
LARGE-SCALE EVOLUTIONARY OPTIMIZATION

USING MULTI-LAYER STRATEGY DIFFERENTIAL

EVOLUTION

By: Tarik Eltaeib

Under the Supervision of Prof. Ausif Mahmood

DISSERTATION

SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIRMENTS

FOR THE DEGREE OF DOCTOR OF PHILOSOHPY IN COMPUTER SCIENCE

AND ENGINEERING

THE SCHOOL OF ENGINEERING

 UNIVERSITY OF BRIDGEPORT

 CONNECTICUT

May 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UB ScholarWorks

https://core.ac.uk/display/225315788?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

iii

LARGE-SCALE EVOLUTIONARY OPTIMIZATION USING
MULTI-LAYER STRATEGY DIFFERENTIAL EVOLUTION

© Copyright by Tarik Eltaeib 2019

iv

LARGE-SCALE EVOLUTIONARY OPTIMIZATION USING

MULTI-LAYER STRATEGY DIFFERENTIAL EVOLUTION

 ABSTRACT

Differential evolution (DE) has been extensively used in optimization studies

since its development in 1995 because of its reputation as an effective global optimizer.

DE is a population-based metaheuristic technique that develops numerical vectors to

solve optimization problems. DE strategies have a significant impact on DE performance

and play a vital role in achieving stochastic global optimization. However, DE is highly

dependent on the control parameters involved. In practice, the fine-tuning of these

parameters is not always easy. Here, we discuss the improvements and developments that

have been made to DE algorithms.

The Multi-Layer Strategies Differential Evolution (MLSDE) algorithm, which

finds optimal solutions for large scale problems. To solve large scale problems were

grouped different strategies together and applied them to date set. Furthermore, these

strategies were applied to selected vectors to strengthen the exploration ability of the

algorithm. Extensive computational analysis was also carried out to evaluate the

performance of the proposed algorithm on a set of well-known CEC 2015 benchmark

v

functions. This benchmark was utilized for the assessment and performance evaluation of

the proposed algorithm.

vi

ACKNOWLEDGEMENTS

Special appreciations to my family. Words cannot express how thankful I am to

my wife, my daughters, my mother, my mother-in law, and father-in-law for all of the

sacrifices and prayers for me that you’ve made on my behalf. I would like to express

my special thanks to my advisor Professor Ausif Mahmood and his efforts, encouraging

and guiding me to grow as a research scientist.

.

vii

 TABLE OF CONTENTS

ABSTRACT ... iv

ACKNOWLEDGEMENTS ... vi

TABLE OF CONTENTS .. vii

LIST OF FIGURES ... x

CHAPTER 1: INTRODUCTION .. 11

1.1 Background .. 11

1.2. Research Problem and Scope .. 12

1.3. Motivation behind the Research ... 13

1.4. Potential Contribution of the Proposed Research .. 14

1.5 Literature Survey and Background ... 15

1.5.1 Classic Differential Evolution .. 15

1.5.2 Differential Evolution Strategies ... 18

1.5.3 Initialization .. 21

1.5.4 Crossover ... 22

1.5.5 Selection .. 22

1.5.6 DE Applications and related automated ... 23

1.5.7 Parameter Control .. 24

1.5.8 Deterministic Parameter Control ... 25

1.5.9 Adaptive Parameter Control ... 26

1.5.10 Differential Evolution with Self-Adapting Populations (DESAP) 27

1.5.11 Fuzzy Adaptive Differential Evolution (FADE) ... 28

1.5.12 Self-adaptive Differential Evolution (SaDE) ... 29

1.5.13 Self-adaptive NSDE (SaNSDE) ... 31

1.5.14 Self-Adapting Parameter Setting in Differential Evolution (jDE) 32

viii

1.5.15 Adaptive DE algorithm (ADE) .. 33

1.5.16 Modified DE (MDE) ... 34

1.5.17 Modified DE with p-best Crossover (MDE_pBX) 34

1.5.18 DE with Self-Adaptive Mutation and Crossover (DESAMC) 35

1.5.19 Adaptive Differential Evolution with Optional External Archive (JADE)36

1.5.20 Adaptation of and .. 38

1.5.21 Differential Covariance Matrix Adaptation Evolutionary Algorithm
(CMA-ES). .. 39

CHAPTER 2: DIFFERENTIAL EVOLUTION WITH MULTIPLE STRATEGIES 41

2.1 Hybrid DE Algorithms .. 42

2.2. Hybridization of DE with Other Evolution Algorithms .. 43

CHAPTER 3: RESEARCH PLAN .. 52

3.1 Introduction .. 52

3.2 Multi-Layer Strategies Differential Evolution .. 54

CHAPTER 4: IMPLEMENTATION AND Results .. 58

4.1 Implementation and Test Plan ... 58

4.2 Results ... 58

Chapter 5: APPLICATION ... 63

5.1 Image Sampling and Quantization .. 63

5.2 Representing Digital Images .. 66

5.3 Image quantization .. 67

5.4 K-Means Clustering Algorithm ... 70

Chapter 6: CONCLUSIONS ... 79

 REFERENCES .. 80

ix

LIST OF TABLES

Table 1.1 The differentiation operation can be carried out using

many mutation strategies.

18

Table 2.1 Summary of different DE algorithms with verity of

approaches.

50

Table 4.1 Mean experimental results for 30 Variables over 50 runs

59

Table 4.2 Mean experimental results for 100 Variables.

61

Table 5.1 The MSDE was tested with quantization of lenna,

pepper, jet and mandrill images.

76

x

LIST OF FIGURES

 Figure 1.1 Random vectors selected in the mutation strategy (classic

DE)

15

Figure 1.2 The differential β and base vector δ provide the optimal

direction

18

Figure 3.1 The flowchart of Proposed MLSDE 56

Figure 4.1 Comparing between MLSDE, JADE, JDE, and SADE 59

Figure 4.2 Experimental Results for 100 Variables 61

Figure 5.1 Generating a digital image and Continuous image 64

Figure 5.2 Generating a digital image Sampling and quantization 65

Figure 5.4 Quantization result of images 68

Figure 5.5 Experimental results Jet 77

Figure 5.6 Experimental results Lenna 77

Figure 5.7 Experimental results Mandril 78

Figure 5.8 Experimental results Peppers 78

CHAPTER 1: INTRODUCTION

1.1 Background

Optimization algorithms are important approaches for resolving hard optimization

problems [1]. Optimization is defined as the procedure of discovery that provides the

minimum or maximum value of a function f(x) [2, 3]. There are many reasons that make

this problem difficult to solve. First, we cannot perform a comprehensive search if the

problem domain space is too large. Second, the evaluation function is noisy or varies with

time, generating a series of solutions instead of a single solution. Third, sometimes the

constraints prevent arriving at a possible solution such that the optimization approach is

the only solution [4].

Differential evolution (DE) is a stochastic algorithm for solving numerical

continuous optimization problems. Since its inception, the DE algorithm has been a

powerful global optimizer. DE was developed by Kenneth Price in 1994 and has since

become a promising optimization algorithm that converges to the real optimum without

using significant amounts of resources. Furthermore, its performance was validated in the

evolutionary domain by the IEEE Conference on Evolutionary in 1996 [5].

More recently, different versions of DE have secured the top ranks in many

competitions between evolutionary algorithms (EAs) by the IEEE Congress on

12

Evolutionary Computation (CEC) conference series

(http://www.ntu.edu.sg/home/epnsugan/index_files/cec- benchmarking.htm).

1.2. Research Problem and Scope

An impressive number of different DE algorithms have been introduced by the

research community over the past decades because various DE algorithms involving

different techniques. To differentiate among those techniques, we need to define a

comprehensive framework that helps to deepen understanding of the characteristics of

different DE strategies, with the goal of benefiting from the various approaches. In fact,

understanding how to combine these DEs harmoniously and their underlying concepts

could be crucial to attaining effective designs or improving the performance of DE

algorithms in particular or any optimization algorithms in general. Moreover, the

literature shows that no single algorithm has been demonstrated to be effective for

various applications.

DE algorithms are different from EA algorithms that shape offspring by mixing

solutions with a difference factor rate of selected individual vectors and are an alternative

to recombining individuals through a probabilistic scheme. In fact, the differential

mutation strategy is the main component that distinguishes DE from other population

algorithms. Applying the mutation to all candidates defines an exploration rule based on

other candidate solutions. Therefore, the mutation strategy enhances a population’s

capability for discovering new promising offspring based on the current distribution of

solutions within the domain space. Ideally, the performance of DE is based on two major

http://www.ntu.edu.sg/home/epnsugan/index_files/cec-%20benchmarking.htm

13

components: the chosen strategy and the control parameters. However, the strategy

underlying DE consists of mutation, crossover and selection operators, which are utilized

at each generation to determine the global optimum. The control parameter components

consist of the population size NP, scaling factor F and the crossover rate Cr.

1.3. Motivation behind the Research

Despite the potential of DE, it is obvious to the research community that some

adjustments to classic DE are essential to significantly enhance its performance,

especially in addressing high-dimension problems. Stagnation, premature, convergence,

and sensitivity are the control parameters that influence the performance of DE. To

evaluate the reliability and robustness of the different DE algorithms, we introduce a

general framework that includes the control parameters for evaluating the efficiency of

the different algorithms. For example, stagnation occurs when the population cannot

converge to a suboptimal solution although the diversity of the population remains high.

This does not improve the population over a period of iterations, and the algorithm is not

capable of finding a new search domain. There are many causes of stagnation, including

control parameters that become inefficient for a specific problem in the decision space.

Many studies have proposed a variety of ways to improve the current DE algorithm

through modifications, including the use of differential mutations with perturbations,

mutations with selection pressure, and operator adaption techniques. To address this

need, we have conducted an extensive study on differential evolution and observed that

14

the performance of differential evolution and the quality of the results are based on the

type of technique used, and what control parameters are effective.

 1.4. Potential Contribution of the Proposed Research

We propose a Multi-Layer Strategies Differential Evolution (MLDE) approach,

which uses different mutation strategies in order to reach a fast convergence rate and

avoid premature convergence due to the loss of diversity in the population. In fact, we

used multilayer crossover techniques since there no single method has proven fit for

every problem; though a crossover scheme may work perfectly with some problems, they

may perform poorly with others. Each problem has different characteristics: some

research showed that a scheme such as binomial crossover performed well with some

type of problem. MLDE works to improve the diversification of offspring by using

different strategies in a multiple-layer approach. This approach makes the population

widely spread so the sampled vectors can easily generate better new offspring. This

technique can accelerate convergence rate for finding the optimum solution with a

smaller number of iterations.

Another significant factor is considered in this work is to provide a

comprehensive study of the different types of state-of-the-art differential evolution

algorithms that are available as global numerical optimizations in continuous search

space. This comprehensive study sheds light on most improvements and developments

pertaining to different types of DE families, including primary concepts and a variety of

DE formats.

15

1.5 Literature Survey and Background

1.5.1 Classic Differential Evolution

If we are seeking the optimum for X* which demonstrate by vector ,i=1,…D ,

X , within boundary constraints L ≤ X ≤ H. Differential evolution (DE) is

population-based, where the initial population with random

initialization . Initialization of the population is important step that assuming

that there is no previous information about the optimum solution. Therefore, the

population is initialized within only boundary constraints upper bound (H) and lower

bound (L), so the population can by initialized by the following

After the initialization phase, the evolution involves the three processes of

mutation, crossover, and selection. The classic differential evolution strategy consists of

three random vectors , and that are selected from the population (Eq. 1).

Randomly select of three individuals from the population

 ≠

 while (

The mutation operation recombines to construct the mutation vector shown in

Figure 1. The associated equation.

16

Figure 1.1 Random vectors selected in the mutation strategy (classic DE)

The mutation process is the main distinctive component of DE and is considered

the strategy by which DE is carried out. There are different types of mutation strategies,

each one distinguished with an abbreviation based on the classic mutation strategy

described by equation (1), i.e., DE/rand/1/bin, where DE represents differential evolution

and “rand” represents random, which indicates that the vectors are selected randomly.

The number one indicates the number of difference pairs; in this strategy, it is one

pair . The last term represents the type of crossover used. This term could be

“exp,” for exponential, or “bin,” for binomial [9]. Then, to complement the previous step

(mutation strategy), DE also apply uniform crossover to construct trial vectors

which is out of parameter values that have been copied from two different vectors. In

particular, DE selected random vector from population indicate as which must be

different of , and ; and then it crosses with a mutant vector ; the binomial

crossover is generated as follows:

17

 = (1.2)

The crossover probability, Cr ∈ (0, 1), is a pre-defined rate that specify the

fraction of parameter that are transferred from the mutant. Thus, it use to control which

source participate a given parameter. Uniform crossover rate compares with uniform

random values form from rand (0,1); if the random value is smaller than or equal to Cr

then the trial parameter is copied from mutant vector else the parameter is inherited

from

The next operation is selection, in which the trail vector competes with the

target vector . If this trail vector is equal or less than it changes the target

vector in the next generation else not changed in the population

 =

Where is the objective function? Therefore, if the new trail vector

is less than or equal to the target vector , it replaces the target vector. Otherwise, the

population maintains the target vector value. Therefore, the different DE phases prevent

the population from ever deteriorating; the population either remains the same or

improves. Furthermore, continued refining of the population is updated by the trial

vector, although the fitness of the trial vector is the same as that of the current vector.

This factor is crucial in DE because it provides the algorithm the ability to move through

the landscape using a variety of generations [10]. The termination condition can be either

a preset maximum number of generations or a pre-specified target of the objective

function value. [11].

