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Chaotic maps play an important role in improving evolutionary algorithms (EAs) for avoiding the local optima and speeding up
the convergence. However, different chaotic maps in different phases have different effects on EAs.This paper focuses on exploring
the effects of chaotic maps and giving comprehensive guidance for improving multiobjective evolutionary algorithms (MOEAs)
by series of experiments. NSGA-II algorithm, a representative of MOEAs using the nondominated sorting and elitist strategy,
is taken as the framework to study the effect of chaotic maps. Ten chaotic maps are applied in MOEAs in three phases, that is,
initial population, crossover, and mutation operator. Multiobjective problems (MOPs) adopted are ZDT series problems to show
the generality. Since the scale of some sequences generated by chaotic maps is changed to fit for MOPs, the correctness of scaling
transformation of chaotic sequences is proved bymeasuring the largest Lyapunov exponent.The convergencemetric 𝛾 and diversity
metricΔ are chosen to evaluate the performance of new algorithms with chaos.The results of experiments demonstrate that chaotic
maps can improve the performance of MOEAs, especially in solving problems with convex and piecewise Pareto front. In addition,
cat map has the best performance in solving problems with local optima.

1. Introduction

Multiobjective evolutionary algorithms have attracted wides-
pread attention and have been applied successfully in many
areas, such as test task scheduling problem (TTSP) [1],
reservoir operation [2], proportional integral and derivative
(PID) controller [3], and distribution feeder reconfiguration
(DFR) [4]. One key challenge in multiobjective evolutionary
algorithms is the problem of resolving local optima and
the speed of convergence. There are different solutions for
improving evolutionary algorithms. Some approaches have
been devoted to propose new algorithms, such as MOEA/D
[5], SPEA-2 [6], and NSGA-II [7]. Other researchers have
proposed a variety of hybrid algorithms, which combined
the advantages of two different methods. For example, a new
hybrid evolutionary algorithm (EA) based on the combina-
tion of the honey bee mating optimization (HBMO) and the
discrete particle swarm optimization (DPSO), called DPSO-
HBMO, is applied to solve the multiobjective distribution

feeder reconfiguration (DFR) problem [4]. Another approach
has focused on modifying original algorithms. For example,
new particle swarm optimization (PSO) methods were pro-
posed by using chaotic maps for parameter adaptation [8].
The results showed that chaos embedded PSO can improve
the quality of results in some optimization problems. Chaos
variables are loaded into the variable colony of the immune
algorithm in the immune evolutionary algorithm, and the
experimental results indicate that the new immune evolu-
tionary algorithm improves the convergence performance
and search efficiency [9]. Due to the characteristics such as
randomness, regularity, ergodicity, and initial value sensitiv-
eness, chaos has been widely applied in the original evolutio-
nary algorithms to improve the performance.

Recently researches have been done to the chaos embed in
evolutionary algorithms. For example, Alatas et al. [8] applied
seven chaotic maps to generate seven new chaotic artificial
bee colony algorithms. Three phases were adopted in gen-
erating these algorithms to solve three different benchmark
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single objective problems. Results showed that thesemethods
have somewhat improved the solution quality. Tavazoei and
Haeri [10] introduced ten chaotic maps in weighted gradient
direction to solve two test functions. Results showed that
none of these maps transcends other maps for all of the prob-
lems and desired criteria. Those researches demonstrated
that chaotic sequences replacing the random parameters in
three phases, including initial population, crossover operator,
and mutation operator, can improve the performance of
evolutionary algorithms. However, questions remain that for
a given MOP, which chaotic map should be chosen in order
to achieve the best performance. It is also not clean what
kinds of combination of chaotic maps used in a particular
phase have the best property. Therefore, it is difficult to
give comprehensive guidance to improve the performance of
evolutionary algorithms.

In addition, from the problems solved by COA, it can
be seen that single objective optimization problems are the
focus. Comparisons of different chaotic maps in improving
the effects of COAs for solving single objective problems are
common, but it is rare in solving multiobjective optimization
problems (MOPs). Yu et al. [11] revealed that COA is not
effective for solvingMOPs, whereas the experiments inAlatas
and Akin [12] showed the opposite. The results on these
foregoing researches demonstrate that COAs are successful
and competitive for solving single objective optimization
problem, but effects of COAs on solving MOPs are not
consistent.

In summary, although there have been many researches
about the chaos and its application in COAs, the effects
of different chaotic maps used in different phases on the
performance of evolutionary algorithms have not yet been
fully evaluated, especially for the multiobjective evolutionary
algorithms.

In this paper, we explore the relationships of chaotic
maps and phases on improving multiobjective evolutionary
algorithms by a series of experiments. We will answer the
question whether chaotic maps are suitable to improve the
evolutionary algorithms in solvingMOPs.We also investigate
which phase should be chosen when one chaotic map is used
to improve a multiobjective evolutionary algorithm.

In this research, NSGA-II is chosen as the main opti-
mization algorithm, because it captures the core ideas and
characteristics of MOEAs with the properties of a fast
nondominated sorting procedure, an elitist strategy, a param-
eterless approach, and a simple yet efficient constraint-
handling method [7]. Despite these good aspects of NSGA-
II for solving MOPs, it may be entrapped into local optimal
solutions. Thus, the properties of chaos can help to improve
the performance of NSGA-II.

In order to reflect the diversity of chaotic maps, ten
chaotic maps that have been widely used in pioneering
researches are studied in this paper. They are circle map,
cubic map, Gauss map, ICMIC map, logistic map, sinusoidal
map, tent map, Baker’s map, cat map, and Zaslavskii map.
Each chaotic map has its own property and has its own effect
on improving the performance of evolutionary algorithms.
For example, logistic map has Chebyshev-type distribution
but not uniform distribution. As a result, it is necessary for
optimal solution to go through multiple iterations.

Similar to past researches, chaotic maps are used in three
common phases in evolutionary algorithms in experiments,
that is, chaotic sequences for initial population, chaotic
sequences for crossover operator, and chaotic sequences for
mutation operator.

Five benchmark MOPs including ZDT1, ZDT2, ZDT3,
ZDT4, and ZDT6 [7] are chosen as test problems. These
MOPs have different characteristics and can reflect the
property of evolutionary algorithms from different aspects.
For example, we can use problem ZDT4 to evaluate the
performance of evolutionary algorithms for resolving local
optimal, because ZDT4 has different local Pareto-optimal
solutions in the search space.

In addition, ranges of chaotic maps are not always fit
for test problems. Scaling transformation is needed to apply
chaotic sequences. For example, Coelho and Mariani [13]
adopted Zaslavskii’s map by changing its range to (0, 1) and
Alatas [12, 14, 15] took a similar approach. The problem is
whether the chaotic sequences through scaling transforma-
tion still maintain the properties of chaos. In this paper, the
correctness of scaling transformation of chaotic sequences is
proved by measuring the largest Lyapunov exponent.

