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LARGE-SCALE EVOLUTIONARY OPTIMIZATION USING 

MULTI-LAYER STRATEGY DIFFERENTIAL EVOLUTION 

 ABSTRACT 

Differential evolution (DE) has been extensively used in optimization studies 

since its development in 1995 because of its reputation as an effective global optimizer. 

DE is a population-based metaheuristic technique that develops numerical vectors to 

solve optimization problems. DE strategies have a significant impact on DE performance 

and play a vital role in achieving stochastic global optimization. However, DE is highly 

dependent on the control parameters involved. In practice, the fine-tuning of these 

parameters is not always easy. Here, we discuss the improvements and developments that 

have been made to DE algorithms. 

The Multi-Layer Strategies Differential Evolution (MLSDE) algorithm, which 

finds optimal solutions for large scale problems. To solve large scale problems were 

grouped different strategies together and applied them to date set. Furthermore, these 

strategies were applied to selected vectors to strengthen the exploration ability of the 

algorithm. Extensive computational analysis was also carried out to evaluate the 

performance of the proposed algorithm on a set of well-known CEC 2015 benchmark 
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functions. This benchmark was utilized for the assessment and performance evaluation of 

the proposed algorithm. 
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CHAPTER 1: INTRODUCTION 

1.1 Background  

Optimization algorithms are important approaches for resolving hard optimization 

problems [1]. Optimization is defined as the procedure of discovery that provides the 

minimum or maximum value of a function f(x) [2, 3]. There are many reasons that make 

this problem difficult to solve. First, we cannot perform a comprehensive search if the 

problem domain space is too large. Second, the evaluation function is noisy or varies with 

time, generating a series of solutions instead of a single solution. Third, sometimes the 

constraints prevent arriving at a possible solution such that the optimization approach is 

the only solution [4].  

Differential evolution (DE) is a stochastic algorithm for solving numerical 

continuous optimization problems. Since its inception, the DE algorithm has been a 

powerful global optimizer. DE was developed by Kenneth Price in 1994 and has since 

become a promising optimization algorithm that converges to the real optimum without 

using significant amounts of resources. Furthermore, its performance was validated in the 

evolutionary domain by the IEEE Conference on Evolutionary in 1996 [5].  

More recently, different versions of DE have secured the top ranks in many 

competitions between evolutionary algorithms (EAs) by the IEEE Congress on 
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Evolutionary Computation (CEC) conference series 

(http://www.ntu.edu.sg/home/epnsugan/index_files/cec- benchmarking.htm).  

 
1.2. Research Problem and Scope  

An impressive number of different DE algorithms have been introduced by the 

research community over the past decades because various DE algorithms involving 

different techniques. To differentiate among those techniques, we need to define a 

comprehensive framework that helps to deepen understanding of the characteristics of 

different DE strategies, with the goal of benefiting from the various approaches. In fact, 

understanding how to combine these DEs harmoniously and their underlying concepts 

could be crucial to attaining effective designs or improving the performance of DE 

algorithms in particular or any optimization algorithms in general. Moreover, the 

literature shows that no single algorithm has been demonstrated to be effective for 

various applications.  

DE algorithms are different from EA algorithms that shape offspring by mixing 

solutions with a difference factor rate of selected individual vectors and are an alternative 

to recombining individuals through a probabilistic scheme. In fact, the differential 

mutation strategy is the main component that distinguishes DE from other population 

algorithms. Applying the mutation to all candidates defines an exploration rule based on 

other candidate solutions. Therefore, the mutation strategy enhances a population’s 

capability for discovering new promising offspring based on the current distribution of 

solutions within the domain space. Ideally, the performance of DE is based on two major 

http://www.ntu.edu.sg/home/epnsugan/index_files/cec-%20benchmarking.htm
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components: the chosen strategy and the control parameters. However, the strategy 

underlying DE consists of mutation, crossover and selection operators, which are utilized 

at each generation to determine the global optimum. The control parameter components 

consist of the population size NP, scaling factor F and the crossover rate Cr. 

 

1.3. Motivation behind the Research 

Despite the potential of DE, it is obvious to the research community that some 

adjustments to classic DE are essential to significantly enhance its performance, 

especially in addressing high-dimension problems. Stagnation, premature, convergence, 

and sensitivity are the control parameters that influence the performance of DE. To 

evaluate the reliability and robustness of the different DE algorithms, we introduce a 

general framework that includes the control parameters for evaluating the efficiency of 

the different algorithms. For example, stagnation occurs when the population cannot 

converge to a suboptimal solution although the diversity of the population remains high. 