18

1.5.2 Differential Evolution Strategies

Table (1.1) The differentiation operation can be carried out using many mutation strategies.
 Strategy Formulation
1. DE/best/1/exp
2. DE/rand-to-best/1/exp
3. DE/best/2/exp
4. DE/rand/2/exp
5. DE/best/1/bin
6. DE/rand/1/bin
7. DE/rand-to-best/1/bin
8. DE/best/2/bin
9. DE/rand/2/bin

The various equations underpinning DE possess certain aspects in common when

applied for continuous optimization. All consist of an original point sometimes referred

to as the base point. The original algorithm carries out the search operation such that it

finds the optimum as soon as possible. We can generalize the DE formula to the form α =

β + F · δ, where β represents the base vectors and δ the difference between vectors. Thus,

the main goal of all DE equations is to provide the optimal direction based on the

differential β and base vector δ (Figure 2).

19

Y-
Ax

is

X-Axis

β

 δ

 Figure 1.2 The differential β and base vector δ provide the optimal direction

Establishing β and δ is crucial to creating an efficient strategy that can be applied

to the chosen individuals from the population. However, all possible combinations of β

and δ can be classified into the following strategies: local, random, directed, and hybrid.

In random strategies, abbreviated as “Rand”, all individuals are formed randomly, and

there is no prior information about the objective function. In directed strategies,

abbreviated as “DIR”, a suitable value for the base vector is chosen according to the

objective function to ensure a suitable direction. Hybrid strategies include the

combination of “Rand” and “DIR”, labeled RAND/DIR. In another approach, the best

overall vector is used, not only the best among the selected individuals; this approach is

referred to as the “BEST”. Combining the “Rand” and “BEST” yields the hybrid

RAND/BEST strategy. In addition, the combination of more than two approaches, e.g.,

RAND/BEST/DIR, can yield favorable results by exploiting the advantages of each

approach.

20

However, Table 3.1 shows that all DE strategies employed are formed based one the

DE/rand/x variation, which applies pairs of difference vectors:

whereas the scaling factors are frequently presumed to be the same F1 = F2 =… = Fk = F.

Substituting an arbitrary base vector 𝐱𝐱1 as vbest, “the best vector” from the population,

provides a different DE approach, indicated DE/best/1:

Most mutation strategies can be formed by a general formula based on the sum of k

scaled difference vectors and a weighted average among the best vector and arbitrary

ones:

One aspect common to all the mutation strategy methods is the base vector, which

controls the search direction. The difference vector provides a mutation rate term, such as

a self-adaptive term, that is added to an arbitrary or guided base vector to construct a trial

individual. Over generations, the individuals of a population reside in increasingly better

positions and reform themselves. The various combinations of these vectors can be

categorized into four groups based on information pertaining to the values gathered from

the objective function: random, directed, local and hybrid.

The RAND approach consists of strategies in which the trial individual is

produced without knowledge of the value of the objective function. Similarly, the

RAND/DIR approach includes strategies that use the values of the objective function to

determine a promising direction. Likewise, the RAND/BEST approach applies the best

21

individual approach to proceed with a trial. Additionally, the RAND/BEST/DIR approach

combines the last two groups into one that includes all of their collective benefits.

 However, a suitable direction is obtained by using the best individual to decrease

the search space and exploration time [12, 13]. Thus, the “dir” and “dir-best” strategies,

which use objective function values to generate trial individuals, can produce an

exploitation function. In fact, the random selection of parents for a trial enhances

exploration capabilities [14-16]. Thus, the locations of individuals carry information

about the fitness landscape. Therefore, an effective mutation strategy that leads to

uniform random vectors represents the entire search space well.

1.5.3 Initialization

DE is a population-based optimization technique that begins with the problem

solution by selecting the objective function at a random initial population. Predefined

parameter bounds describe the area from which the number of population (Np) vectors in

this initial population is chosen within both the upper bound “ ” and the lower bound

“ ”, where the subscripts L and U indicate lower and upper, respectively. The following

equation is used to develop a random number generator for all vectors from within the

predefined upper and lower bounds. The random function Random(0, 1) outputs a

uniform random number within the range (0, 1).

 -)+

22

1.5.4 Crossover

To balance the differential mutation search strategy, DE also applies uniform

crossover to construct trial vectors. A trial vector is constructed from values that have

been copied from two diverse vectors. In particular, DE crosses each vector as follows:

The crossover probability, ∈ [0,1], is predefined in the classic version of DE,

and the fraction value of the Cr control is cloned from the mutant vector. is compared

with a random number randj(0,1). If the random number is less than or equal to , the

trial parameter is inherited from the mutant otherwise, the parameter is cloned from

the vector .

1.5.5 Selection

In this stage, we determine when the trial vector has an objective function

value that is less than or equal to that of its target vector . DE swaps the target vector

in the next iteration; otherwise, the target retains its place in the population. This process

is carried out by comparing each trial vector with the target vector from which the

parameters are cloned. After the population is updated, mutation, recombination and

selection are repeated until the optimum value is found or after a predefined stop criterion

is reached, such as a certain number of iterations.

 If (

23

1.5.6 DE Applications and related automated

Due to the rapid rise of DE as a modest and strong optimizer, developers have

applied the technique in a wide range of domains and fields of technology1. Yalcin

proposed a new method for the 3D tracking of license plates from video using a DE

algorithm, which could be fine-tuned according to the license plate boundaries [17]. A

color image quantization application using DE was proposed by Qinghua and Hu. The

main objective of image processing techniques is to, during the color image quantization

phase, decrease the number of colors in an image with a low amount of deformation. DE

can be used to adjust colormaps and find the optimal candidate colormap [18]. With

respect to the bidding market, Alvaro et al. applied DE in developing a competitive

electricity market application that finds the optimal bids based on daily bidding activity

[19]. Sickel et al. used DE in developing a power plant control application for a reference

governor to produce an optimal group of points for controlling a power plant that was

produced by [20]. Wang et al. proposed a flexible QoS multicast routing algorithm for the

next-generation Internet that improves the quality of service (QoS) of multicasts to

manage the increasing demand of network resources [21]. With respect to the electric

power systems industry, Ela et al. applied DE to determine the optimal power flow [22].

Goswami et al. proposed a DE application for model-based well log-data inversion to

1 http://www1.icsi.berkeley.edu/~storn/code.html

 If (

http://www1.icsi.berkeley.edu/%7Estorn/code.html

24

discover features of earth formations based on the dimensions of physical phenomena

[23]. Another application applies network system reconfiguration for distributing

systems. The network reconfiguration application proposed by Tzong and Lee involves

the application of Improved Mixed-Integer Hybrid Differential Evolution [24]. Another

DE application developed by Boughari et al. sets suitable controllers for aircraft stability

and control augmentation systems [25].

1.5.7 Parameter Control

The DE algorithm is a simple and effective optimization algorithm for problems

from real world when its control parameters are suitably set [8, 26, 27], as reviewed in

the previous section. In this section, we review the most current improvement approaches

for DE. First, the DE algorithm applies certain control parameters to the system

implementation. The accomplishment of DE is influenced by the value of parameters,

such as the crossover and mutation rate. Although some studies have recommended

certain values for these parameters, their effect on performance is complex and their

exact values are unclear. In particular, there is a wide variety of different recommended

values that are appropriate for different problems [28-30].

The mutation rate ”, crossover rate “ and population dimension maintain

balance between exploration and exploitation [6]. Exploration is associated with finding

new solutions, and exploitation is associated with searching for new suitable solutions;

the two processes are linked in the evolutionary search [31, 32]. Therefore, the mutation

and crossover rates influenced the convergence rate and the effectiveness of the search

space [33].

25

However, specifying suitable values for these rates is not easy [34]. Three types

of strategies are used to set these parameter controls: deterministic parameter control

(sometimes called random), self-adaptive parameter control and adaptive parameter

control [10, 35-37]. Adaptive and self-adaptive parameter control [9-14, 38-41] have

recently been proposed to dynamically alter the control parameters without requiring the

user’s prior knowledge or information about the problem behaviors throughout the search

process [42-46]. In the following sections, the self-adaptive parameter, the adaptive

parameter, and hybrid control strategies are discussed.

1.5.8 Deterministic Parameter Control

The parameters are altered using a deterministic rule regardless of the feedback

from the evolutionary search, with Jitter and Dither being two operators that are used in

this technique. Dither scales the distance of the vector differentials as the same factor, ,

is applied to all the elements of a subtracted vector. Jitter multiplies each vector element

of the subtracted vector by a different scale factor, . The rotation creates jitter using an

essentially different procedure than the classic DE’s constant mutation with F. However,

this approach shows robustness for non-deceiving objective functions [3]. Nonetheless

,applied fixed values for each iteration, and F was created for each individual within the

range [0.4, 1] range, whereas the interval [0.5, 0.7] was selected for Cr [47, 48].

Another approach is the composite DE (CoDE) algorithm proposed by Wang et

al. In CoDE, a trial vector is selected from a set of groups produced by utilizing diverse

DE strategies [49]. The main objective is to arbitrarily merge many trial vector strategies

with different parameter at each iteration to construct new trial vectors. These

26

combinations help solve many problems successfully. Wang et al. used group of trial

vector strategies and group of control parameter (almost three) to create strategy and

parameter candidate pools. The selected strategies are DE/rand/1/bin, DE/rand/2/bin and

DE/current-to- rand/1, and the three pair common choices for the control parameter

settings were (F= 1.0, Cr =0.1), (F =1.0; Cr=0.9), and (F =0.8; Cr=0.2). In each

generation, the three different strategies are applied, which randomly pick any of the

control parameter values.

Then, the trial vector is designated the candidate with the better value of fitnes.

The parameters are chosen based on whether they are frequently implemented with many

DEs, and their performances are evaluated. The three pairs of parameter settings that

provide diverse effects produce new improved candidates. Furthermore, the different

values of the control parameters maintain different levels of search performance.

1.5.9 Adaptive Parameter Control

The adaptive technique has been applied with classic DE/rand/1/bin; while the

performance is relatively favorable, the technique still suffers from convergence rate

issues [43, 44]. Very good designed a self-adaptive and adaptive parameter controls can

enhance the robustness and the convergence rate by automatic adapting to the parameters.

Approaches other than using the best explored solution use minor resolution in previous

generations and their variation with the present population as a good area for finding the

optimum. Adapting the parameters is a method called the adaptive DE algorithm (ADE),

which applies a adapting evaluation from feedback of F relay on additional parameter (ϒ)

that necessity be adjusted[50, 51]. However, the self-adaptive parameter controls the

27

value assignments and adjusts them dynamically. A parameter is altered dynamically

through processing according to pre-defined rules using adaptive control, self-adaptive

control or a combination thereof [34, 52]. In addition, the self-adaptive parameter control

mix explores the optimal parameter values with the goal of finding the optimal solutions.

Indeed the adaptive approach have been achieved success with different technologies;

Shojafar et al., 2016 applied the adaptive technique within cloud in order to reach the

communication optimization framework and exploiting virtualization technologies[53,

54].

The main purpose of adaptive DE is to help exploit and explore relationships that

avoid premature convergence problems and to optimize the final results. In general, there

are many techniques for hybridizing a conventional evolutionary algorithm to solve

optimization problems. The initial population of DE is formed by problem-specific

heuristics. Then, other solutions obtained using another EA might be enhanced with a

local search. This type of combination is called a memetic algorithm [10, 52]. The

benefits of this hybridization lead to various operators that might exploit problem

knowledge, such as merging more promising individuals to be inherited. Furthermore

mutation operations may be biased to contain solutions of promising individuals with

higher probabilities than those of others.

1.5.10 Differential Evolution with Self-Adapting Populations (DESAP)

Differential Evolution with Self-Adapting Populations (DESAP) dynamically

adjusts the crossover and mutation parameters δ , η and the population size π [39]. Each

individual is connected to its control , , and . δ and π have similar meanings to NP

28

and CR correspondingly. The mutation factor F is retained as static, and η denotes the

probability of implementing an extra mutation using normally distributed after crossover.

The main technique of DESAP is unlike that of the traditional DE/rand/1/bin algorithm

[38]. Parameters are adapted by developing them over the mutation and crossover

processes, as the procedures are applied to each . The updated values of that parameters

continue with if . However, DESAP still requires further development to

produce better performance. In fact, despite its simplicity, DESAP performs better than

DE in one of De Jong’s five exam problems, whereas the other solutions are very

identical. DESAP represents an opportunity to reduce the control parameters further by

updating the size of population, as is done with the additional parameters.

1.5.11 Fuzzy Adaptive Differential Evolution (FADE)

Fuzzy adaptive differential evolution (FADE), presented by Lampinen and Liu

[41], is a different type of DE algorithm that apply fuzzy logic controllers to adjust the

controller parameters and for the crossover and mutation operations. Similarly to

DESAP, the size of the population is presumed to be adjusted and is static during the

evolution procedure [9]. The fuzzy-logic control method has been verified on a group of

10 functions as benchmark and displays best solutions than those of classic DE for high-

dimensional problems.

29

1.5.12 Self-adaptive Differential Evolution (SaDE)

Self-adaptive Differential Evolution (SaDE) is simultaneously applied to pair of

mutation techniques “DE/rand/1” and “DE/current-to-best/2” [45]. The adaptation

technique of parameter consists of two chunks: the probability of the adaptation , where

= (1, 2), and the DE parameters and . The probability of producing a mutation

vector based on the two strategies approaches 0.5 and is updated every 50 iterations using

the following method:

where and are the numbers of offspring vectors constructed by the i =

(1, 2) strategy that was a success or failure in the selection process over the last 50

generations. It is assumed that this adaptation process can progressively develop the most

appropriate mutation strategy at diverse learning phases for a given problem. The

mutation factors are autonomously created at each iteration based on a normal

distribution ”NR” with a mean of 0.5 and a standard deviation of 0.3,

= NR(0.5, 0.3)

The crossover rates are autonomously formed based on a normal distribution

with a mean of and a standard deviation of 0.1. The mean approaches 0.5, is

changed every 25 iterations and is set to be the mean of the effective Cr over the previous

25 generations.