Finally, the criteria of convergence and distribution pro-
posed by Deb et al. [7] are adopted in this paper to evaluate
the effects of the combinations of phases and chaotic maps on
improving the performance of multiobjective evolutionary
algorithms. One is metric 𝛾, which measures the extent of
convergence to a known set of Pareto-optimal solutions.
The other is metric Δ, which measures the extent of spread
achieved among the obtained solutions.

From the results of experiments, it can be seen that
NSGA-II embedded with chaotic maps in most cases get
better results with regard to themetrics 𝛾 andΔ.The effects of
using chaotic maps depend on which chaotic map is selected
and inwhich phase it is used. In particular, chaos can improve
the ability of NSGA-II in solving ZDT3 and ZDT6, which are
difficult for the original NSGA-II algorithm. Besides, cat map
is good at solving problems with local optima, such as ZDT4.

The rest of paper is organized as follows. Section 2 gives
a summary of related work on applying chaos to improve
evolutionary algorithms. Section 3 shows the phases in which
chaos can be embedded in evolutionary algorithms. Section 4
defines ten chaotic maps which are embedded in NSGA-II in
the experiments. Section 5 proves that the chaotic sequences
through scaling transformation still hold the properties of
chaos. Section 6 describes the test problems and metrics
used in the experiments. Section 7 presents the performance
results of the experiments. Section 8 concludes the paper.

2. Related Work

Applying chaotic maps to improve evolutionary algorithms
has been studied for a while.There are two different strategies
to apply the chaotic maps in the evolutionary algorithms.

One is to use chaotic sequences generated by chaotic
maps to replace the random parameters needed by evolution-
ary algorithms. Coelho [16] proposed a quantum-behaved
particle swarm optimization (QPSO). Random sequences
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of mutation operator in QPSO were replaced with chaotic
sequences based on Zaslavskii map.The results demonstrated
that it is a powerful strategy to diversify the population and
improve the performance in preventing premature conver-
gence to local minima. Dos Coelho and Alotto considered
the chaotic crossover operator using the Zaslavskii map to
solve multiobjective optimization problems [17]. Zhang et al.
[18] proposed three chaotic sequences based multiobjec-
tive differential evolution (CS-MODE) to solve short-term
hydrothermal optimal scheduling with economic emission
(SHOSEE). In themodifiedmutation operator, chaotic theory
is used to increase the population diversity, and some adap-
tive tuning parameters are produced by chaotic mappings to
control the evolution.

The other strategy is to use the chaos optimization as an
operator. For example, Alatas [14] applied chaotic search in
case that a solution does not obtain improvements in artificial
bee colony (ABC) algorithm. The results showed that the
strategy has better performance than that of ABC algorithm.
Wang and Zhang [19] employed chaos analogously. When
the value of objective function had no improvement in
continuous iterations, one chaotic system was applied to
reinitialize half of the population. It replaced the worst half
part of the population in order to jump out of the local
optimum, whereas the best half part is kept unchanged.

Since evolutionary algorithms have sensitive dependence
on their initial condition and parameters, the improvements
on these parameters can have a good effect. That may be one
of the reasons that the first strategy is widely adopted. In the
first strategy, it is necessary to consider the phases of replacing
random sequences with chaotic sequences and the different
chaotic maps adopted.

For the phases of the evolutionary algorithms, Caponetto
et al. [20] introduced chaotic sequences instead of random
ones during all the phases of the evolution process. Results
showed that the behaviors of all operators were influenced by
chaotic sequences. Alatas [15], Ahmadi andMojallali [21], and
Ma [22] focused on random parameters in initial population.
Coelho [16] and Zhang et al. [18] did their research on
mutation operator. However, which phase is the best choice
was not discussed.

To study the performance of different chaotic maps,
some researchers give the comparisons of different chaotic
maps solving both single objective optimization problems
and MOPs. Talatahari et al. [23] proposed a novel chaotic
improved imperialist competitive algorithm (CICA) for
global optimization. Seven chaotic maps were utilized to
improve the movement step of the algorithm, and the
logistic and sinusoidal maps were found as the best choices.
Caponetto et al. [20] proposed an experimental analysis
on the convergence of evolutionary algorithms. Six chaotic
maps, four phases, and single-objective statistical tests
showed an improvement of evolutionary algorithms when
chaotic sequences were used instead of random processes. Lu
et al. [1] proposed a chaotic nondominated sorting genetic
algorithm (CNSGA) to solve the automatic test task schedul-
ing problem (TTSP). According to the different capabilities
of the logistic and the cat chaotic operators, the CNSGA
approach using the cat population initialization, the cat or

logistic crossover operator, and the logisticmutation operator
performs well and is very suitable for solving the TTSP. The
comparisons of the performance of chaotic maps in these
researches are based on solving one specific problem, so the
results cannot be generalized to offer guidance on how to
choose a chaotic map for solving other problems. Further-
more, most researches focus on single objective problems.

In contrast, this paper performs extensive experiments
on genetic multiobjective evolutionary algorithms embed-
ded with chaotic sequences. It focuses on exploring the
relationships of phases and chaotic maps on improving
multiobjective evolutionary algorithms. As mentioned above
ten chaoticmaps and three phases of evolutionary algorithms
are considered. Five general benchmark problems are used to
demonstrate that the conclusions can be generalized. Finally
the guidance is presented to help researchers choose the suit-
able chaotic map and phases in multiobjective evolutionary
algorithms for different MOPs.

3. Phases in Chaos Embedded
Evolutionary Algorithms

With the ergodic property, chaos is adopted to enrich the
searching behavior and to avoid solutions being trapped into
local optimum in optimization problems. In this section
three key phases in evolutionary algorithms, initialization,
crossover, and mutation, are chosen to be embedded with
chaos. Those three phases are described as follows.

3.1. Initialization. Initial population is the starting point
of iterations. Ergodicity and diversity of initial population
are very important for making sure that the individuals in
the population spread in the search spaces uniformly as
far as possible. In this case, initial population is generated
by chaotic maps which can form a feasible solution space
with good distribution by the properties of randomicity and
ergodicity of chaos. Chaotic sequences can guarantee the
diversity of the initial population, speed up its convergence,
and enhance global search capability.

More specifically, a chaotic map, such as logistic map
or cat map, is adopted instead of random population ini-
tialization of evolutionary algorithms. In the experiments of
multiobjective evolutionary algorithms with chaos, the initial
population is generated by chaos maps. For example, one of
the individuals can be denoted by 𝑥

𝑠
= {𝑥
1

𝑠
, 𝑥
2

𝑠
, . . . 𝑥
𝑖

𝑠
, . . . 𝑥
𝑛

𝑠
},

𝑠 = 1, 2, . . . 𝑁, 𝑖 = 1, 2, . . . 𝑁. For the logistic map
initialization, 𝑥𝑖+1

𝑠
= 4𝑥
𝑖

𝑠
(1 − 𝑥

𝑖

𝑠
).

