. The Pareto fronts showing the trade-offs between the different design objectives have also been shown for both the FOPID controller and the conventional PID controller to enunciate the relative merits and demerits of each. The design is done in frequency domain and hence stability and robustness of the design is automatically guaranteed unlike the other time domain optimization based controller design methods

    Intelligent human action recognition using an ensemble model of evolving deep networks with swarm-based optimization.

    Get PDF
    Automatic interpretation of human actions from realistic videos attracts increasing research attention owing to its growing demand in real-world deployments such as biometrics, intelligent robotics, and surveillance. In this research, we propose an ensemble model of evolving deep networks comprising Convolutional Neural Networks (CNNs) and bidirectional Long Short-Term Memory (BLSTM) networks for human action recognition. A swarm intelligence (SI)-based algorithm is also proposed for identifying the optimal hyper-parameters of the deep networks. The SI algorithm plays a crucial role for determining the BLSTM network and learning configurations such as the learning and dropout rates and the number of hidden neurons, in order to establish effective deep features that accurately represent the temporal dynamics of human actions. The proposed SI algorithm incorporates hybrid crossover operators implemented by sine, cosine, and tanh functions for multiple elite offspring signal generation, as well as geometric search coefficients extracted from a three-dimensional super-ellipse surface. Moreover, it employs a versatile search process led by the yielded promising offspring solutions to overcome stagnation. Diverse CNN–BLSTM networks with distinctive hyper-parameter settings are devised. An ensemble model is subsequently constructed by aggregating a set of three optimized CNN–BLSTM​ networks based on the average prediction probabilities. Evaluated using several publicly available human action data sets, our evolving ensemble deep networks illustrate statistically significant superiority over those with default and optimal settings identified by other search methods. The proposed SI algorithm also shows great superiority over several other methods for solving diverse high-dimensional unimodal and multimodal optimization functions with artificial landscapes
    • …
    corecore