= NR(, 0.1)

30

where K is the counters of effective Cr values and indicates the

value.To accelerate the convergence, a local search technique (Quasi–Newton method) is

applied to respectable individuals after 200 generations. SaDE has been further developed

by applying five mutation strategies to resolve a group of constrained problems [55].

One of the success fuzzy application that applied on cloud computing which

consists of numerous of computers linked over instantly transmission network, so it

provides the capability to instantaneously perform an numerous software on connected

workstations. The job scheduling is one of vital and interesting aspects in cloud

computing. FUGE based on fuzzy theory and genetic algorithm that assign jobs to

resources optimally considering execution time and cost(memory, virtual machine speed,

network rate, and job intervals) .Applied fuzzy theory with modified the standard genetic

algorithm (SGA) and used to invention a fuzzy-based steady-state GA. In this approach,

jobs are denoted as genes and resources of computing allocated to these genes, and

groups of genes produce chromosomes. They created two different forms of

chromosomes: first type is based on job length, CPU speed and size of the resources and

another form is rely on job length and bandwidth of resources. For each type of

chromosome, population of genes are randomly created and computational resources are

assigned to gene randomly. Algorithm calculates the value of fitness for each

chromosome using a fuzzy function. Fuzzy theory is also used in the crossover step of the

GA. In general, single point or two point crossover are used in crossover approach, but in

this approach, fuzzy-based crossover that is one of the new approach [56].

31

1.5.13 Self-adaptive NSDE (SaNSDE)

Neighborhood search differential evolution (NSDE) is similar to classic DE

except that Eq. (1) which is replaced with

where is the differential deviation, N (0.5,0.5) means a Gaussian

random number with a average of 0.5 and a standard deviation of 0.5 and δ indicte a

Cauchy random variable with a rate parameter of t=1.

Self-adaptive DE (SaDE) [8] was developed to resolve the control parameters and

learning technique . In SaDE, two DE learning strategies are chosen according to their

performance. The most appropriate learning technique and parameter values are

increasingly self-adapted according to the learning experience gained during evolution

[57].

SaNSDE is an adaptive differential evolution algorithm that produces mutation

vectors in a manner similar to SaDE [57]. However, the difference is that the mutation

factors are established based on a normal distribution or a Cauchy distribution:

where the normal distribution (μ,) indicates a random value of mean μ and

variance and a (μ, δ) indicates a random value with scale parameters

μ and δ. The probability of the spread over is adapted as follows.

32

.

The crossover rate adaptation is similar to the method used in SaDE, but the

factor is changed as a biased average of the successful values every 25

iterations.

where the weight is calculated with a positive improvement = f (x) – f (u) in the

selection related to each successful crossover rate CRsuc(k).

1.5.14 Self-Adapting Parameter Setting in Differential Evolution (jDE)

jDE is another adaptive DE algorithm that is similar to the classic DE/rand/1/bin

algorithm. jDE improves the population size throughout the optimization process based

on the improved parameters and thus generates vectors that are more likely to survive.

However, the mechanism of jDE involves adapting the parameters Fi and CRi associated

with each individual. At the beginning of the process, the parameter values are Fi = 0.5

and CRi = 0.9 for each individual. However, Fi and CRm are updated from the effective

records; thus, jDE produces new values within the probabilities = , which are used to

alter the control parameters. The updated values for Fi and CRi are then obtained using

uniform distributions over [0.1, 1] and [0, 1], respectively. That is,

33

where j = 1, 2, 3, 4 is the uniform random function ∈[0, 1]. The updated

parameters are implemented in the mutation and crossover processes to produce new,

consistent vectors. This mechanism updates the prior parameter with a new one only if

the new vectors pass the selection phase. However, jDE yields improved results with the

classic DE/rand/1/ bin strategy.

1.5.15 Adaptive DE algorithm (ADE)

Hu and Yan proposed another adaptive DE algorithm. They modified the

parameters F and Cr to each iteration using the current generation and the fitness [58].

They tried to find the optimal value for the parameters F and Cr to find a balance between

reliability and efficiency. The mutation and crossover operations are calculated for each

generation. Thus, for each parent of generation g, the offspring is constructed as

follows: calculate the mutation and crossover as

34

1.5.16 Modified DE (MDE)

MDE uses only one array, which is updated when a better solution is found.

Therefore, continuously updating the one array improves the convergence speed, leading

to fewer evaluation procedures than those associated with classical DE [59]. In MDE, and

by applied distribution of Laplace “F” is arbitrarily adjusted [59]. The Laplace

distribution is analogous to the (NP) Normal Distribution [60]. Moreover, the Laplace has

a longer, skewed, allowing for inference so that it can control more efficiently, thus

avoiding premature convergence. Experimental results demonstrate that modified DE

with a Laplace distribution (MDE) offers enhanced performance compared with the

classical DE approach [61].

1.5.17 Modified DE with p-best Crossover (MDE_pBX)

MDE_pBX involves F and Cr values that are produced using a Cauchy

distribution using a position parameter, and then adapted relay on the power average of

entirely F/Cr ratios producing effective offspring [62]. The mutation strategy used in this

algorithm scheme (DE/current-to-best/1) can be expressed as follows:

+ - + -)

where _ is the finest of the q% vectors arbitrarily selected from the existing

generation, whereas and are two distinctive vectors chosen randomly from the

current population and are not equal to or the target.

35

In the p-best crossover process, for each different randomly vector chosen from

the p best-ranking vectors in the present population[63] . Then, a standard crossover is

executed as per (5) between the vector and the arbitrarily chosen one from p-top vector

to produce the trial vector with identical index. The variable p is linearly make smaller

with following generations as follows:

where is the present generation value, is the most extreme number of

generations and Np is the population number. The parameter adaption mechanism is

independently calculated as

 Cauchy Distribution (, 0.1)

(where initialized with 0.5

 = 0.8+0.2* rand(0,1)

()

where n=1.5 and is the set of cardinalities.

The crossover probability adaptation Cr of each individual vector is independently

created as

 Gaussian Distribution (, 0.1)

(= 0.8+0.2* rand(0,1)

()

 where n=1.5 and is the set of cardinality

1.5.18 DE with Self-Adaptive Mutation and Crossover (DESAMC)

36

DE with self-adaptive mutation and crossover (DESAMC) is a new version of DE

[64, 65]. In this approach, F is adapted using an affection index (), calculated using

information about fitness. A minor shows Which the each on is far away from the best

global vector (best solution); consequently, a robust global exploration is essential. The

formula of adaptation is as follows:

where tanh indicates the hyperbolic tangent function

where the crossover is

where is the present generation, is the greatest number of generations and

 and are the maximum and minimum values of CR, respectively.

1.5.19 Adaptive Differential Evolution with Optional External Archive

Adaptive Differential Evolution with Optional External Archive (JADE) is an

alternative to adapting the parameters at each generation toward progressive self-

adaptation, based on the success rate [66]. Qin and Suganthan [45] and Zhang and

Sanderson [66] proposed the new mutation strategy (DE/current-to-pbest/1).

Furthermore, they used new adaptive parameters, and

37

The crossover and selection operations are implemented as in the classic DE

algorithm.The greedy strategy involves a new mutation strategy called DE/current-to-

pbest/1 (without archive) and assists the baseline JADE:

 -)

 -)

where is the best solution that is randomly chosen as one of the best

individuals from the current population [49]. Similarly, , and are randomly

selected from the current population. However, is also randomly chosen from the

union between and .

 = randomly (∪)

JADE is also applied to the archiving process. Initially, the archive is unfilled and

is added to the parent solutions that fail in the selection process [67]. The purpose of the

archive is to avoid calculation overhead. Moreover, the archive has a limited size; thus, if

the size of the archive grows beyond then the shrink operation is performed to reduce

its size so that it does not exceed (α,).The archive technique provides information for

the directions to improve the diversity of the population. In addition, arbitrary F values

can help expand population diversity [68].

38

1.5.20 Adaptation of and

The adaptation technique used for JADE is applied to and to produce the

mutation rate Fi and the crossover rate related to each individual vector xi. JADE is

implemented in each iteration i, and the crossover rate CRi of each individual xi is

individually formed based on a normal random distribution = Normal Distribution (,

0.1), where the mean is initially 0.5 and the standard deviation is 0.1, i.e.,

 Normal Distribution (, 0.1).

Then, is calculated, which represents the set of all effective crossover rates

. Furthermore, the parameter is updated in each iteration; this information is saved,

and random information is deleted from the archive file to keep its size . is

calculated as follows:

Similarly, the mutation rate Fi is calculated using the Cauchy distribution (,

0.1), with the constraint that Fi =1. If Fi ≥ 1 or Fi ≤ 0 and is initialized as 0.5, then

 Cauchy Distribution (, 0.1)

where SF indicates the set of all effective mutation rates . Then, is updated as

follows:

where indicates the Lehmer mean calculated as follows:

.

39

1.5.21 Differential Covariance Matrix Adaptation Evolutionary

Algorithm (CMA-ES).

Saurav et al. proposed the Differential Covariance Matrix Adaptation

Evolutionary Algorithm for real parameter optimization (CMA-ES) [69]. The goal of the

covariance matrix adaptation is to estimate the reverse Hessian matrix, analogously to a

quasi-Newton technique. Furthermore, to increase the utility of the DCMA-EA, the

greedy selection method of DE is applied to improve individuals in the next generation

[70]. CMA-ES uses a new differential perturbation structure, and the new population

vector is shaped by the following equation:

where is a group of random numbers taken from a normal

distribution with zero mean and a standard deviation of 1 and has an element number

equal to the dimensions of the function at hand. The parameter “ ” and the evolution of

 determine the overall standard deviation.

By using sharing population, the new mutated vectors are produced to the target vectors

as follows

where and are two vectors randomly selected from the population, m is

the average of the present population, B is an orthonormal of eigenvectors, and D is the

square root of the commensurate none negative eigenvalues. P is a control value which

40

maintains the contribution of the average vector of the existing population and target ones

as well. Both of the scale F and P are computed as follows:

41

CHAPTER 2: DIFFERENTIAL EVOLUTION WITH

MULTIPLE STRATEGIES

In this approach, four different mutation strategies and one crossover operator are

used within a single algorithm framework, as proposed by Elsayed et al. [71]. The main

objective is to adapt a mutation strategy by choosing one from a pool of allowable

schemes. In fact, although this algorithm involves different mutation strategies with

dissimilar features, the authors believe that these different strategies cannot yield suitable

performance. Therefore, the performance of the mutation strategy is dependent on the

progression of the evolution, which is based on the success of the search operators.

Therefore, the feasibility status and the fitness value factors are used to measure

the enhancement in the infeasibility. If the problem becomes increasingly feasible, the

improvement index is calculated as follows:

where is the best individual at generation t and is the average of the

violation.

42

2.1 Hybrid DE Algorithms

Hybridization is another way to increase convergence for optimization.

Hybridized approaches balance global and local search techniques. Hybridization is the

method of joining the advantages of two or more algorithms to produce one algorithm

that is anticipated to generate better offspring [72]. Each approach has its strengths and

weaknesses. Thus, by combining different approaches, performance is improved [73].

Hybridization can be implemented at four stages of interaction [73]. The first is the

individual stage for the search at examination level, which defines the performance of an

individual in the population. The second is the population level, which appear as dynamic

range of a population. The third is the exterior level, which delivers communication with

other methods. The fourth is the meta data level, in which a superior metaheuristic

contains its strategies [74].

Many attempts have been made to combine different algorithms to construct new

hybrid algorithms. Genetic algorithms (GAs) and fuzzy philosophy are two recognized

artificial intelligence methodologies [75, 76]. FUGE is constructed from a fuzzy model

and a GA, which form a hybrid algorithm that consists of an iterative algorithm to update

the offspring for job ordering for each VM (virtual machine). Then, the fuzzy algorithm

obtains the fitness values for all offspring. This technique yields remarkable performance

with cloud parameters such as those used in real-time communication.

Each optimization technique has specific operators and procedures; for example,

the DE algorithm consists of mutation, crossover and selection. In the hybridized

technique, some operators can cooperate between two algorithms to exploit the

43

complementary characteristics of different optimization strategies [77]. In fact, choosing

a suitable combination of balanced algorithms is the key to achieving enhanced

performance. Nevertheless, developing an effective hybrid algorithm is not easy because

it requires proficiency in different areas of optimization. There are many types of

problems for which a classic or modified differential evolution algorithm might fail to

find a suitable solution [78]. Therefore, recently applied DE hybridization approaches

have become widespread due to their ability to handle many real-world problems. Some

of the benefits of DE hybridization have been previously discussed [40]. To enhance the

performance of DE, such as the speed of convergence or the quality of DE, and to solve

larger systems, DE must incorporate hybrid evolutionary methodologies [79]. In general,

there are three types of hybridizations for evolutionary algorithms involving global

optimization: hybridization with local search, hybridization with global optimization and

hybridization involving both techniques [80]. In this section, we highlight and

demonstrate several hybrid differential evolutionary algorithms reported in the literature.

2.2. Hybridization of DE with Other Evolution Algorithms

DE has been frequently hybridized with PSO because both algorithms implement

simple difference processes to perturb the current population [81]. The variation between

the current and the best individual is utilized both in the refresh population method of

PSO and in the DE/current- to-best/1 mutation strategy.

The particle swarm optimization (PSO) method was offered by J. Kennedy and

R.C. Eberhart [82, 83]. The technique shows perfect act compared with that of other

evolutionary algorithms or metaheuristics. This approach mimics human cognition and

44

has been applied to the optimization problems. The goal is to apply a group of individuals

called a swarm of particles [84]. The same notation used for DE is used for PSO; a vector

is used as a solution for an optimization task t. At each loop t, a Particle alterations index,

affected by its velocity via the equation . However, two

equations control the updating of the velocity .

gbest represent the whole population; lbest describes the subpopulation

encompassing the particle. The gbest is practical of best results. Let pg be the better

results of the population; thus, social influence is mathematically expressed as

. Therefore, updating the particles at each loop as follows:

where ρ1 and ρ2 are the control parameters.