3.2. Crossover Operator. Crossover operator is most impor-
tant for evolutionary algorithms. Most of the offsprings are
generated through the crossover operator. It has a great influ-
ence on the convergence speed. A good crossover operator
may prevent premature convergence. Ergodicity of chaos
helps search all the solutions, avoid solutions from falling into
local optimum, and gain the global optimum.

There are many different crossover operators, such as
simulated binary crossover operator [7] in NSGA-II algo-
rithmandmultiparent arithmetic crossover operator. Chaotic
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sequences substitute random parameters in the crossover
operators. Chaotic sequences do not change the randomness
of the parameter but display better randomness and therefore
enhance the global performance of evolutionary algorithms.

In this paper, simulated binary crossover (SBX) opera-
tor is adopted in the experiment. According to SBX, two
child individuals 𝑥

𝑐1
= {𝑥

1

𝑐1
, . . . , 𝑥

𝑖

𝑐1
, . . . , 𝑥

𝑛

𝑐1
} and 𝑥

𝑐2
=

{𝑥
1

𝑐2
, . . . , 𝑥

𝑖

𝑐2
, . . . , 𝑥

𝑛

𝑐2
} are generated by a pair of parents 𝑥

𝑝1
=

{𝑥
1

𝑝1
, . . . , 𝑥

𝑖

𝑝1
, . . . , 𝑥

𝑛

𝑝1
} and 𝑥

𝑝2
= {𝑥
1

𝑝2
, . . . , 𝑥

𝑖

𝑝2
, . . . , 𝑥

𝑛

𝑝2
} as

follows:

𝑥
𝑖

𝑐1
=
1

2
[(1 − 𝛽) 𝑥

𝑖

𝑝1
+ (1 + 𝛽) 𝑥

𝑖

𝑝2
] ,

𝑥
𝑖

𝑐2
=
1

2
[(1 + 𝛽) 𝑥

𝑖

𝑝1
+ (1 − 𝛽) 𝑥

𝑖

𝑝2
] ,

(1)

and 𝛽 is generated in the following manner:

𝛽 =

{{

{{

{

(2𝑢)
1/(𝜂
𝑐
+1)

, if 𝑢 ≤ 0.5,

(
1

2 (1 − 𝑢)
)

1/(𝜂
𝑐
+1)

, others,
(2)

where 𝑢 is a random number in the range [0, 1]. 𝜂
𝑐
is the

distribution index for the crossover operator.
Since𝑢 is a randomnumber,𝑢 can be generated by chaotic

maps. For instance, if the chaotic map is a logistic map and in
the 𝑖th iteration 𝑢 = 𝑢

𝑖
, then in the (𝑖 + 1)th iteration, 𝑢

𝑠
=

𝑢
𝑖+1
= 4 × 𝑢

𝑖
(1 − 𝑢

𝑖
).

3.3. Mutation Operator. Mutation operator is indispensable
in the process of evolutionary algorithms. This mechanism
avoids solutions from falling into local optimum and guar-
antees more possibilities of obtaining global optimum. The
properties of chaos, like randomness and sensitivity to initial
conditions, contribute to preventing solutions from being
trapped into local optimum.

Random parameters in mutation operators, for instance,
polynomial variation, are replaced by chaotic sequences. For
a solution 𝑥

𝑠
, the polynomial mutation is described as

𝑥
∗

𝑠
= 𝑥
𝑠
+ (𝑥
𝑢

𝑠
− 𝑥
𝑙

𝑠
) × 𝛿
𝑠
, (3)

where 𝑥𝑢
𝑠
and 𝑥𝑙

𝑠
are the upper and lower bounds of 𝑥

𝑠
, and

𝛿
𝑠
= {
(2𝑢
𝑠
)
1/(𝜂
𝑚
+1)

− 1, if 𝑢
𝑠
< 0.5,

1 − (2 × (1 − 𝑢
𝑠
))
1/(𝜂
𝑚
+1)

, others,
(4)

where 𝑢
𝑠
is a random number ranging from 0 to 1. 𝜂

𝑚
is the

distribution index for the mutation operator.
The phase for mutation is that 𝑢

𝑠
is calculated by chaotic

maps in iterations. For example, if the chaotic map is logistic
map, and in the 𝑖th iteration 𝑢

𝑠
= 𝑢
𝑖
, then in the (𝑖 + 1)th

iteration, 𝑢
𝑠
= 𝑢
𝑖+1
= 4 × 𝑢

𝑖
(1 − 𝑢

𝑖
).

As a representative of MOEAs, the framework of NSGA-
II algorithm is adopted in the experiments. In order to
eliminate the effect of NSGA-II algorithm, other two different
mutation operators, that is, Gauss mutation and Cauchy
mutation, are chosen to replace polynomial variation.

3.3.1. Gauss Mutation. If random variable 𝑋 has the proba-
bility density function:

𝑝 (𝑥) =
1

√2𝜋𝜎
𝑒
−((𝑥−𝜇)

2

/2𝜎
2

)

, −∞ < 𝑥 < +∞, (5)

then𝑋 obeys Gauss normal distribution with the parameters
𝜇, 𝜎; that is,𝑋 ∼ 𝑁(𝜇, 𝜎2).

Gaussmutationmeans that the randomnumbers obeying
gauss distribution substitute 𝛿

𝑠
in polynomial mutation; that

is, 𝛿
𝑠
∼ 𝑁(𝜇, 𝜎

2

).

3.3.2. Cauchy Mutation. The probability density function of
Cauchy distribution concentrated near the origin. It is defined
as

𝑓 (𝑥) =
1

𝜋

𝑡

𝑡2 + 𝑥2
, −∞ < 𝑥 < +∞, 𝑡 > 0. (6)

It is similar to Gauss probability density function. The
difference is that the value of Cauchy distribution is lower
than the value of Gauss distribution in the vertical direction,
and Cauchy distribution is closer to the horizontal axis in
the horizontal direction. Cauchy mutation means that the
random numbers obeying Cauchy distribution substitute 𝛿

𝑠

in polynomial mutation.

4. Chaotic Maps

Chaotic maps generate chaotic sequences in the process
of evolutionary algorithms. Ten chaotic maps including
both one-dimensional maps and two-dimensional maps are
introduced in this section. They will be used to improve the
performance of MOP algorithms.

4.1. One-Dimensional Maps

(1) Circle Map. Circle map is a member of a family of
dynamical systems on the circle first defined by Andrey
Kolmogorov. He proposed this family as a simplified model
for driven mechanical rotors specifically, a free-spinning
wheel weakly coupled by a spring to a motor. The circle
map equations also describe a simplified model of the phase-
locked loop in electronics. The circle map [24] is given by
iterating the map:

𝑥
𝑘+1
= {𝑥
𝑘
+ 𝑏 − (

𝑎

2𝜋
) sin (2𝜋𝑥

𝑘
)} mod (1) , (7)

with 𝑎 = 0.5 and 𝑏 = 0.2; it generates chaotic sequence in
(0, 1).