This does not improve the population over a period of iterations, and the algorithm is not 

capable of finding a new search domain. There are many causes of stagnation, including 

control parameters that become inefficient for a specific problem in the decision space. 

Many studies have proposed a variety of ways to improve the current DE algorithm 

through modifications, including the use of differential mutations with perturbations, 

mutations with selection pressure, and operator adaption techniques. To address this 

need, we have conducted an extensive study on differential evolution and observed that 



 

14 
 

the performance of differential evolution and the quality of the results are based on the 

type of technique used, and what control parameters are effective. 

 1.4. Potential Contribution of the Proposed Research   

We propose a Multi-Layer Strategies Differential Evolution (MLDE) approach, 

which uses different mutation strategies in order to reach a fast convergence rate and 

avoid premature convergence due to the loss of diversity in the population. In fact, we 

used multilayer crossover techniques since there no single method has proven fit for 

every problem; though a crossover scheme may work perfectly with some problems, they 

may perform poorly with others. Each problem has different characteristics: some 

research showed that a scheme such as binomial crossover   performed well with some 

type of problem. MLDE works to improve the diversification of offspring by using 

different strategies in a multiple-layer approach. This approach makes the population 

widely spread so the sampled vectors can easily generate better new offspring. This 

technique can accelerate convergence rate for finding the optimum solution with a 

smaller number of iterations. 

Another significant factor is considered in this work is to provide a 

comprehensive study of the different types of state-of-the-art differential evolution 

algorithms that are available as global numerical optimizations in continuous search 

space. This comprehensive study sheds light on most improvements and developments 

pertaining to different types of DE families, including primary concepts and a variety of 

DE formats.  
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1.5 Literature Survey and Background 

1.5.1 Classic Differential Evolution 

If we are seeking the optimum for X* which demonstrate by vector ,i=1,…D , 

X , within boundary constraints L ≤ X ≤ H. Differential evolution (DE) is 

population-based, where the initial population  with random 

initialization . Initialization of the population is important step that assuming 

that there is no previous information about the optimum solution. Therefore, the 

population is initialized within only boundary constraints upper bound (H) and lower 

bound (L), so the population can by initialized by the following  

 
After the initialization phase, the evolution involves the three processes of 

mutation, crossover, and selection. The classic differential evolution strategy consists of 

three random vectors , and  that are selected from the population (Eq. 1). 

Randomly select of three individuals from the population 

 
 ≠   

 
 

   
 

                                while (    

The mutation operation recombines to construct the mutation vector  shown in 

Figure 1. The associated equation.  
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Figure 1.1  Random vectors selected in the mutation strategy (classic DE) 

The mutation process is the main distinctive component of DE and is considered 

the strategy by which DE is carried out. There are different types of mutation strategies, 

each one distinguished with an abbreviation based on the classic mutation strategy 

described by equation (1), i.e., DE/rand/1/bin, where DE represents differential evolution 

and “rand” represents random, which indicates that the vectors are selected randomly. 

The number one indicates the number of difference pairs; in this strategy, it is one 

pair . The last term represents the type of crossover used. This term could be 

“exp,” for exponential, or “bin,” for binomial [9]. Then, to complement the previous step 

(mutation strategy), DE also apply uniform crossover to construct trial vectors  

which is out of parameter values that have been copied from two different vectors. In 

particular, DE selected random vector from population indicate as  which must be 

different of , and ; and then it crosses with a mutant vector  ; the binomial 

crossover is generated as follows: 
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 =   (1.2) 

The crossover probability, Cr ∈ (0, 1), is a pre-defined rate that specify the 

fraction of parameter that are transferred from the mutant. Thus, it use to control which 

source participate a given parameter. Uniform crossover rate compares with uniform 

random values form from rand (0,1); if the random value is smaller than or equal to Cr 

then the trial parameter is copied from mutant vector else  the parameter is inherited 

from  

The next operation is selection, in which the trail vector  competes with the 

target vector  . If this trail vector is equal or less than  it changes the target 

vector  in the next generation else not changed in the population 

 =  

Where  is the objective function? Therefore, if the new trail vector  

is less than or equal to the target vector , it replaces the target vector. Otherwise, the 

population maintains the target vector value. Therefore, the different DE phases prevent 

the population from ever deteriorating; the population either remains the same or 

improves. Furthermore, continued refining of the population is updated by the trial 

vector, although the fitness of the trial vector is the same as that of the current vector. 