PSO has several disadvantages, the most significant of which is its premature

convergence. PSO consists of three components: previous velocities , present

behavior

, and social behavior .

Because PSO is built on these three components, it will not operate if any of those

components has any issue; for example, a vector consisting of a bad solution will retard

the optimal solution. However, DE does not carry the initial two features of PSO. The

45

individual construct is based on a random walk algorithm in the search space, which then

selects the optimal position index [85].

In PSO, the next position is based on the present optimal position pi and by the

particle’s velocity vi. In addition, the third feature of PSO could be inferred in DE as the

RAND/BEST strategy. PSO refresh the velocity of a particle applying three expressions.

In the proposed strategy, the particle velocities are updated by carrying the

subtract of the index vectors of any two dissimilar particles arbitrarily selected from the

swarm. Das et al. proposed PSO-DV (particle swarm with differentially perturbed

velocity) [86]. In the proposed scheme, particle velocities are perturbed by a new term

containing the weighted difference of the position vectors of any two dissimilar particles

randomly selected from the swarm. This differential velocity term mimics the DE

mutation [87]. PSO-DV applies the DE differential operator to update the velocity of

PSO. Two vectors are chosen randomly from the population. Then, unlike in PSO, a

particle is moved to a new position only if the new position produces a better fitness

value. In PSO-DV, for each particle i in the swarm, two other separate particles j and k (i

≠ j ≠ k) are chosen randomly. The difference between their locations is calculated as a

difference vector:

where CR is the crossover rate, is the component of the subtract vector and

is a factor rate in the range [0, 1]. Hendtlass proposed the first combination of DE and

PSO and called it SDEA, as the individuals comply swarm principles [55]. DE is used to

46

transfer the individuals to the promised region in random fashion. Xiaobing Yu et al.

proposed an adaptive hybrid algorithm based on PSO and DE (HPSO-DE) with a

composed populations among PSO and DE [88]. The strategy incorporates the

advantages of the two algorithms and maintains population diversity. Therefore, HPSO-

DE has the ability to move to local optima [89]. Zhang et al. offered DEPSO, which

apples the similar standard of updating PSO individuals via DE [90]. DEPSO performs

well with numerical integer problems but is not efficient for small feasible space

problems. Mutations are maintained by a DE operator on , with a trail vector for

the dth dimension:

where k is a random value within the domain [1, D], which include that the

mutation has at least one dimension. CR is a crossover constant, and , is the case of

N=2 for the general difference vector , which is defined as follows:

where is the difference vector and are chosen from the p-best set at

random. Liu et al. offered a hybridization of PSO and DE in a pair of population scheme

[91]. Three mutation strategies are borrowed from DE (DE/rand/1,

DE/current_to_best/1DE/rand/2) are applied to refresh the former best solutions [92].

Trivedi et al. proposed a hybrid of DE and GA to resolve scheduling challenges [93]. GA

operates on the binary element variables through the DE process to enhance the related

47

power-related variables [94]. The advantage of a GA lies in its ability to discover a

decent solution to a problem whenever the iterative approach is too expensive in time and

the mathematical approach is unobtainable [95]. GA allows for the fast discovery of the

solution. Although the genetic algorithm is not excessively complex, the parameters and

implementation of the GA generally require a tremendous amount of tuning [96].

The advantage of DE is that, in general, it frequently shows better solutions than

those yielded by GA and other evolutionary algorithms [97-99]. Furthermore, DE is easy

to apply to a wide variety of problems regardless of noisy, multi-modal, multi-

dimensional spaces, which typically make problems difficult optimize. Although DE

consists of two important parameters, Cr and F, those parameters do not require the same

amount of tuning as those associated with other evolutionary algorithms [100]. and Liao

has proposed a hybridization of DE and a local search algorithm modeled after the

harmony search (HS) algorithm to find the global optimum [101]. The main goal of this

type of hybridization method is to advance the use of mixed discrete and real-valued-

dimensional problems.

Boussaïd et al. proposed a hybridization of DE and Biogeography Based

Optimization (BBO) to deliver solution through the optimal power distribution method in

a Wireless Sensor Network(WSN)[102, 103].

Dulikravich et al. proposed a hybridized multi-objective, multi variable optimizer

by combining non-dominated sorting differential evolution (NSDE) with the strength

Pareto evolutionary algorithm (SPEA) and multi-objective particle swarm optimization

(MOPSO) [104].

48

Haixiang Guo and others have proposed a form of DE enhanced among self-

adaptive parameters that depend on simulated annealing algorithms in the collection of

DE; the classic selection technique is a greedy equation [105]. The greedy rule is easily

trapped in a local optimum. However, a new selection technique based on simulated

annealing is used in this algorithm. The approach is expressed as follows:

where represents the generation temperature. Pholdee and Bureerat offered

a hybrid algorithm involving the trial vector method of DE called the Real-Coded

Population-Based Incremental Learning (RCPBIL) algorithm [106]. The RPBIL can be

extended to multi-objective optimization similarly to multi-objective PBIL using binary

codes for which the population is serve as a likelihood vector for single-objective

problems [107]. When addressing multi-objective problems, more probability vectors are

utilized to maintain population variety. Likewise to the binary code of PBIL, the multi-

objective style of the RPBIL uses numerous possibility matrix that appear for a real code

population, where each probability matrix is called a tray [108].

Three-dimensional matrix which is represent a group of probability trays is a

with dimensions n* * , that is the number of trays required for each tray drive to be

used to produce a real-code subpopulation, which has approximately form results

as its members.

49

An initial population is formed for the search procedure of multi-starting with

early likelihood trays. An initial Pareto archive is gained, and non-dominated results are

then designated to update the probability trays. Then, the centroid of the non-dominated

solution set () is used to update a probability tray in the series, where the of the set

that has the lowest value of the first objective function is applied to update the first tray

and so on.

The updating procedure for each tray can be improved by substituting with

. Subsequently, a population yielding the updated trays is shaped. The Pareto archive is

changed by substituting its members with non-dominated solutions saved from the

mixture of the current population and the elements in the preceding archive. If the

number of archive elements is larger than the constant archive size, the clustering method

is initiated to eliminate non-dominated solutions from the archive. These steps are

repeated until a stopping condition is fulfilled [109].

Neri et al. [110] proposed a compact DE hybridized with a memetic search to

yield faster convergence [111]. The algorithm represents the population as a multi-

dimensional Gaussian distribution and is called Disturbed Exploitation compact

Differential Evolution (DEcDE) [112]. The DEcDE algorithm utilizes an evolutionary

framework based on DE logic assisted by a shallow depth for processing the local search

algorithm [112].

The output of the algorithm was introduced to create an MC model to gain high

efficiency on a diverse set of problems, regardless of its limits, in terms of complexity

50

and memory usage. At the start of the DEcDE algorithm, an probability vector

(PV) is produced.

where and are, respectively, the mean and standard deviation values for

each design variable from a Gaussian probability distribution function (PDF) truncated

within the interval [-1, 1].

Zhi-hui Zhan and Jun Zhang proposed a differential evolution (DE) algorithm

with a random walk (DE-RW) [113]. DE-RW is analogous to the classic DE algorithm,

with a minor alteration in the crossover procedure that mixes the individual vector and

the mutant vector to perform a random walk, forming the target vector as follows:

where and are the low and high search restrictions of the dimension and

the parameter RW is used to control the effect of the random walk. The parameter RW is

controlled as follows:

where g and G are the current generation number and the maximum number of

generations, respectively. A few some remarkable DE algorithms are shortened in

Table2.

51

Table 2.1. Summary of different DE algorithms with verity of approaches

Algorithm Strategy Note
Multi PopulationDEalgo-
rithm (MPDE)[114]

DE/best/1 MPDE created subpopulation in
random manner form main population
and, then the migration of the best
vector from subpopulations to main
population

Adaptive DE[115] six DE strategies and one strategy is
randomly selected by a roulette
wheel

Adaptively selects a trial vector
generation, scale factor “F” is 0.8 and it
is constant for all strategies also the
crossover rate is constant = 0.5

Self-Adapting Parameter
Setting in Differential
Evolution (jDE)

DE/rand/1/ bin jDE enhanced the population size based
on the developed the DE parameters

Self-adaptive Mutation DE
(SaMDE)

DE/rand/1,DE/best/1,DE/best/2andDE/
current-to-rand/1

The strategy is chosen by a roulette
wheel strategy. The scale factor is
dynamic and chosen form range [0.7;
1.0) after each generation.

Modified DE(MDE)with
pbest
crossover(MDE-pBX)[116]

DE/current-to-best/1, DE/current-to-
gr_best/1 [gr indicate for group]

F and Cr directed by the information of
their effective values that were capable
to produce improved offspring

Modified DE algorithm
(MDE)

DE/rand/1 , DE/
best/1

One of the two strategies, is chosen
based on a probability.

DE with Self-Adaptive
Mutation and Crossover
(DESAMC)

Classic DE Strategy Working to self-adaptive the
parameters values

Differential Covariance
Matrix Adaptation
Evolutionary Algorithm
(CMA-ES)

new population vector is created using
DE/rand/1/ bin

Parameters are chosen randomize

Differential Evolution with
Multiple Strategies

DE/best/1/bin,rand/1/bin,
DE/best/1/exp ,and DE/rand/1/exp

Parameters are chosen randomize

DE-PSO Classic DE strategy + The two basic
equations which govern the working of
PSO

“DE-PSO” Hybrid differential evolution
- Particle Swarm Optimization. The
inclusion of PSO phase creates a
perturbation in the population.

Hybrid of DE and GA (
hGADE)[117]

hybridized GA with only 2 classical DE
variants

randomly generated binary unit
commitment matrices while the RPM of
all the individuals in the initial
population are generated

hybridization of DE and
Biogeography Based
Optimization (BBO)[118]

classical DE/rand/1/ bin + classic BBO The main operator of DE/BBO is the
hybrid migration operator,

52

CHAPTER 3: RESEARCH PLAN

3.1 Introduction

The DE algorithm has been applied in several applications such as scheduling,

image processing, multi-modal methods, non-convex methods, and among many others

[119-121]. The traditional performance of DE is based on the chosen strategy and the

control parameters[122, 123]. This strategy consists of mutation, crossover, and selection,

and there are three control parameters: the number of populations “NP”, the mutation

factor “F” (sometimes called the scaling factor), and the crossover rate “Cr”[124-126].

Indeed, the performance of DE relies on the values of the population size “NP”, the

mutation factor “F”, and the crossover rate” Cr”[127, 128]. Many studies have been

conducted in classic DE, such as using mutation with perturbation, mutation with

selection pressure, and a neighborhood mutation operator[129].

The second phase is the crossover and there are two different crossover

techniques, either binomially or exponentially, produced different quality of results[40,

130]. The major aspect of the crossover is to determine the element of the trail vector that

will be inherited from the target vector[131]. Additionally, the performance of DE relies

on strategies and the right control parameter values [132-135]. Extensive researches have

been conducted to determine what the best control parameter values. There are two

approaches for setting these control parameters: predefined (also called deterministic) and

adaptive approaches. In fact, in the deterministic technique there are some recommended

53

values for these parameters for which it is not required to obtain any feedback.

However, with adaptive technique the parameters values assigned and adjusted

dynamically through the processing according to pre-defined rules. Unfortunately,

the adaptive and self-adaptive techniques that are often time-consuming for the evolution

for each parameter value because of their high complexity[136]. In fact, adaptive and

self-adaptive are very effective for small dimensional problems, however they are

produce poor results when the dimensions are increased[137]. Therefore, researchers

have focused on finding suitable and efficient strategies to speed up the convergence

rate[138, 139].

In this work we introduce a new proposes a Multi-Layer Strategies Differential

Evolution (MLSDE) approach, which uses different mutation strategies in order to reach

a fast convergence rate and avoid premature convergence due to the loss of diversity in

the population. Multilayer techniques were applied since there is no single method that

has proven fit for every problem. Some strategies may work perfectly with some

problems, while other strategies perform poorly with other problems. ndeed the MLSDE

works to improve the diversification of offspring by using different strategies in a

multiple-layered approach. This approach spread out the population so that the sampled

vectors can easily generate improved offspring. One of the advantages of this technique is

its ability to reach a very quick rate of convergence to find the optimal solution with a

minimum number of iterations.

54

3.2 Multi-Layer Strategies Differential Evolution

The multi-layer strategies differential evolution (MLSDE) approach operates in

the same manner as classic differential evolution with an initialization population,

mutation, crossover, and then the selection operation. However, MLSDE consists of a

group of mutations, crossovers, and selections that are performed in sequence.

In MLSDE, the first step is to initialize the main matrix with random population

within constraints of upper and lower bound values. Then, the different vectors are

chosen as the core of the mutation operations. These vectors differ in the way in which

they present in domain space because of their different composition. Therefore, to obtain

the diversity of the domain space, six vectors are chosen V1, V2, V3, V4, Vbest, and VHill

from the population. Two approaches are used to construct the best vectors. The first

approach, Vbest uses the objective functions to find best vector in the main matrix,

whereby each row represents an independent vector. The second approach, uses Hill

Climb method to construct vector VHill. The best vectors would often leads to a fast

convergence and performs well when solving for unimodal problems. The combination of

Vbest, and VHill helps to balance between exploration and exploitation.

55

Following the mutation stage the, the crossover between vectors occurs to

produce improved vectors [136]. Crossover results in high diversity in populations by

applying the crossover equations (11),(12), and (13).The crossover probability, Cr ∈

[0,1], is pre-defined value that controls the fraction of parameter values that are copied

from the mutant. To control which source contributes a given parameter, uniform

crossover. Compares Cr to the output of a uniform random number generator ,randj(0,1).