(2) Cubic Map. Cubic map is one of the most commonly used
maps in generating chaotic sequences in various applications.
This map is formally defined by the following equation [25]:

𝑥
𝑘+1
= 𝜌𝑥
𝑘
(1 − 𝑥

2

𝑘
) , 𝑥

𝑘
∈ (0, 1) . (8)

Cubic map generates chaotic sequences in (0, 1) with 𝜌 =
2.59.
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(3) Gauss Map. Gauss map is also one of the well-known and
commonly employed maps in generating chaotic sequences
[26] as follows:

𝑥
𝑘+1
=
{

{

{

0, 𝑥
𝑘
= 0,

1

𝑥
𝑘

mod (1) , otherwise. (9)

This map also generates chaotic sequences in (0, 1).

(4) ICMIC Map. The iterative chaotic map with infinite
collapses (ICMIC) [27] is defined by the following equation:

𝑥
𝑘+1
= sin( 𝑎

𝑥
𝑘

) , 𝑎 ∈ (0,∞) , 𝑥
𝑘
∈ (−1, 1) . (10)

The parameter “𝑎” is an adjustable parameter. This paper
chooses 𝑎 = 2. Because the range of𝑥

𝑘
is not (0, 1), the chaotic

sequences need to be transformed to change the range.

(5) LogisticMap. As awell-known chaoticmap, logisticmap is
one of the simplest maps and was introduced by May in 2004
[28]. It is often cited as an example of how complex behavior
can arise from a very simple nonlinear dynamical equation.
Logistic map generates chaotic sequences in (0, 1). This map
is formally defined by the following equation:

𝑥
𝑘+1
= 𝑎𝑥
𝑘
(1 − 𝑥

𝑘
) . (11)

Parameter 𝑎 is set to 4 in the simulation.

(6) Sinusoidal Iterator.The sinusoidal iterator [29] is formally
defined by the following equation:

𝑥
𝑘+1
= 𝑎𝑥
2

𝑘
sin (𝜋𝑥

𝑘
) , 𝑥

𝑘
∈ (0, 1) . (12)

In this paper the simplified equation is used in the following
iteration:

𝑥
𝑘+1
= sin (𝜋𝑥

𝑘
) , 𝑥

𝑘
∈ (0, 1) . (13)

(7) Tent Map. Tent chaotic map is very similar to the logistic
map, which displays specific chaotic effects [30]. This map is
defined by the following equation:

𝑥
𝑘+1
= {
2𝑥
𝑘
, 𝑥

𝑘
< 0.5,

2 (1 − 𝑥
𝑘
) , 𝑥

𝑘
≥ 0.5,

(14)

where 𝑥
𝑘
is ranging from 0 to 1.

Tent map generates chaotic sequences in (0, 1).

4.2. Two-Dimensional Maps

(1) Baker’s Map. The Baker map [31] is described by the
following formulas:

𝐵 (𝑥, 𝑦) =
{

{

{

(2𝑥, 2𝑦) , for 0 ≤ 𝑥 < 0.5,
(2 − 2𝑥, 1 −

𝑦

2
) , for 0.5 ≤ 𝑥 < 1.

(15)

In the following simulations, one dimension of Baker’s
map, which is similar to tent map, is adopted. The equation
is defined by

𝑥
𝑘+1
= {
2𝑥
𝑘
, for 0 ≤ 𝑥

𝑘
< 0.5,

2 − 2𝑥
𝑘
, for 0.5 ≤ 𝑥

𝑘
< 1.

(16)

This map generates chaotic sequences in (0, 1).

(2) Arnold’s Cat Map. Arnold’s cat map is named after
Vladimir Arnold, who demonstrated its effects in the 1960s
using an image of a cat. It is represented by [32]

𝑥
𝑘+1
= 𝑥
𝑘
+ 𝑦
𝑘
mod (1) ,

𝑦
𝑘+1
= 𝑥
𝑘
+ 2𝑦
𝑘
mod (1) .

(17)

It is obvious that the sequences 𝑥
𝑘
∈ (0, 1) and 𝑦

𝑘
∈ (0, 1).

(3) Zaslavskii Map. Zaslavskii map [33] is an interesting
dynamic system with chaotic behavior. The discretized equa-
tion is given by

𝑥
𝑘+1
= (𝑥
𝑘
+ V + 𝑎𝑦

𝑘+1
) mod (1) ,

𝑦
𝑘+1
= cos (2𝜋𝑥

𝑘
) + 𝑒
−𝑟

𝑦
𝑘
.

(18)

The Zaslavskii map shows a strange attractor with the
largest Lyapunov exponent for V = 400, 𝑟 = 3, and
𝑎 = 12.6695. In this case, it can be calculated that 𝑦

𝑘+1
∈

[−1.0512, 1.0512]. Only one dimension is chosen in the
following simulation. Since the scale of 𝑦

𝑘+1
is not [0, 1], the

chaotic sequences generated need scale transformation.

5. Chaotic Properties of Sequences Generated
by Scale Transformation

Asmentioned in the previous sections, the scale of sequences
generated by chaotic maps is not always fit for the problems
to be solved. Some sequences have to change their scale, and
some sequences are generated by one dimension of a two-
dimension chaoticmap. Hence, it is necessary to demonstrate
the chaotic properties of sequences after these changes.

Detecting the presence of chaos in a dynamical system is
usually solved by measuring the largest Lyapunov exponent
which describes quantitatively the speed of index divergence
or convergence between the adjacent phase space orbits. A
positive largest Lyapunov exponent indicates chaos. Since
the chaotic sequences adopted in this paper are discrete, the
Lyapunov exponent of discrete series can be calculated by
small data sets arithmetic [34]. This method makes full use
of all the data, obtains higher accuracy, and has stronger
robustness for the amount of data, the embedding dimension,
and the time delay.

5.1. Small Data Sets Arithmetic. The reconstructed trajectory,
𝑋, can be expressed as a matrix where each row is a phase-
space vector; that is,

𝑋 = (𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑀
)
𝑇

, (19)
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where 𝑋
𝑖
is the state of the system at discrete time 𝑖. For an

𝑁-point time series, {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑁
}, each𝑋

𝑖
is given by

𝑋
𝑖
= (𝑥
𝑖
, 𝑥
𝑖+𝐽
, . . . , 𝑥

𝑖+(𝑚−1)𝐽
) , (20)

where 𝐽 is the lag or reconstruction delay, and 𝑚 is the
embedding dimension. Thus,𝑋 is an𝑀×𝑚matrix, and the
constants𝑚,𝑀, 𝐽, and𝑁 are related as

𝑀 = 𝑁 − (𝑚 − 1) 𝐽. (21)
After reconstructing the dynamics, the algorithm locates the
nearest neighbor of each point on the trajectory. The nearest
neighbor 𝑋

𝑗
, where 𝑗 ∈ {1, 2, . . .𝑀}, is found by searching

for the point that minimizes the distance to the particular
reference point𝑋

𝑗
. This is expressed as

𝑑
𝑗
(0) = min

𝑋
𝑗


𝑋
𝑗
− 𝑋
𝑗


, (22)

where 𝑑
𝑗
(0) is the initial distance from the 𝑗th point to its

nearest neighbor, and ‖‖ denotes the Euclidean norm. We
impose an additional constraint that the nearest neighbors
have a temporal separation greater than the mean period of
the time series:


𝑗 − 𝑗

> 𝑝, (23)

where 𝑝 is the mean period of time series. 𝑝 can be estimated
by the reciprocal of the mean frequency of the power
spectrum. This allows us to consider each pair of neighbors
as nearby initial conditions for different trajectories. The
largest Lyapunov exponent is estimated as the mean rate of
separation of the nearest neighbors.

For each reference point𝑋
𝑗
, 𝑑
𝑗
(𝑖) is the distance between

the 𝑗th pair of nearest neighbors after 𝑖 discrete time:

𝑑
𝑗
(𝑖) =


𝑋
𝑗+𝑖
− 𝑋
𝑗+𝑖


, 𝑖 = 1, 2, . . . ,min (𝑀 − 𝑗,𝑀 − 𝑗) .

(24)
Assume that reference point 𝑋

𝑗
and its nearest neighbor

𝑋
𝑗
have index divergence rate 𝜆

1
; then

𝑑
𝑗
(𝑖) = 𝐶

𝑗
𝑒
𝜆
1
(𝑖⋅Δ𝑡)

, 𝐶
𝑗
= 𝑑
𝑗
(0) , (25)

where 𝐶
𝑗
is the initial separation. By taking the logarithm of

both sides of (25) we get
ln 𝑑
𝑗
(𝑖) ≈ ln𝐶

𝑗
+ 𝜆
1
(𝑖 ⋅ Δ𝑡) . (26)

Equation (26) represents a set of approximately parallel lines
(for 𝑗 = 1, 2, . . . ,𝑀), each with a slope 𝑠 roughly proportional
to 𝜆
1
. The largest Lyapunov exponent is easily and accurately

calculated using a least square fit to the “average” line defined
by

𝑦 (𝑖) =
1

Δ𝑡
⟨ln 𝑑
𝑗
(𝑖)⟩ , (27)

where ⟨ ⟩ denotes the average over all values of 𝑗. So

𝑦 (𝑖) =
1

𝑞Δ𝑡

𝑞

∑

𝑗=1

ln 𝑑
𝑗
(𝑖) , (28)

where 𝑞 is the number of 𝑑
𝑗
(𝑖) with 𝑑

𝑗
(𝑖) ̸= 0.

Choose a linear area of the curve 𝑦(𝑖) ∼ 𝑖, and apply the
least square method to get the regression straight line. Then
the slope of the regression straight line is the largest Lyapunov
exponent 𝜆

1
.

5.2. The Lyapunov Exponent of Sequences. In the calculation
process, the embedding dimension 𝑚 is calculated through
the method of false nearest neighbors (FNN). For the time
delay 𝐽, a good approximation of 𝐽 is equal to the number
lagging where the autocorrelation function drops to 1 − 1/𝑒
of its initial value.

Since different test problems have different ranges,
chaotic sequences need to be changed to different scales.
Two kinds of sequences used in experiments need to be
investigated: sequences with scales changed and sequences
generated by one dimension of a two-dimension chaoticmap.

5.2.1. Sequences with Scales Changed. Since the sequence 𝑥
1

to 𝑥
100

generated by ICMIC is not in (0, 1), the new sequence
𝑦
1
to 𝑦
100

has to be generated by the following function:

𝑦
𝑖
=
1

2
(𝑥
𝑖
+ 1) , 𝑖 ∈ [1, 100] . (29)

The sequence 𝑦
1
to 𝑦
100

is in the range of (0, 1). The Lya-
punov exponent of the new sequence is calculated through
small data sets arithmetic. The average Lyapunov exponent
of 10 runs is 0.0744. Since it is a positive number, the new
sequence 𝑦

1
to 𝑦
100

conforms to the chaotic nature.

5.2.2. Sequences Generated by One Dimension of a Two-
Dimension ChaoticMap. For the Zaslavskii map, one dimen-
sion𝑦

𝑘
is chosen in the following simulation.The sequence𝑦

1

to 𝑦
100

is generated by 100 iterations through Zaslavskii map.
The new sequence 𝑧

1
to 𝑧
100

is generated by the following
function:

𝑧
𝑖
=
(𝑦
𝑖
+ 1.0513)

2.1026
, 𝑖 ∈ [1, 100] . (30)

Then the sequence 𝑧
1
to 𝑧
100

is in (0, 1). By a similar
processing with ICMIC, the average Lyapunov exponent is
0.00194. Then the new sequence 𝑧

1
to 𝑧
100

conforms to the
chaotic nature.

6. Test Problem and Performance Measures

6.1. Test Problems. Two-objective optimization problems are
chosen to test and measure the performance improvement
of the evolutionary algorithms using chaotic maps in three
phases. We use well-defined benchmark functions as objec-
tive functions. Their properties are shown in Table 1.

6.2. Performance Measures. Two criteria are used to evaluate
the performance of multiobjective optimization: (1) conver-
gence to the Pareto-optimal set and (2) maintenance of diver-
sity in solutions of the Pareto-optimal set [7]. Twometrics are
adopted to evaluate the effects of the combinations of phases
and chaotic maps.

The first metric 𝛾 measures the extent of convergence to
a known set of Pareto-optimal solutions. It is defined as

𝛾 =
1

𝑁

𝑁

∑

𝑖=1

𝑑
𝑖
, (31)
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Table 1: Test problems.