If the random number is less than or equal to Cr, the trial parameter is inherited from the

mutant, Vi, j otherwise, the parameter is copied from the vector, Xi, j . In addition, the

trial parameter with randomly chosen index, jrand, is taken from the mutant to ensure that

the trial vector does not duplicate Xi, j Because of this additional demand, Cr only

approximates the true probability that a trial parameter will be inherited from the

mutant[140].

56

Once chosen, the different vectors are used in the below equations to calculate new

vectors Vy1 , Vy2, and Vy3. This stage is referred to as the MLSDE mutation.

Next stage is selection stage. The trail vectors produced from equation (11),(12)

and (13) are compared with target vectors. If the trial vector, U1(i,j), U2(i,j), and U3(i,j)

have an equal or lower objective function value than that of its target vector, X1(i,j),

X2(i,j) , and U3(i,j) they replace the target vector in the next generation; otherwise, the

target retains its place in the population. The flowchart of MLSDE algorithm is prsented

in Figure.2.

57

Figure 3.1. The flowchart of Proposed MLSDE

58

CHAPTER 4: IMPLEMENTATION AND RESULTS

4.1 Implementation and Test Plan

We have conducted experimental tests on the optimization benchmark suite four

typical minimization problems introduced in the CEC 2013 benchmark functions suite

experiments. Therefore, the growing research area is divided into adaptive, self-adaptive,

and hybridization strategies. Thus, this study may provide a roadmap through which

developers may gain a full understanding of this field. To evaluate the reliability and

robustness of the different DE algorithms, we introduce a general framework that

includes the control parameters for evaluating the efficiency of the different algorithms.

In addition, the proposed MLSDE algorithm is examined on the classical benchmark

functions provided by the CEC2015 Special Session.

4.2 Results

The well-studied domain of function optimization was used to test the

performance of the proposed MLSDE algorithm , which was evaluated based on the

classical benchmark functions provided by the CEC2015 Special Session [141]. The

algorithms was used for the comparison of different algorithms include JADE, JDE, and

SADE [141, 142]. In this section, MLSDE is employed to minimize a set of 16 scalable

59

benchmark functions with dimensions of D=30 and D=100. The parameters of MLSDE

were fixed at F=0.5 and Cr=0.8, which represent better parameter values as reported in

literature [29, 143]. The optimal values for all of these functions were equal to 0. The

functions F1-F5 were unimodal functions and F5 exhibited multiple minima in high-

dimensional case. Functions F6-F12 were multimodal functions and F13 is an expanding

multimodal function (quartic function). The number of demission D was set for 30 and

100 at all 16 test functions. Table 3 Experimental Results of MLSDE, JADE, JDE and

SADE for 50 independent runs of 30 Variables.

Table 4.1. Mean experimental results for 30 Variables over 50 runs

Func MLSDE JADE JDE SADE

F1 1.28E-82 2.69E-56 1.46E-28 3.42E-37

F2 3.68E-28 3.18E-25 9.02E-24 3.51E-25

F3 2.37E-74 6.11E-81 1.16E-13 1.54E-14

F4 7.53E-26 5.29E-14 2.44E-14 6.39E-27

F5 2.09E-04 1.59E-01 1.04E-03 7.98E-02

F6 0.0E+00 0.00E+00 0.00E+00 0.00E+00

F7 5.07E-06 6.14E-04 3.35E-03 2.06E-03

F8 0.0E+00 0.00E+00 0.00E+00 0.00E+00

F9 0.0E+00 0.00E+00 0.00E+00 0.00E+00

F10 4.38E-12 4.14E-15 8.26E-15 4.04E-15

F11 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F12 0.00E+00 1.57E-32 5.99E-30 1.57E-32

F13 3.02E-30 2.17E-32 1.80E-27 1.35E-32

F14 1.06E-11 1.68E-09 7.31E-01 1.25E+02

F15 2.08E-02 2.00E-01 1.98E-01 1.56E-01

F16 2.14E-08 2.78E-05 6.08E-10 2.94E-06

60

The performance of MLSDE was further compared with three other state-of-the-

art DEs, JADE [17], JDE [15], and SADE [18]. The experimental results aver-aged over

50 runs are listed in Tables 1 for D=30 and Table 2 for D=100. Ac-cording to the graphs

in Figs. 6.3 and 6.4, MLSDE resolved the optimization problem and showed superior

performance compared to other algorithms JADE, JDE, and SADE. These compared

algorithms were able to find a near-global optimum on most of the benchmark functions,

because they all utilized different strategies to improve the algorithms’ robustness.

 Figure 4.1 Comparing between MLSDE, JADE, JDE, and SADE for D=30

However, JADE, JDE, and SADE sometimes became stuck at local optima on

some functions such as F2, while our proposed MLSDE reached a near-global optimum

in every run in both 30 and 100 dimensions. However, for D=30 the JADE performed

best for F3 and SADE performed best for functions F4, F10, and F13. JDE achieved

better for F16.

61

Generally, the proposed MLSDE algorithm accomplished the best performance on

11 functions (F1, F2, F5, F6, F7, F8, F9, F11,F12, F14, and F15) out of the 16 benchmark

functions with D=30 .In case of D=100, the results also showed better and the MLSDE

able to find the optima for 10 functions (F1, F2, F3, F4, F5, F6, F7, F9, F12, F14).

Even for functions where MLSDE was not able to achieve a better solution than

the other algorithms, it has the capability to achieve near-global optimum with

competitive solution accuracy. For D=100, the JADE performed better for F10, F13, F15,

F16 and SADE performed better with function F11. However, the MLSDE achieved

near-global optimum with these functions as well.

The experimental results averaged 50 independent runs are listed in Table 1 for D=30

and Table 4 for D=100. According to the graphs presented in Figs. 1 and 2, MLSDE

resolved the optimization problem for some functions and showed superior performance

compared to JADE, JDE, and SADE

62

Table 4.2 Mean experimental results for 100 Variables over 50 runs
Func MLSDE JADE JDE SADE

F1 4.02E-70 5.13E-62 2.09E-20 1.09E-27

F2 1.29E-27 5.19E-16 1.82E-12 1.09E-15

F3 2.14E-58 6.85E-03 7.47E+03 4.96E+00

F4 9.01E-02 1.62E-01 1.60E+00 1.90E-01

F5 1.03E-02 4.96E+01 9.20E+01 8.49E+01

F6 0.0E+00 0.00E+00 0.00E+00 0.00E+00

F7 1.81E-03 2.04E-03 2.08E-02 6.85E-03

F8 5.07E+04 3.94E+03 2.81E-08 1.89E+01

F9 1.19E+00 1.03E+02 6.01E+00 1.05E+02

F10 6.01E-12 7.69E-15 1.73E-11 1.05E-14

F11 1.02E-02 8.87E-04 0.00E+00 2.96E-04

F12 7.12E-43 4.71E-33 4.47E-21 6.75E-30

F13 1.72E-17 1.35E-32 1.91E-17 5.56E-27

F14 8.02E+04 1.51E+05 2.07E+05 1.69E+05

F15 4.29E-01 3.28E-01 3.80E-01 3.60E-01

F16 6.89E-08 1.12E-11 4.78E-03 5.78E-03

Figure.4.2. Experimental Results for 100 Variables

63

CHAPTER 5: APPLICATION

In denote image processing which is indicated by two-dimensional functions of

the formula f(x, y). The value of function f(x,y) (called amplitude) is always a positive

quantity that is calculated by the source of the image. When an image is produced from a

sensor its intensity values are proportional to energy emitted by this sensor. As a import

that f(x,y) essential be finite and nonzero.

However, the function f(x, y) is consisted of two components: (1) the quantity of

source illumination, and (2) the reflectance which meaning the quantity of illumination

reflected by the object. Therefore, these are the illumination and reflectance are denoted

by i(x. y) and r(x, y), respectively. The product of f (x, y) as following

5.1 Image Sampling and Quantization

There are many methods to obtain images, but the goal is to produce digital

images from sensors. The production from sensors is a continuous voltage whose

amplitude and spatial are linked to the object phenomenon that being sensed.

 In order to construct a digital image, we essential to change the continuous data

into digital form. This includes two procedures: sampling and quantization. The essential

idea of sampling and quantization that a continuous image f which required to change to

64

digital image which continuous the x- and y-coordinates, and amplitude. However, the

sampling is the first step in this to converting process which is digitizing the coordinate

values. However, the quantization process that is digitizing the amplitude values. The

Fig. 7.1(b) illustrate one-dimensional function of continuous image that is a plot of

amplitude (intensity level) values. This continuous image along the line part AB in Fig

7.1(a).

Since there is noise in the image that cause the random variations. Thus, similarly

spaced samples along line AB is taken in order sample this function. The spatial position

of each apiece sample is specified by a vertical value in the bottom part as show in the

figure 7.2.

The white squares in figure 7.2 representing the set of discrete positions that

provides the sampled function. Though, these values are in vertically a continuous range

and it required to convert the value of the intensity as well. The conversion an intensity

values to digitalized called quantized. The Figure. 7.2 displays the intensity scale in

discrete intervals, extending from black to white. In the quantization process is assigning

values from the right-side scale to each sample. In fact, the digitizing is made reliant on

the vertical proximity of a sample. As result, as the number of discrete levels applied, the

accuracy attained in quantization. Therefore, the quantization is extremely dependent on

the noise contented of the sampled signal.

65

Sampling in the manner just described assumes that we have a continuous image

in both coordinate directions as well as in amplitude. Practically, the sampling technique

is defined by the sensor arrangement that applied to construct the image. Moreover,

spatial sampling is achieved by choosing the number of individual mechanical increases

at which how the sensor was activated to gather data. Obviously, the quality of a digital

image is specified by the number of samples and discrete intensity levels applied.

Figure 5.1 Generating a digital image (a) Continuous image (b) A
scan line from A to Bin the continuous image, used to illustrate the

Figure 5.2 Generating a
digital image Sampling
and quantization.

66

5.2 Representing Digital Images

The image in the continuous form represent as function f(s,t). However, the main

goal to convert this f(s,t) into a digital image form by applying both sampling and

quantization. Then in sampling phase the continuous image turns to 2-D array, as discrete

coordinates f(x, y) with size of M rows and N columns where x = 0, 1, 2, ... , M - 1 and

y= 0, 1, 2, ... , N-1. The coordinate is indicated to the number of samples. For example,

the sample (0, 1) is indicate to the second sample along the first row where sample (0,0)

is origin sample. In addition, the actual value of the image at any coordinates (x, y) is

represented f(x, y), where x and y are integers.

However, the image so complex and it has too much detailed and thus it is

difficult to interpret from plots. However, gray-scale image sets can be expressed as

triplets of the form (x, y, z), where x and y are coordinates and z is the value of f at that

coordinates (x, y).

Therefore, the intensity of each point is proportional to the value of f at that point.

For example, if the intensity is normalized to the in boundary [0, l], so apiece of point in

the image may have the value 0, 0.5, or 1. Those values converts to black, gray, or white,

respectively. The third representation is displaying the f(x, y) as an array if the size of f

is 600 X 600 elements which is equal 360,000 number.

67

Figure 5.3 Intensity of each point(pixels) speared in Matrix format

This digitization procedure needs to decide what the number of discrete intensity

levels L. However, because of storage and quantizing hardware limitation considerations,

the number of intensity levels naturally is an integer power of

L= (intensity level) where k number of bits
The number of bits ‘b’ essential to store a digitized image is ; b= M*N*K

For example, if intensity level of k-bit image such as 256 possible discreet

intensity values could be 8-bit image. However, the storage requirement for 8-bit image

is 1024*1024.

5.3 Image quantization

The objective of color quantization is to constitute the many colors in the image

with a decrease number of dissimilar colors and with minimum distortion. Original color

images consist of thousands of colors up to 16,777,216 colors. However, as many colors

68

using an image that can lead to an improved output image .Though, too many colors can

lead to image-processing problems. In fact, during image-processing such as object

detection and object extraction that the number of colors consider crucial feature. In case

many colors represent single object that lead to real problem. Thus, in image processing

techniques conduct reduce number of colors as preprocessing step.

However, the color quantization contains of pixel-mapping phases by design

palette. In the design palette phase is the collection of selected colors that use

demonstrate the image with minimum distortion. In fact, the pixel-mapping phase is the

assign each pixel in the image to one of the colors in the designed palette. Color

quantization approaches apply a clustering procedure to design the palette and then map

each pixel with the designed palette Consequently, the level of distortion is specified by

the clustering algorithm that is applied for design palette.

Color image quantization is the procedure of decreasing the number of colors

existing in a digital color image. The color quantization is applied to decrease the colors

number of a digital image with a minimum visual deformation. It used to regenerate

images on visuals hardware that has restricted number of simultaneous colors (e.g. frame

memory displays with 4 or 8-bit colormaps). The color quantization reduces space

necessities for storing of image data and decreases broadcast band width necessities in

multimedia applications. Similarly, quantization defined as the procedure of mapping a

continuous variable to a discrete set of values. Color quantization usually denotes to the

issue of selecting k colors from a color space to constitute n (k < n) colors from the

same color space and its target to reduce the total error. Color image quantization can be

69

representing in formal way as follows [27]: Assumed a set of NS colors where S' ⊂ RNd

and Nd is the dimension of the data space. Color image quantization can be representing

in formal way as follows: fq : S' S′′ where S′′ is a set of Ns′′ colors such that S′′ ⊂ S′

and . The objective is to minimize the quantization error resulting from

replacing a color C ∈ S′ with its quantized value fq (C) ∈ S''. Color image quantization

is a significant issue in the image processing fields.

Color image quantization contains of two main steps. The first step is forming a

colormap which also called a palette that form a small set of colors in the range of 8-256.

This palette is selected from the 224 potential mixtures of red, green and blue.which

abbreviated as “RGB”. The second step that it is mapping each color pixel to one of the

appropriate colors in the palette.