Problem 𝑛 Variable bounds Objective functions Optimal solutions

ZDT1 30 [0, 1]
𝑓
1
(𝑥) = 𝑥

1

𝑓
2
(𝑥) = 𝑔(𝑥)[1 − √𝑥

1
/𝑔(𝑥)]

𝑔(𝑥) = 1 + (9 (∑
𝑛

𝑖=2
𝑥
𝑖
) /(𝑛 − 1))

𝑥
1
∈ [0, 1]

𝑥
𝑖
= 0,

𝑖 = 2, . . . , 𝑛

ZDT2 30 [0, 1]
𝑓
1
(𝑥) = 𝑥

1

𝑓
2
(𝑥) = 𝑔(𝑥)[1 − (𝑥

1
/𝑔(𝑥))

2

]

𝑔(𝑥) = 1 + (9 (∑
𝑛

𝑖=2
𝑥
𝑖
) /(𝑛 − 1))

𝑥
1
∈ [0, 1]

𝑥
𝑖
= 0,

𝑖 = 2, . . . , 𝑛

ZDT3 30 [0, 1]
𝑓
1
(𝑥) = 𝑥

1

𝑓
2
(𝑥) = 𝑔(𝑥)[1 − √𝑥

1
/𝑔(𝑥) − (𝑥

1
/𝑔(𝑥)) sin(10𝜋𝑥

1
)]

𝑔(𝑥) = 1 + (9 (∑
𝑛

𝑖=2
𝑥
𝑖
) /(𝑛 − 1))

𝑥
1
∈ [0, 1]

𝑥
𝑖
= 0,

𝑖 = 2, . . . , 𝑛

ZDT4 10
𝑥
1
∈ [0, 1]

𝑥
𝑖
∈ [−5, 5],

𝑖 = 2, . . . , 𝑛

𝑓
1
(𝑥) = 𝑥

1

𝑓
2
(𝑥) = 𝑔(𝑥)[1 − √𝑥

1
/𝑔(𝑥)]

𝑔(𝑥) = 1 + (10(𝑛 − 1) + ∑
𝑛

𝑖=2
[𝑥
2

𝑖
− 10 cos(4𝜋𝑥

𝑖
)])

𝑥
1
∈ [0, 1]

𝑥
𝑖
= 0,

𝑖 = 2, . . . , 𝑛

ZDT6 10 [0, 1]
𝑓
1
(𝑥) = 1 − exp(−4𝑥

1
)sin6(6𝜋𝑥

1
)

𝑓
2
(𝑥) = 𝑔(𝑥)[1 − (𝑓

1
(𝑥)/𝑔(𝑥))

2

]

𝑔(𝑥) = 1 + (9[(∑
𝑛

𝑖=2
𝑥
𝑖
) /(𝑛 − 1)]

0.25

)

𝑥
1
∈ [0, 1]

𝑥
𝑖
= 0,

𝑖 = 2, . . . , 𝑛

where 𝑑
𝑖
is the minimum Euclidean distance of every

obtained solution to the Pareto-optimal front. The smaller
the value of this metric is, the nearer the convergence toward
Pareto-front is.

The other metric Δ measures the extent of spread
achieved among the obtained solutions. The metric Δ is
defined by

Δ =
𝑑
𝑓
+ 𝑑
𝑙
+ ∑
𝑁−1

𝑖=1


𝑑
𝑖
− 𝑑


𝑑
𝑓
+ 𝑑
𝑙
+ (𝑁 − 1) 𝑑

. (32)

The parameter 𝑑
𝑖
is the Euclidean distance between consecu-

tive solutions in the obtained nondominated set of solutions.
Theparameters𝑑

𝑙
and𝑑
𝑓
are the Euclidean distances between

the extreme solutions and the boundary solutions of the
obtained nondominated set. The parameter 𝑑 is the average
of all distances 𝑑

𝑖
, 𝑖 = 1, 2, . . . , 𝑁 − 1, assuming that there are

𝑁 solutions on the best nondominated front.

7. Experiments and Results

To explore the relationship of phases and chaotic maps
to solve MOPs, NSGA-II algorithm is chosen as the main
framework.The ten chaotic maps mentioned in Section 4 are
embedded in three different phases in the original NSGA-
II algorithm. Each time only one parameter is modified.
For example, if initial population is generated by chaotic
map, the crossover and mutation operator are not changed.
Similarly, if crossover operator is modified by a chaotic
map, the initial population and mutation operator are not
changed. The solutions, generated by the chaos embedded
NSGA-II algorithm, are evaluated by two metrics: 𝛾 and Δ.
For reader’s convenience, the new algorithms with different
combinations of chaotic maps and phases are named as
“cns [chaotic map] [phase],” and the results of different
algorithms on test problems are named as “cns [chaotic
map] [phase] [test problem].” In addition, “i” represents the

phase for initial population, “c” represents the phase for
crossover operator, and “m” represents the phase formutation
operator. For example, the results through modified initial
population by logistic map solving ZDT1 problem are named
as “cns logistic i zdt1.”

Each combination of one chaotic map and one phase
needs one experiment. In this research, 10 chaotic maps with
3 different phases based on 2 metrics solving 5 test problems
need 150 basic experiments and obtain 300 results. Each
experiment obtains a Pareto front.The values of convergence
metric 𝛾 and the diversity metric Δ are also calculated.

In order to compare with the results of original NSGA-II
algorithm, we focused on the difference of the 𝛾 and Δ values
of the original NSGA-II algorithm and the new algorithm.
For example, the 𝛾 of results of “cns sinusoidal i zdt1”
is named as “cns sinusoidal i zdt1 gama,” and the 𝛾 of
results of NSGA-II solving ZDT1 problem is named
as “ns zdt1 gama.” Then the difference is named as
“ns zdt1 gama—cns sinusoidal i zdt1 gama.” When the
processes of algorithms get to convergence, the difference is
very small. The properties of convergence and diversity in
the process of iterations need to be taken into account, so
the 𝛾 values of each generation in the iterations are recorded
and the differences of 𝛾 of each generation are obtained. This
process also applies to Δ.

Some main parameters in the process of NSGA-II algo-
rithm are introduced in the following paragraphs. Then the
results of experiments are shown and analyzed.

7.1.TheMainParameters. Themainparameters in the process
of NSGA-II algorithm are presented in this section. Choosing
an appropriate representation of a chromosome is very
important for solving problems. Real numbers are chosen
to represent the genes. One chromosome represents one
individual. The initial population has 100 individuals, and
each chromosome has a certain number of genes which
are represented by a real number. Each individual of the
initial population is generated randomly with the range
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Table 2: Parameters in the process of algorithms.

ZDT1 ZDT2 ZDT3 ZDT4 ZDT6
𝑛iter 250
𝑛pop 100
𝑛var 30 30 30 10 10
𝑝
𝑐

0.9
𝑝
𝑚

1/30 1/30 1/30 1/10 1/10

based on the test problems. The iteration will not terminate
until the number of iterations gets to 250. For the process
of NSGA-II algorithm, a parent population is selected by
tournament selection depending on the nondominated rank
and the crowed-comparison operator. Then the new popula-
tion is generated by crossover and mutation operators. The
crossover operation is executed with the probability of 𝑝

𝑐
=

0.9. The probability of mutation 𝑝
𝑚
is equal to the reciprocal

of 𝑛var, which is the dimension number of a chromosome; that
is, 𝑝
𝑚
= 1/𝑛var.

Those parameters are summarized in Table 2. In the
table, 𝑛iter is the number of iterations, 𝑛pop is the scale
of the population, 𝑛var is the number of dimensions of a
chromosome, and𝑝

𝑐
and𝑝
𝑚
are the probabilities of crossover

and mutation operations.

7.2. Convergence Performance. It is known that the 𝛾 differ-
ence is used to evaluate the performance of the chaotic maps
in different phases inmultiobjective evolutionary algorithms.
An example is chosen for further explanation in detail. As in
Figure 1, the graph shows the results of solving ZDT1 prob-
lems with Baker’s map in crossover operator in NSGA-II.The
differences of 𝛾 between the experiment “cns baker c zdt1”
and the experiment “ns zdt1” in the 250 iterations are given.
As seen from the figure, the black line is above the red line
which represents 0, so the new algorithm “cns bakers c” is
better thanNSGA-II algorithm in solvingZDT1 problemwith
regard to the convergence metric.

The 𝛾 results of all the experiments are given similar to
Figure 1. Since it is difficult to show so many graphs in this
paper, the results of three typical problems are chosen, that
is, ZDT1, which is a simple convex problem, ZDT3, whose
Pareto front is piecewise, and ZDT4, which has local optima.
The graphs in Figures 2, 3, and 4 provide a comparison of the
performance of solving different MOPs with chaotic maps in
initial population. ZDT4 is chosen to show the performance
of chaotic maps in different phases on solving the sameMOP,
as shown in Figures 4, 5, and 6. Each subgraph is labeled with
the name of the chaotic map used.

In order to quantify the effect of chaotic maps and phases
with regard to the metric 𝛾, the average of 𝛾 difference in 250
generations is calculated to represent the effect of the new
algorithms.

Since the order of magnitude of 𝛾 is not the same,
the comparison of these 𝛾 values is not convenient. The
normalized values are obtained by dividing the 𝛾 values by
themaximumof the absolute values of the 𝛾 based on one test
problem. The results of normalization are shown in Table 3.
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Figure 1: Performance of Baker’s maps in crossover operator in
solving ZDT1.

Table 3 can be presented in a more intuitive way. If 𝛾 ≥
0.3, the numerical value of 𝛾 is replaced by “++.” Similarly,
“+” represents 0.1 ≤ 𝛾 < 0.3, “0” represents −0.1 ≤ 𝛾 <
0.1, “−” represents −0.3 ≤ 𝛾 < −0.1, and “−−” represents
𝛾 < −0.3. Therefore “++” means that the effect of the new
algorithm with chaotic maps is much better, whereas “−−” is
much worse. Table 4 shows the results.

As shown in Table 4, most of the combinations of chaotic
maps and phases have a positive effect on improving the per-
formance of NSGA-II algorithm. The effect of some chaotic
maps is very good, especially in some particular phases. For
example, Baker’s map in crossover operator, Gauss map in
crossover operator and initial population, ICMIC map in
initial population, sinusoidal map in initial population, tent
map in crossover operation, and Zaslavskii map in initial
population have very good effect.

Since ZDT4 problem has 219 or 7.94×1011 different local
Pareto-optimal fronts in the search space, the solutions easily
get entrapped into local optimum. As seen from Table 4,
chaotic maps used for crossover and mutation operator have
significant improvement on evolutionary algorithms solving
ZDT4 problem; especially cat map has the best performance
in tenmaps. Circle map and cubicmap have less contribution
in solving those MOPs. The distribution of cat map is
relatively uniform. It is probably the reason for the good
performance in solving problems with local optima.

The original NSGA-II algorithm is not good at solving
ZDT3 and ZDT6 problems, because Pareto-optimal front of
ZDT3 is disconnected and solutions of ZDT6 are nonuni-
formly spaced. However, it can be seen in Table 4 that chaotic
maps can improve NSGA-II especially in crossover operation
and initial population in solving ZDT3 and ZDT6 problem.

In order to eliminate the special effect of the NSGA-
II algorithm, the polynomial mutation operator in NSGA-
II is changed by the Gauss mutation and Cauchy mutation
operators. Four typical chaotic maps, which include two
chaotic maps with best performance and two chaotic maps
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Figure 2: Performance of chaotic maps in initial population in solving ZDT1.
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Figure 3: Performance of chaotic maps in initial population in solving ZDT3.
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Figure 4: Performance of chaotic maps in initial population in solving ZDT4.
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Figure 5: Performance of chaotic maps in crossover operator in solving ZDT4.
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Table 3: The normalized results of 𝛾.

ZDT1 ZDT2 ZDT3 ZDT4 ZDT6
c i m c i m c i m c i m c i m

Baker 0.617 0.080 0.049 0.682 0.149 0.094 0.668 0.109 0.003 0.220 −0.040 0.167 0.567 0.105 −0.090
Cat −0.060 0.076 0.101 0.013 0.084 0.024 −0.007 0.090 0.174 0.191 0.109 0.158 −0.028 0.022 −0.096
Circle −0.142 −0.040 −0.016 0.013 −0.121 −0.007 −0.153 0.028 −0.016 0.151 −0.069 0.098 −0.176 −0.072 −0.002
Cubic −0.544 0.064 −0.025 −0.626 −0.041 0.006 −0.334 −0.049 0.077 0.032 −0.781 0.071 −0.288 0.040 0.008
Gauss 0.307 0.513 0.089 0.306 0.507 0.070 0.454 0.585 0.037 0.159 0.005 0.191 0.114 −0.010 0.132
ICMIC −0.415 0.558 0.132 −0.280 0.609 0.144 −0.295 0.510 0.004 0.003 −0.380 0.088 −0.162 0.252 0.163
Logistic 0.070 0.242 0.189 0.072 0.204 −0.031 0.012 0.158 0.127 0.017 −0.819 0.183 0.152 0.129 0.132
Sinusoidal 0.077 1 0.616 0.121 1 0.742 0.169 1 0.734 −0.091 −1 −0.138 0.148 0.688 1
Tent 0.655 0.177 0.062 0.704 0.103 −0.005 0.731 0.043 −0.088 0.190 −0.008 −0.058 0.569 0.124 −0.003
Zaslavskii −0.051 0.462 0.032 −0.150 0.518 0.064 −0.086 0.499 0.110 −0.103 −0.339 0.108 −0.060 0.174 0.183

Table 4: The visualized results of 𝛾.

ZDT1 ZDT2 ZDT3 ZDT4 ZDT6
c i m c i m c i m c i m c i m

Baker ++ 0 0 ++ + 0 ++ + 0 + 0 + ++ + 0
Cat 0 0 + 0 0 0 0 0 + + + + 0 0 0
Circle − 0 0 0 − 0 − 0 0 + 0 0 − 0 0
Cubic — 0 0 — 0 0 — 0 0 0 — 0 − 0 0
Gauss ++ ++ 0 ++ ++ 0 ++ ++ 0 + 0 + + 0 +
ICMIC — ++ + − ++ + − ++ 0 0 — 0 − + +
Logistic 0 + + 0 + 0 0 + + 0 — + + + +
Sinusoidal 0 ++ ++ + ++ ++ + ++ ++ 0 — − + ++ ++
Tent ++ + 0 ++ + 0 ++ 0 0 + 0 0 ++ + 0
Zaslavskii 0 ++ 0 − ++ 0 0 ++ + − — + 0 + +

Table 5: Results of Gauss mutation.