There are numerous techniques for color quantization. The class splitting

algorithms which split the color space into separate regions, by repeated dividing up the

space. Then each region a color is selected to indicate to the region in the color palette.

The median-cut algorithm (MCA) and the variance-based algorithm (VBA) are two

famous algorithms of this type. In fact, splitting algorithms have very good speed

performance. However, the drawback of this type that it is hard to reach global optima,

since a choice for splitting at one phase cannot be undone at a further phase. The color

quantization classified as NP-complete. Therefore, is not feasible to search for the global

optimal solution since this will need an excessive amount of time.

70

5.3.1 Related work

Numerous color image quantization techniques have been proposed. Most of

these techniques applied clustering method. The clustering defines as the method of

finding collections similar or related of objects to one another and those collection are

different from unrelated to the objects. Furthermore, the problem of m-dimensional

clustering to decrease the maximum inter cluster error or distance. It can be stated as

discovery a divider of n points in m-dimensional Euclidean space to k separated clusters

such as B1, B2, . . . , Bk where maximum (M1, M2, . . . , Mk), , thus Mi is the max

distance between two centroids in cluster Bi, is reduced . In fact, a divider with small

maximum inter cluster distance contains of small clusters where centroid for every cluster

are near to each other in order to be an effective group. Intuitively, this is an optimization

clustering which is corresponding to the minimal maximum quantization measure when

m = 1. Because all points in cluster Bi are now spread along a line , and furthermore ,

Mi is the distance of the line segment (i.e., the length between the datapoint at throughout

of the line and the datapoint at the opposite end). Centroid of the line segment select

around middle of the line segment. Obviously, reducing the length of this line is

corresponding to minimizing the length between the centroid and the endpoints. In fact,

the main classification of image quantization techniques are post-clustering and pre-

clustering.

5.4 K-Means Clustering Algorithm

The KM algorithm is one of the most extensively clustering techniques has been

applied [48]. For example , given a dataset X={ } ∈ the goal of KM is to

71

divider X into K comprehensive and totally unrelated clusters S= { }, =

X , ∩ =Θ for 1≤i≠j≤K by reducing the sum of squared error (SSE)

SSE=

Where denotes to Euclidean () norm and is the center of cluster found

it as the mean of the data of cluster.

In fact, K is random centers which selected from the data [51]. Every point in this

data then labeled to the adjacent center, and respectively new center is recalculated as the

mean of cluster. Repeating those steps until a termination condition is satisfied. The

pseudocode for this algorithm is given in Algo. (1) Notes: 1. m[i] indicate the

membership of point , that mean the index of the cluster center that is nearest to

The main drawbacks of KM are that it frequently ends at a local minimum and

that its outcome is influenced by the preliminary selected of the cluster centers.

Furthermore, pixel mapping stage is wasteful, because of a full search of the palette is

essential to find the adjacent color. However, the pre-clustering techniques frequently

operate and store the palette in a superior data structure such as binary trees which lets

moving to nearest neighbor faster and the search during the mapping stage more feasible.

The proposed Color Quantization using MLSDE (CQ-MLSDE) is presented,

which is post-clustering quantization technique. It produces clustering of the color map.In

the MLSDE context, a single individual represents a colormap (i.e. an individual contains

K cluster centroids indicated as RGB color colormap). Each individual is vector Xi built

as Xi = (mi,1,…,mi,k), where mi,k denotes the kth cluster centroid vector of the ith

72

individual. Therefore, the population consists of several candidates’ colormaps. The

quality of each individual is evaluated using the MSE (Eq. 8) as follows:

 f(Xi)= MSE(Xi) (9)

1. Input : X= {x1,x2,.xn} ϵ ℝD (N×D input dataset)

2. Output: C= {c1,c2,.cn} ϵ ℝD (K cluster centroid)

3. Choose arbitrary subset of X as primary set of cluster centroid

4. While termination condition is not satisfied do

5. For (i=1 ; i<= N; i=i+1) do (For loop#1)

6. Assign Xi to close cluster

7. m[i]=

8. End (For loop#1)

9. Determine the new centroid of cluster

10. For(k=1 ; k<= K; k=k+1) (For loop#2)

11. Sk cluster consist of set points xi which are closer to centroid Ck

12. Sk = { Xi | m[i]= k}

13. Calculate Ck as new center for Sk

14. Ck = 1/SK

15. End (For loop#2)

16. End While

In fact, this technique begins by initializing each individual arbitrarily from the

color image to contain K centroids (i.e. color plate). The set of K color plate indicates the

colormap. The K-means clustering is then applied to each Induvial in a probability

73

manner, pkmeans. The Kmeans is applied to improve the selected colors and to decrease

the search space. Then every pixel is allocated to the cluster with the nearest centroid.

The fitness function of each individual is determined by applying Eq. 9.

Afterwards, the population is reordered and updated, and this process is repeated

till a stopping criterion is matching. The color map of the global best individual after

exceeding max iterations is selected as the optimal result.

The Image quantization using CQ-MLSDE is summarized below:

1) Initialize Population Matrix with each individual by arbitrarily selecting K color

centroid where i=0 (each row considers K cluster possible solution)

2) While (stop Criteria not satisfied) do

3) Calculate MSE (all clusters)

4) Assign Zp to proper { where min

5) Find V_best = Find_best (Population Matrix)

6) Choose randomly V1, V2, V3 , Vx

7) Calculate K-means with small number of iterations with probability rate pkmens

8) Calculate for all clusters

9) Assign Zp to proper { where min

10) Calculate the fitness f(x)

11) Update the best solution yˆ(t)

12) Update the centroids using MLSDE

Although the parameters s, K and tmax are fixed, the best practice is that s, K and

tmax << Np. This MLSDE and image quantization technique have been applied to four

74

frequently used color images; Lenna (shown in Figure 1(a)), peppers, jet, and mandrill.

The image size is 512 × 512 pixels, and they are quantized to 16, 32 and 64 colors. To

demonstrate the performance of color image quantization using MLSDE, its results are

compared with other famous color image quantization technique. However, the

simulations were run for 10 times and the outcomes are illustrated as averages and

standard deviations. The results of MLSDE show the ability to converge to the best

solution found by the preliminary phase by using a Vbest approach. The MLSDE

parameters were initially set as follows: pkmeans = 0.1, s = 20, tmax = 50. The Table 5

shows the comparative result. MSE results of MLSDE illustrate that color quantization

using CQ-MLSDE [12] remarkably enhances the quantized image quality in most of the

cases.

 Figure 5.4 Quantization result of images

(A1) Lenna Original

(B1) Quantized Lenna using CQ-

MLSDE 16 colors

(C1) Quantized Lenna using CQ-

MLSDE 32 colors

(D1) Quantized Lenna using CQ-
MLSDE 64 colors

75

(A2) Pepper Original

(B2) Quantized Pepper using
CQ-MLSDE 16 colors

(C2)
Quantized Pepper using CQ-MLSDE

32 colors

(D2) Quantized Pepper using

CQ-MLSDE 64 colors

(A3) Jet Original

(B3) Quantized Jet using CQ-
MLSDE 16 colors

(C3) Quantized Jet using CQ-MLSDE

32 colors

(D3) Quantized Jet using CQ-
MLSDE 64 colors

(A4) Mandril Original

(B4) Quantized Mandril using

76

CQ-MLSDE 16 colors

(C4) Quantized Mandril using CQ-

MLSDE 32 colors

(D4) Quantized Mandril using
CQ-MLSDE 64 colors

Table 5.1 The MSDE was tested by picking number of clusters 16, 32, 64 for lenna, pepper, jet
and mandrill images. Fig. 1 to 4 demonstrate the quantization of lenna, pepper, jet and mandrill
images.

image K

SOM

GCMA

PSO

CQ-MLSDE

Lenna

16 235.6

332 210.203 201.894

32 126.40

179 119.167

112.1360

64 74.700

113 77.846

72.107

Peppers

16 425.60

471 399.36

387.6023

32 244.50 263 232.046

229.2507

64 141.60

148 137.322

138.463

Jet

16 121.70

199 122.867

113.506

32 65.000

96 71.564

43.500

64 38.100

54 56.339

40.421

Mandril

16 629.00

606 630.975

519.4218

32 373.60

348 375.933

269.851

64 234.00

213 237.331

139.1367

77

Figure 5.5 Experimental results Jet

Figure 5.6 Experimental results Lenna

78

Figure 5.7 Experimental results Mandril

Figure 5.8 Experimental results Peppers

79

CHAPTER 6: CONCLUSIONS

A multi-layer strategy for DE, MLSDE has been proposed in this paper. Due to

the multi-strategy approach, the diversity of the offspring can be preserved. MLSDE

involves three mutation and crossover strategies to produce three different trail vector

generations. These three strategies provide many advantages, such as diversity and ability

to search around promise area and can therefore complement each other. MLSDE

depends entirely on these strategies; thus, the parameters are fixed during the evolution

process. The experimental of 16 global numerical optimization problems showed that the

operations of MLSDE are more efficient and effective than those other algorithms. The

performance of the MLSDE algorithm was validated over a set of 16 benchmark

functions. The experimental results demonstrate that the multi-layer strategies approach

is successful in maintaining population diversity. MLSDE not only performed better than

the JADE, JDE, and SADE for most of functions but was also competitive and it reach

near global optima. The proposed MLSDE can get more improvements such as it can be

employed with other distributions such as e Cauchy distributions that have shown

promising results in evolutionary algorithms.

80

REFERENCES

[1] S. Das and P. N. Suganthan, "Differential evolution: a survey of the state-of-the-art,"

IEEE Trans. Evol. Comput., vol. 15, pp. 4-31, 2011.

[2] S. S. Rao and S. S. Rao, Engineering Optimization: Theory and Practice. Hoboken,

NJ: John Wiley & Sons, 2009.

[3] K. Price, R. M. Storn, and J. A. Lampinen, Differential Evolution: A Practical

Approach to Global Optimization. Berlin: Springer Science & Business Media, 2006.

[4] J. Brownlee, Clever algorithms: nature-inspired programming recipes: Jason

Brownlee, 2011.

[5] J. Zhang and A. C. Sanderson, Adaptive differential evolution: Springer, 2009.

[6] V. Feoktistov, Differential Evolution. Dordrecht: Springer, 2006.

[7] R. Storn, "On the usage of differential evolution for function optimization," in

NAFIPS, 1996 Biennial Conference of the North American Fuzzy Information

Processing Society, 1996, 1996, pp. 519-523.

[8] K. V. Price, R. M. Storn, and J. A. Lampinen, "The differential evolution algorithm,"

in Differential Evolution: A Practical Approach to Global Optimization, K. V. Price,

R. M. Storn, and J. A. Lampinen, Eds., ed Berlin, Heidelberg: Springer, 2005, pp. 37-

134.

81

[9] S.-M. Guo, C.-C. Yang, P.-H. Hsu, and J. S.-H. Tsai, "Improving differential

evolution with a successful-parent-selecting framework," IEEE Trans. Evol. Comput.,

vol. 19, pp. 717-730, 2015.

[10] Á. E. Eiben, R. Hinterding, and Z. Michalewicz, "Parameter control in

evolutionary algorithms," IEEE Trans. Evol. Comput., vol. 3, pp. 124-141, 1999.

[11] T. Kok, B. AE, E. JN, H. Spaink, C. Kari, G. T, et al., Natural Computing Series.

Berlin: Springer, 2006.

[12] D. H. Wolpert and W. G. Macready, "The mathematics of search," Technical

Report SFI-TR-95-02-010, Santa Fe Institute1995.

[13] D. H. Wolpert and W. G. Macready, "No free lunch theorems for optimization,"

IEEE Trans. Evol. Comput., vol. 1, 1997, pp. 67-82.

[14] D. Zaharie, "On the explorative power of differential evolution," in 3rd

International Workshop on Symbolic and Numerical Algorithms on Scientific

Computing, SYNASC-2001, Timişoara, Romania, 2001.

[15] J. Liu, "On setting the control parameter of the differential evolution method," in

Proceedings of the 8th international conference on soft computing (MENDEL 2002),

2002, pp. 11-18.

[16] T. Šmuc, "Improving convergence properties of the differential evolution

algorithm," in MENDEL 2002-8th International Conference on Soft Computing,

2002.

[17] I. K. Yalcin and M. Gokmen, "Integrating differential evolution and condensation

algorithms for license plate tracking," in Pattern Recognition, 2006. ICPR 2006. 18th

International Conference on, 2006, pp. 658-661.

82

[18] J. Zhang and A. C. Sanderson, "JADE: adaptive differential evolution with

optional external archive," IEEE Transactions on evolutionary computation, vol. 13,

2009, pp. 945-958.

[19] Á. Baíllo, M. Ventosa, M. Rivier, and A. Ramos, "Strategic bidding in a

competitive electricity market: a decomposition approach," in Power Tech

Proceedings, 2001 IEEE Porto, vol. 1, 2001, pp. 6.

[20] J. H. Van Sickel, K. Y. Lee, and J. S. Heo, "Differential evolution and its

applications to power plant control," in Intelligent Systems Applications to Power

Systems, 2007. ISAP 2007. International Conference on, 2007, pp. 1-6.

[21] X. Wang, H. Cheng, and M. Huang, "QoS multicast routing protocol oriented to

cognitive network using competitive coevolutionary algorithm," Expert Systems with

Applications, vol. 41, 2014, pp. 4513-4528.

[22] A. A. El Ela, M. Abido, and S. Spea, "Optimal power flow using differential

evolution algorithm," Electric Power Systems Research, vol. 80, , 2010, pp. 878-885.

[23] J. C. Goswami, R. Mydur, and P. Wu, "Application of differential evolution

algorithm to model-based well log-data inversion," in Antennas and Propagation

Society International Symposium, 2002. IEEE, 2002, pp. 318-321.