ZDT1 ZDT2 ZDT3 ZDT4 ZDT6
c i c i c i c i c i

Circle −0.4886 −0.0170 1.9394 −0.3130 0.0971 −0.4370 185.6683 75.0688 2.8693 −0.5529
Cubic −2.4674 −0.0589 −6.2676 −0.0630 −2.5351 −1.2051 49.1193 −448.985 −2.3071 5.7609
Sinusoidal 1.0277 6.0982 0.4343 9.4173 −0.0396 4.5810 −106.768 −525.536 5.84566 28.5351
Tent 3.5035 0.6784 5.9502 1.1086 1.8616 0.0623 −272.428 101.4576 15.0061 11.2005

Table 6: Results of Cauchy mutation.

ZDT1 ZDT2 ZDT3 ZDT4 ZDT6
c i c i c i c i c i

Circle 1.3978 0.5012 1.3997 0.7723 0.7187 0.4043 135.4511 −136.938 0.1105 −2.6454
Cubic −2.6201 −0.4932 −4.2148 −0.5317 −2.4831 −0.7487 −77.1621 −456.939 −5.7560 5.4533
Sinusoidal 0.1470 4.6977 0.8327 8.2820 0.3179 4.5376 −202.995 −468.243 6.5462 23.8545
Tent 2.7613 0.3380 5.2687 0.9699 2.6813 −0.1916 −283.172 57.9606 12.7523 5.2806

with worst performance, are chosen to be used in the
experiments. These chaotic maps are circle map, cubic map,
sinusoidal map, and tent map. The values of 𝛾 differences are
shown in Tables 5 and 6. As seen from Tables 5 and 6, the
performance of sinusoidal map and tent map is better than
the performance of circlemap and cubicmap. Sinusoidalmap
in initial population is better than that in crossover operation,
and tent map in crossover operation is better than that in
initial population. This means the rules of combinations of

chaotic maps and phases in solving MOPs are almost the
same as in the previous observations. So the rules based on
the framework of NSGA-II algorithm are applicable to other
MOEAs.

In general, Baker’s map with a phase for crossover oper-
ator, sinusoidal map with phases for initial population and
mutation operator, and tent map with a phase for crossover
operator could be the best choice for improving evolutionary
algorithms for MOPs without local optimum. For problems
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Figure 6: Performance of chaotic maps in mutation operator in solving ZDT4.
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Figure 7: Performance of chaotic maps in crossover operator in solving ZDT1 with metric Δ.
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Table 8: Statistical data for combinations of chaotic maps and phases on different problems.

Threshold ZDT1 ZDT2 ZDT3 ZDT4 ZDT6
0 18 9 15 10 20
0.001 16 9 9 10 18
0.002 13 9 7 10 18
0.003 13 8 6 10 14
0.004 13 8 5 10 12
0.005 12 8 4 10 12
0.006 11 8 4 10 11
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Figure 8: Performance of Baker’s maps in crossover operator in
solving ZDT1 with metric Δ.

with local optimum, cat map has good performance on
improving evolutionary algorithms.

7.3. Diversity Performance. Similar to the convergencemetric
𝛾, the differences of the diversity metricΔ between the results
of the new algorithm with chaotic maps and the original
NSGA-II algorithm are used to measure the performance.
Figure 7 shows the performance of chaotic maps in crossover
operator in solving ZDT1 with metric Δ. Each subgraph
shows the effect of one chaotic map. To be seen more clearly,
the first subgraph in Figure 7 is shown in Figure 8.

As seen fromFigures 7 and 8, theΔ difference is not stable
in 250 generations. The average values of Δ difference in 250
generations are calculated to represent the effect of the new
algorithms. For brevity, the rest of results are not shown in
graphs but in Table 7.

As seen from Table 7, the Δ values have little difference.
We count the number of combinations of chaotic maps and
phases for solving one problem in different threshold values.
For example, there are 18 combinations whose values of Δ are
greater than zero. Based on the number of the combinations
of chaotic maps and phases in different threshold values, the
values of diversity metric Δ are summarized in Table 8.

In Table 8 the rank of the number of Δ in different
threshold values is ZDT1 > ZDT6 > ZDT4 > ZDT2 >

ZDT3, especially for larger threshold. ZDT1 problem, which
is a convex function and has no local optima, is a relatively
easy problem. Chaotic maps bring the biggest improve-
ments on solving ZDT1. Though the solutions of ZDT6 are
nonuniformly spaced, chaotic maps can find better spread of
solutions. While ZDT4 problem is a complex problem and
the solutions are easily trapped into local optima, chaotic
maps can improve the distribution of the solutions. ZDT2
problem is a convex function, and the solutions sometimes
fall into the local optimum.The effects of chaoticmaps can be
generalized.The Pareto front of ZDT3 problem is segmented,
so the Δ value of ZDT3 is larger and the ranking of ZDT3 is
lower. It is our observation that Δ is not fit for evaluating the
solutions to problems which are disconnected.

Based on the diversity metric Δ, chaotic maps have
the best improvement on solving convex problems without
local optima and have better effect on solving problems
which have nonuniform solutions. For problems with local
minimum, chaotic maps embedded algorithms can improve
the performance with regard to metric Δ.

A short summary can be given according to the above
experiments. First, chaotic maps can improve the perfor-
mance of MOEAs, but the results showed that no one chaotic
map outperforms other maps for all of the problems. The
results in this paper give some guidance on how to choose a
chaotic map and a phase in MOEAs. Second, an interesting
discovery is that cat map has best performance on solving
problems with local optima. Uniformity of cat map may be
one of the reasons for the good performance of solving ZDT4.

8. Conclusion

The focus of this paper is to explore the relationships of
chaotic maps and phases in MOEAs in solving MOPs. The
main framework of algorithms in experiments is the NSGA-
II algorithm. The combinations of ten chaotic maps and
three phases are chosen in the experiments. Two metrics,
convergence metric 𝛾 and diversity metric Δ, are used to
evaluate the convergence and diversity properties of the
algorithms with chaotic maps. The test problems are ZDT
series which were all MOPs. The ergodicity and initial value
sensitivity of chaotic maps can help evolutionary algorithms
avoid solutions from falling into local optimal and get better
convergence. In the experimental results, almost all chaotic
maps have good effects on improving the performance of
evolutionary algorithms to solveMOPs without local optima.
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Cat map has best performance on solving problems with
local optimum. This work gives insight on choosing chaotic
maps and phases for different problems. Our future work
will perform further experiments with more chaotic maps on
other MOEAs and formulate the theory analysis.
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