[24] C.-T. Su and C.-S. Lee, "Network reconfiguration of distribution systems using

improved mixed-integer hybrid differential evolution," IEEE Transactions on Power

Delivery, vol. 18, , 2003,pp. 1022-1027.

[25] Y. Boughari, G. Ghazi, R. M. Botez, and F. Theel, "New Methodology for

Optimal Flight Control Using Differential Evolution Algorithms Applied on the

83

Cessna Citation X Business Aircraft–Part 1. Design and Optimization," INCAS

Bulletin, vol. 9, , 2017, p. 31.

[26] K. V. Price, "Differential evolution vs. the functions of the 2/sup nd/ ICEO," in

IEEE International Conference on Evolutionary Computation, 1997, pp. 153-157.

[27] F. Xue, A. C. Sanderson, P. P. Bonissone, and R. J. Graves, "Fuzzy logic

controlled multi-objective differential evolution," in The 14th IEEE International

Conference on Fuzzy Systems, 2005. FUZZ'05, 2005, pp. 720-725.

[28] R. Storn, "Differrential evolution-a simple and efficient adaptive scheme for

global optimization over continuous spaces," Technical Report, International

Computer Science Institute, 1995.

[29] E. Mezura-Montes, J. Velázquez-Reyes, and C. A. Coello Coello, "A comparative

study of differential evolution variants for global optimization," in Proceedings of the

8th annual conference on Genetic and evolutionary computation, 2006, pp. 485-492.

[30] J. Vesterstrom and R. Thomsen, "A comparative study of differential evolution,

particle swarm optimization, and evolutionary algorithms on numerical benchmark

problems," in Congress on Evolutionary Computation, 2004. CEC2004, 2004, pp.

1980-1987.

[31] I. Fister, M. Mernik, and J. Brest, "Hybridization of Evolutionary Algorithms,"

arXiv preprint arXiv:1301.0929, 2013.

[32] H. Chunping and Y. Xuefeng, "An immune self-adaptive differential evolution

algorithm with application to estimate kinetic parameters for homogeneous mercury

oxidation," Chin. J. Chem. Eng., vol. 17, , 2009,pp. 232-240.

84

[33] J. Ilonen, J.-K. Kamarainen, and J. Lampinen, "Differential evolution training

algorithm for feed-forward neural networks," Neural Process. Lett., vol. 17, 2003, pp.

93-105.

[34] G. Eiben and M. C. Schut, "New ways to calibrate evolutionary algorithms," in

Advances in Metaheuristics for Hard Optimization, P. Siarry and Z. Michalewicz,

Eds., ed Berlin, Heidelberg: Springer, 2007, pp. 153-177.

[35] P. J. Angeline, "Adaptive and self-adaptive evolutionary computations," in

Computational Intelligence: A Dynamic Systems Perspective, 1995.

[36] A. E. Eiben and J. E. Smith, Introduction to evolutionary computing vol. 53:

Springer, 2003.

[37] J. Liu, J. Lampinen, R. Matousek, and P. Osmera, "Adaptive parameter control of

differential evolution," in Proc. of MENDEL, 2002, pp. 19-26.

[38] H.-Y. Fan and J. Lampinen, "A trigonometric mutation operation to differential

evolution," J. Glob. Optimiz., vol. 27, 2003, pp. 105-129.

[39] S. Das, A. Abraham, U. K. Chakraborty, and A. Konar, "Differential evolution

using a neighborhood-based mutation operator," IEEE Trans. Evol. Comput., vol. 13,

, 2009, pp. 526-553.

[40] A. Qing, Differential evolution: fundamentals and applications in electrical

engineering: John Wiley & Sons, 2009.

[41] C. Lin, A. Qing, and Q. Feng, "A comparative study of crossover in differential

evolution," J. Heurist., vol. 17, 2011 pp. 675-703.

85

[42] H. A. Abbass, "The self-adaptive pareto differential evolution algorithm," in

Proceedings of the 2002 Congress on Evolutionary Computation, 2002. CEC'02,

2002, pp. 831-836.

[43] J. Teo, "Exploring dynamic self-adaptive populations in differential evolution,"

Soft Comput., vol. 10, 2006, pp. 673-686.

[44] J. Liu and J. Lampinen, "A fuzzy adaptive differential evolution algorithm," Soft

Comput., vol. 9, 2005, pp. 448-462.

[45] A. K. Qin and P. N. Suganthan, "Self-adaptive differential evolution algorithm for

numerical optimization," in The 2005 IEEE Congress on Evolutionary Computation,

2005, pp. 1785-1791.

[46] J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer, "Self-adapting

control parameters in differential evolution: a comparative study on numerical

benchmark problems," IEEE Trans. Evol. Comput., vol. 10, , 2006, pp. 646-657.

[47] P. Kaelo and M. Ali, "Differential evolution algorithms using hybrid mutation,"

Comput. Optimiz. Appl., vol. 37, pp. 231-246, 2007.

[48] A. M. A. Rocha and E. M. d. G. Fernandes, "On charge effects to the

electromagnetism-like algorithm," in 20th EURO Mini Conference:" Continuous

Optimization and Knowledge-Based Technologies", 2008, pp. 198-203.

[49] Y. Wang, Z. Cai, and Q. Zhang, "Differential evolution with composite trial

vector generation strategies and control parameters," IEEE Trans. Evol. Comput., vol.

15, , 2011, pp. 55-66.

[50] D. Zaharie, "Control of population diversity and adaptation in differential

evolution algorithms," in Proc. of MENDEL, 2003, pp. 41-46.

86

[51] P. Kumar and M. Pant, "A self adaptive differential evolution algorithm for global

optimization," in International Conference on Swarm, Evolutionary, and Memetic

Computing, 2010, pp. 103-110.

[52] J. Brest, B. Bošković, S. Greiner, V. Žumer, and M. S. Maučec, "Performance

comparison of self-adaptive and adaptive differential evolution algorithms," Soft

Comput., vol. 11, 2007, pp. 617-629.

[53] M. Shojafar, C. Canali, R. Lancellotti, and J. Abawajy, "Adaptive computing-

plus-communication optimization framework for multimedia processing in cloud

systems," IEEE Transactions on Cloud Computing, 2016.

[54] M. Shojafar, N. Cordeschi, and E. Baccarelli, "Energy-efficient adaptive resource

management for real-time vehicular cloud services," IEEE Transactions on Cloud

computing, 2016.

[55] T. Hendtlass, "A combined swarm differential evolution algorithm for

optimization problems," in International Conference on Industrial, Engineering and

Other Applications of Applied Intelligent Systems, 2001, pp. 11-18.

[56] M. Shojafar, S. Javanmardi, S. Abolfazli, and N. Cordeschi, "FUGE: A joint

meta-heuristic approach to cloud job scheduling algorithm using fuzzy theory and a

genetic method," Cluster Computing, vol. 18, , 2015, pp. 829-844.

[57] Z. Yang, K. Tang, and X. Yao, "Differential evolution for high-dimensional

function optimization," in IEEE Congress on Evolutionary Computation, 2007. CEC

2007, pp. 3523-3530.

87

[58] M.-X. Ling, F.-Y. Wang, X. Ding, Y.-H. Hu, J.-B. Zhou, R. E. Zartman, et al.,

"Cretaceous ridge subduction along the lower Yangtze River belt, eastern China,"

Econ. Geol., vol. 104, , 2009, pp. 303-321.

[59] B. Babu and R. Angira, "Modified differential evolution (MDE) for optimization

of non-linear chemical processes," Comput. Chem. Eng., vol. 30, , 2006, pp. 989-

1002.

[60] S. Sayah and K. Zehar, "Modified differential evolution algorithm for optimal

power flow with non-smooth cost functions," Energy Convers. Manag., vol. 49, ,

2008,pp. 3036-3042.

[61] L. Lakshminarasimman and S. Subramanian, "Short-term scheduling of

hydrothermal power system with cascaded reservoirs by using modified differential

evolution," IEE Proc.-Gener. Transm. Distrib., vol. 153, 2006,pp. 693-700.

[62] S. M. Islam, S. Das, S. Ghosh, S. Roy, and P. N. Suganthan, "An adaptive

differential evolution algorithm with novel mutation and crossover strategies for

global numerical optimization," IEEE Trans. Syst., Man Cybern., Part B: Cybern.,

vol. 42, , 2012, pp. 482-500.

[63] Y. Cai and J. Wang, "Differential evolution with neighborhood and direction

information for numerical optimization," IEEE Trans. Cybern., vol. 43, , 2013,pp.

2202-2215.

[64] R. M. Alguliev, R. M. Aliguliyev, and N. R. Isazade, "DESAMC+ DocSum:

differential evolution with self-adaptive mutation and crossover parameters for multi-

document summarization," Knowl. -Based Syst., vol. 36, 2012, pp. 21-38.

88

[65] A. Selamat, N. T. Nguyen, and H. Haron, Intelligent Information and Database

Systems: 5th Asian Conference, ACIIDS 2013, Kuala Lumpur, Malaysia, March 18-

20, 2013, Proceedings vol. 7803: Springer, 2013.

[66] J. Zhang and A. C. Sanderson, "JADE: adaptive differential evolution with

optional external archive," IEEE Trans. Evol. Comput., vol. 13, pp. 945-958, 2009.

[67] J. Zhang and A. C. Sanderson, "JADE: Self-adaptive differential evolution with

fast and reliable convergence performance," in IEEE Congress on Evolutionary

Computation, 2007. CEC 2007, 2007, pp. 2251-2258.

[68] R. Tanabe and A. Fukunaga, "Success-history based parameter adaptation for

differential evolution," in 2013 IEEE Congress on Evolutionary Computation (CEC),

2013, pp. 71-78.

[69] S. Ghosh, S. Das, S. Roy, S. M. Islam, and P. N. Suganthan, "A differential

covariance matrix adaptation evolutionary algorithm for real parameter optimization,"

Inf. Sci., vol. 182, , 2012, pp. 199-219.

[70] S. Ghosh, S. Roy, S. M. Islam, S. Das, and P. N. Suganthan, "A differential

covariance matrix adaptation evolutionary algorithm for global optimization," in 2011

IEEE Symposium on Differential Evolution (SDE), 2011, pp. 1-8.

[71] S. M. Elsayed, R. A. Sarker, and D. L. Essam, "An improved self-adaptive

differential evolution algorithm for optimization problems," IEEE Trans. Ind.

Inform., vol. 9, , 2013, pp. 89-99.

[72] D. Lichtblau, "Relative position indexing approach," in Differential Evolution: A

Handbook for Global Permutation-Based Combinatorial Optimization, ed: Springer,

2009, pp. 81-120.

89

[73] C. Blum, J. Puchinger, G. R. Raidl, and A. Roli, "Hybrid metaheuristics in

combinatorial optimization: a survey," Appl. Soft Comput., vol. 11, 2011, pp. 4135-

4151.

[74] E.-N. Dragoi and V. Dafinescu, "Parameter control and hybridization techniques

in differential evolution: a survey," Artif. Intell. Rev., vol. 45, pp. 447-470, 2016.

[75] D. E. Goldberg and H. John, "Holland. Genetic algorithms and machine learning,"

Machine learning, vol. 3, 1988, pp. 95-99.

[76] P. Vas, Artificial-intelligence-based electrical machines and drives: application of

fuzzy, neural, fuzzy-neural, and genetic-algorithm-based techniques vol. 45: Oxford

university press, 1999.

[77] B. K. Panigrahi, P. N. Suganthan, S. Das, and S. S. Dash, "Swarm, Evolutionary,

and Memetic Computing," in Third International Conference SEMCCO, 2010.

[78] E. Nwankwor, A. K. Nagar, and D. Reid, "Hybrid differential evolution and

particle swarm optimization for optimal well placement," Comput. Geosci., vol. 17, ,

2013, pp. 249-268.

[79] F. Vitaliy, Differential Evolution–In Search of Solutions. New York: Springer,

2006.

[80] I. Fister and I. Fister Jr, Adaptation and Hybridization in Computational

Intelligence vol. 18. Cham: Springer, 2015.

[81] R. Thangaraj, M. Pant, A. Abraham, and P. Bouvry, "Particle swarm

optimization: hybridization perspectives and experimental illustrations," Appl. Math.

Comput., vol. 217, , 2011,pp. 5208-5226.

90

[82] R. Eberhart and J. Kennedy, "Particle swarm optimization," in Proceeding of

IEEE International Conference on Neural Network, Perth, Australia, 1995, pp. 1942-

1948.

[83] Y. Shi and R. C. Eberhart, "Empirical study of particle swarm optimization," in

Proceedings of the 1999 Congress on Evolutionary Computation, 1999. CEC 99,

1999, pp. 1945-1950.

[84] I. C. Trelea, "The particle swarm optimization algorithm: convergence analysis

and parameter selection," Inf. Process. Lett., vol. 85, , 2003, pp. 317-325.

[85] J. Kennedy and R. Mendes, "Population structure and particle swarm

performance," in Proceedings of the 2002 Congress on Evolutionary Computation,

2002. CEC'02, 2002, pp. 1671-1676.

[86] H. Zhenya, W. Chengjian, Y. Luxi, G. Xiqi, Y. Susu, R. C. Eberhart, et al.,

"Extracting rules from fuzzy neural network by particle swarm optimisation," in The

1998 IEEE International Conference on Evolutionary Computation Proceedings,

1998. IEEE World Congress on Computational Intelligence, 1998, pp. 74-77.

[87] S. Das, A. Abraham, and A. Konar, "Particle swarm optimization and differential

evolution algorithms: technical analysis, applications and hybridization perspectives,"

in Advances of computational intelligence in industrial systems, ed: Springer, 2008,

pp. 1-38.

[88] J. H. Van Sickel, K. Y. Lee, and J. S. Heo, "Differential evolution and its

applications to power plant control," in International Conference on Intelligent

Systems Applications to Power Systems, 2007. ISAP 2007, pp. 1-6.

91

[89] X. Yu, J. Cao, H. Shan, L. Zhu, and J. Guo, "An adaptive hybrid algorithm based

on particle swarm optimization and differential evolution for global optimization,"

ScientificWorldJournal, vol. 2014, 2014, p. 215472.

[90] W.-J. Zhang and X.-F. Xie, "DEPSO: hybrid particle swarm with differential

evolution operator," in IEEE International Conference on Systems, Man and

Cybernetics, 2003, pp. 3816-3821.

[91] B. Liu, "Uncertain risk analysis and uncertain reliability analysis," J. Uncertain

Syst., vol. 4, , 2010, pp. 163-170.

[92] H. Liu, Z. Cai, and Y. Wang, "Hybridizing particle swarm optimization with

differential evolution for constrained numerical and engineering optimization," Appl.

Soft Comput., vol. 10, 2010, pp. 629-640.

[93] J. Hästbacka, A. de la Chapelle, M. M. Mahtani, G. Clines, M. P. Reeve-Daly, M.

Daly, et al., "The diastrophic dysplasia gene encodes a novel sulfate transporter:

positional cloning by fine-structure linkage disequilibrium mapping," Cell, vol. 78, ,

1994, pp. 1073-1087.

[94] S. Das, A. Abraham, and A. Konar, "Automatic clustering using an improved

differential evolution algorithm," IEEE Trans. Syst., Man Cybern., Part A: Syst.

Humans, vol. 38, 2008,pp. 218-237.

[95] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine

Learning. USA: Addison, 1989.

[96] E. Mezura-Montes, "Nature-Inspired Algorithms Evolutionary and Swarm

Intelligence Approaches," A Tutorial in MICAI, vol. 2008, 2008.

92

[97] X. Xu and Y. Li, "Comparison between particle swarm optimization, differential

evolution and multi-parents crossover," in 2007 International Conference on

Computational Intelligence and Security, 2007, pp. 124-127.

[98] I. Codreanu, "A parallel between differential evolution and genetic algorithms

with exemplification in a microfluidics optimization problem," in Semiconductor

Conference, 2005. CAS 2005 Proceedings. 2005 International, 2005, pp. 421-424.

[99] M. R. Sentinella, "Comparison and integrated use of differential evolution and

genetic algorithms for space trajectory optimisation," in IEEE Congress on

Evolutionary Computation, 2007. CEC 2007, 2007, pp. 973-978.

[100] B. Hegerty, C.-C. Hung, and K. Kasprak, "A comparative study on differential

evolution and genetic algorithms for some combinatorial problems," in Proceedings

of 8th Mexican International Conference on Artificial Intelligence, 2009, pp. 9-13.

[101] T. W. Liao, "Two hybrid differential evolution algorithms for engineering design

optimization," Appl. Soft Comput., vol. 10, , 2010 , pp. 1188-1199.

[102] I. Boussaïd, A. Chatterjee, P. Siarry, and M. Ahmed-Nacer, "Two-stage update

biogeography-based optimization using differential evolution algorithm (DBBO),"

Comput. Oper. Res., vol. 38, , 2011, pp. 1188-1198.

[103] I. Boussaïd, A. Chatterjee, P. Siarry, and M. Ahmed-Nacer, "Hybridizing

biogeography-based optimization with differential evolution for optimal power

allocation in wireless sensor networks," IEEE Trans. Veh. Technol., vol. 60, , 2011,

pp. 2347-2353.

93

[104] R. Moral, D. Sahoo, and G. Dulikravich, "Multi-objective hybrid evolutionary

optimization with automatic switching," in 11th AIAA/ISSMO Multidisciplinary

Analysis and Optimization Conference, 2006, p. 6976.

[105] H. Guo, Y. Li, J. Li, H. Sun, D. Wang, and X. Chen, "Differential evolution

improved with self-adaptive control parameters based on simulated annealing,"

Swarm Evol. Comput., vol. 19, , 2014, pp. 52-67.

[106] N. Pholdee, S. Bureerat, and A. R. Yıldız, "Hybrid real-code population-based

incremental learning and differential evolution for many-objective optimisation of an

automotive floor-frame," Int. J. Veh. Design, vol. 73, 2017, pp. 20-53.

[107] N. Pholdee and S. Bureerat, "Hybridisation of real-code population-based

incremental learning and differential evolution for multiobjective design of trusses,"

Inf. Sci., vol. 223, 2013, pp. 136-152.

[108] N. Pholdee and S. Bureerat, "Hybrid real-code population-based incremental

learning and approximate gradients for multi-objective truss design," Eng. Optim.,

vol. 46 , 2014, pp. 1032-1051.

[109] S. Bureerat, N. Pholdee, W.-W. Park, and D.-K. Kim, "An Improved Teaching-

Learning Based Optimization for Optimization of Flatness of a Strip During a Coiling

Process," in International Workshop on Multi-disciplinary Trends in Artificial

Intelligence, 2016, pp. 12-23.

[110] Neri et al.

[111] F. Neri and C. Cotta, "Memetic algorithms and memetic computing optimization:

a literature review," Swarm Evol. Comput., vol. 2, 2012, pp. 1-14.

94

[112] D. Zou, J. Wu, L. Gao, and S. Li, "A modified differential evolution algorithm for

unconstrained optimization problems," Neurocomputing, vol. 120, , 2013 , pp. 469-

481.

[113] Z.-h. Zhan, and Jun Zhang, "Enhance differential evolution with random walk," in

ACM Proceedings of the 14th Annual Conference Companion on Genetic and

Evolutionary Computation, 2012, pp. 1513-1514.

[114] W.-j. Yu and J. Zhang, "Multi-population differential evolution with adaptive

parameter control for global optimization," in Proceedings of the 13th annual

conference on Genetic and evolutionary computation, 2011, pp. 1093-1098.

[115] P. Bujok, J. Tvrdik, and R. Polakova, "Differential evolution with rotation-

invariant mutation and competing-strategies adaptation," in Evolutionary

Computation (CEC), 2014 IEEE Congress on, 2014, pp. 2253-2258.

[116] S. M. Islam, S. Das, S. Ghosh, S. Roy, and P. N. Suganthan, "An adaptive

differential evolution algorithm with novel mutation and crossover strategies for

global numerical optimization," IEEE Transactions on Systems, Man and

Cybernetics, Part B: Cybernetics, vol. 42, 2012, pp. 482-500.

[117] A. Trivedi, D. Srinivasan, S. Biswas, and T. Reindl, "A genetic algorithm–

differential evolution-based hybrid framework: case study on unit commitment

scheduling problem," Information Sciences, vol. 354, 2016, pp. 275-300.

[118] M. Pant, R. Thangaraj, C. Grosan, and A. Abraham, "Hybrid differential

evolution-particle swarm optimization algorithm for solving global optimization

problems," in Digital Information Management, 2008. ICDIM 2008. Third

International Conference on, 2008, pp. 18-24.

95

[119] A. Antoniou and W.-S. Lu, The Optimization Problem: Springer, 2007.

[120] B. Babu and S. Munawar, "Differential evolution strategies for optimal design of

shell-and-tube heat exchangers," Chemical Engineering Science, vol. 62 , 2007, pp.

3720-3739.

[121] F. Neri and V. Tirronen, "Recent advances in differential evolution: a survey and

experimental analysis," Artificial Intelligence Review, vol. 33, 2010, pp. 61-106.

[122] S. Das and P. N. Suganthan, "Differential evolution: a survey of the state-of-the-

art," IEEE transactions on evolutionary computation, vol. 15, 2011, pp. 4-31.

[123] C. Lin, A. Qing, and Q. Feng, "A comparative study of crossover in differential

evolution," Journal of Heuristics, vol. 17, 2011, pp. 675-703.

[124] S.-M. Guo, C.-C. Yang, P.-H. Hsu, and J. S.-H. Tsai, "Improving differential

evolution with a successful-parent-selecting framework," IEEE Transactions on

Evolutionary Computation, vol. 19, , 2015, pp. 717-730.

[125] Z. Peng, J. Liao, and Y. Cai, "Differential evolution with distributed direction

information based mutation operators: an optimization technique for big data,"

Journal of Ambient Intelligence and Humanized Computing, vol. 6, 2015, pp. 481-

494.

[126] M. Yang, C. Li, Z. Cai, and J. Guan, "Differential evolution with auto-enhanced

population diversity," IEEE transactions on cybernetics, vol. 45 , 2015, pp. 302-315.

[127] G. C. Onwubolu and D. Davendra, Differential evolution: a handbook for global

permutation-based combinatorial optimization vol. 175: Springer Science & Business

Media, 2009.

96

[128] A. K. Qin, V. L. Huang, and P. N. Suganthan, "Differential evolution algorithm

with strategy adaptation for global numerical optimization," IEEE transactions on

Evolutionary Computation, vol. 13 , 2009,pp. 398-417.

[129] T.-T. Chang and H.-C. Chang, "Application of differential evolution to passive

shunt harmonic filter planning," in Harmonics and Quality of Power Proceedings,

1998. Proceedings. 8th International Conference On, 1998, pp. 149-153.

[130] Y. Wang, Z. Cai, and Q. Zhang, "Differential evolution with composite trial

vector generation strategies and control parameters," IEEE Transactions on

Evolutionary Computation, vol. 15, 2011, pp. 55-66.

[131] M. Ali, M. Pant, and A. Abraham, "Improved differential evolution algorithm

with decentralisation of population," International Journal of Bio-Inspired

Computation, vol. 3, 2011, pp. 17-30.

[132] R. A. Sarker, S. M. Elsayed, and T. Ray, "Differential Evolution With Dynamic

Parameters Selection for Optimization Problems," IEEE Trans. Evolutionary

Computation, vol. 18, 2014, pp. 689-707.

[133] J. Wang, J. Liao, Y. Zhou, and Y. Cai, "Differential evolution enhanced with

multiobjective sorting-based mutation operators," IEEE transactions on cybernetics,

vol. 44, 2014, pp. 2792-2805.

[134] Y. Wang, H.-X. Li, T. Huang, and L. Li, "Differential evolution based on

covariance matrix learning and bimodal distribution parameter setting," Applied Soft

Computing, vol. 18, 2014, pp. 232-247.

97

[135] W.-J. Yu, M. Shen, W.-N. Chen, Z.-H. Zhan, Y.-J. Gong, Y. Lin, et al.,

"Differential evolution with two-level parameter adaptation," IEEE Transactions on

Cybernetics, vol. 44, , 2014, pp. 1080-1099.

[136] W. M. Spears and K. A. Jong, The role of mutation and recombination in

evolutionary algorithms: George Mason University Fairfax, VA, 1998.

[137] R. Storn, "Differential evolution research–trends and open questions," in

Advances in differential evolution, ed: Springer, 2008, pp. 1-31.

[138] H.-Y. Fan and J. Lampinen, "A trigonometric mutation operation to differential

evolution," Journal of global optimization, vol. 27 , 2003, pp. 105-129.

[139] S. Kukkonen and J. Lampinen, "An extension of generalized differential evolution

for multi-objective optimization with constraints," in International Conference on

Parallel Problem Solving from Nature, 2004, pp. 752-761.

[140] V. Feoktistov, Differential evolution: in search of solutions vol. 5: Springer

Science & Business Media, 2007.

[141] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y.-P. Chen, A. Auger, et al.,

"Problem definitions and evaluation criteria for the CEC 2005 special session on real-

parameter optimization," KanGAL report, vol. 2005005, 2005, p. 2005.

[142] J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer, "Self-adapting

control parameters in differential evolution: A comparative study on numerical

benchmark problems," IEEE transactions on evolutionary computation, vol. 10, 2006,

pp. 646-657.

98

[143] R. Gämperle, S. D. Müller, and P. Koumoutsakos, "A parameter study for

differential evolution," Advances in intelligent systems, fuzzy systems, evolutionary

computation, vol. 10, 2002, pp. 293-298.

	ABSTRACT
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	CHAPTER 1: Introduction
	1.1 Background
	1.2. Research Problem and Scope
	1.3. Motivation behind the Research
	1.4. Potential Contribution of the Proposed Research
	1.5 Literature Survey and Background
	1.5.1 Classic Differential Evolution
	1.5.2 Differential Evolution Strategies
	1.5.3 Initialization
	1.5.4 Crossover
	1.5.5 Selection
	1.5.6 DE Applications and related automated
	1.5.7 Parameter Control
	1.5.8 Deterministic Parameter Control
	1.5.9 Adaptive Parameter Control
	1.5.10 Differential Evolution with Self-Adapting Populations (DESAP)
	1.5.11 Fuzzy Adaptive Differential Evolution (FADE)
	1.5.12 Self-adaptive Differential Evolution (SaDE)
	1.5.13 Self-adaptive NSDE (SaNSDE)
	1.5.14 Self-Adapting Parameter Setting in Differential Evolution (jDE)
	1.5.15 Adaptive DE algorithm (ADE)
	1.5.16 Modified DE (MDE)
	1.5.17 Modified DE with p-best Crossover (MDE_pBX)
	1.5.18 DE with Self-Adaptive Mutation and Crossover (DESAMC)
	1.5.19 Adaptive Differential Evolution with Optional External Archive
	1.5.20 Adaptation of and
	1.5.21 Differential Covariance Matrix Adaptation Evolutionary Algorithm (CMA-ES).

	CHAPTER 2: Differential Evolution with Multiple Strategies
	2.2. Hybridization of DE with Other Evolution Algorithms

	CHAPTER 3: RESEARCH PLAN
	3.1 Introduction
	3.2 Multi-Layer Strategies Differential Evolution

	CHAPTER 4: IMPLEMENTATION AND Results
	4.1 Implementation and Test Plan
	4.2 Results

	Chapter 5: Application
	5.1 Image Sampling and Quantization
	5.2 Representing Digital Images
	5.3 Image quantization
	5.3.1 Related work
	5.4 K-Means Clustering Algorithm

	Chapter 6: Conclusions