This factor is crucial in DE because it provides the algorithm the ability to move through 

the landscape using a variety of generations [10]. The termination condition can be either 

a preset maximum number of generations or a pre-specified target of the objective 

function value. [11].  
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1.5.2 Differential Evolution Strategies 

Table (1.1) The differentiation operation can be carried out using many mutation strategies. 
      Strategy Formulation  
1.  DE/best/1/exp  
2.  DE/rand-to-best/1/exp  
3.  DE/best/2/exp  
4.  DE/rand/2/exp  
5.  DE/best/1/bin  
6.  DE/rand/1/bin  
7.  DE/rand-to-best/1/bin  
8.  DE/best/2/bin  
9.  DE/rand/2/bin  

 
The various equations underpinning DE possess certain aspects in common when 

applied for continuous optimization. All consist of an original point sometimes referred 

to as the base point. The original algorithm carries out the search operation such that it 

finds the optimum as soon as possible. We can generalize the DE formula to the form α = 

β + F · δ, where β represents the base vectors and δ the difference between vectors. Thus, 

the main goal of all DE equations is to provide the optimal direction based on the 

differential β and base vector δ (Figure 2). 
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Y-
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X-Axis

β

 δ

 
 Figure 1.2 The differential β and base vector δ provide the optimal direction 

Establishing β and δ is crucial to creating an efficient strategy that can be applied 

to the chosen individuals from the population. However, all possible combinations of β 

and δ can be classified into the following strategies: local, random, directed, and hybrid. 

In random strategies, abbreviated as “Rand”, all individuals are formed randomly, and 

there is no prior information about the objective function. In directed strategies, 

abbreviated as “DIR”, a suitable value for the base vector is chosen according to the 

objective function to ensure a suitable direction. Hybrid strategies include the 

combination of “Rand” and “DIR”, labeled RAND/DIR. In another approach, the best 

overall vector is used, not only the best among the selected individuals; this approach is 

referred to as the “BEST”. Combining the “Rand” and “BEST” yields the hybrid 

RAND/BEST strategy. In addition, the combination of more than two approaches, e.g., 

RAND/BEST/DIR, can yield favorable results by exploiting the advantages of each 

approach.  
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However, Table 3.1 shows that all DE strategies employed are formed based one the 

DE/rand/x variation, which applies pairs of difference vectors: 

 
 

whereas the scaling factors are frequently presumed to be the same F1 = F2 =… = Fk = F. 

Substituting an arbitrary base vector 𝐱𝐱1 as vbest, “the best vector” from the population, 

provides a different DE approach, indicated DE/best/1:  

 
 

Most mutation strategies can be formed by a general formula based on the sum of k 

scaled difference vectors and a weighted average among the best vector and arbitrary 

ones: 

 
 
 

One aspect common to all the mutation strategy methods is the base vector, which 

controls the search direction. The difference vector provides a mutation rate term, such as 

a self-adaptive term, that is added to an arbitrary or guided base vector to construct a trial 

individual. Over generations, the individuals of a population reside in increasingly better 

positions and reform themselves. The various combinations of these vectors can be 

categorized into four groups based on information pertaining to the values gathered from 

the objective function: random, directed, local and hybrid. 

The RAND approach consists of strategies in which the trial individual is 

produced without knowledge of the value of the objective function. Similarly, the 

RAND/DIR approach includes strategies that use the values of the objective function to 

determine a promising direction. Likewise, the RAND/BEST approach applies the best 
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individual approach to proceed with a trial. Additionally, the RAND/BEST/DIR approach 

combines the last two groups into one that includes all of their collective benefits. 

 However, a suitable direction is obtained by using the best individual to decrease 

the search space and exploration time [12, 13]. Thus, the “dir” and “dir-best” strategies, 

which use objective function values to generate trial individuals, can produce an 

exploitation function. In fact, the random selection of parents for a trial enhances 

exploration capabilities [14-16]. Thus, the locations of individuals carry information 

about the fitness landscape. Therefore, an effective mutation strategy that leads to 

uniform random vectors represents the entire search space well. 

1.5.3 Initialization 

DE is a population-based optimization technique that begins with the problem 

solution by selecting the objective function at a random initial population. Predefined 

parameter bounds describe the area from which the number of population (Np) vectors in 

this initial population is chosen within both the upper bound “ ” and the lower bound 

“ ”, where the subscripts L and U indicate lower and upper, respectively. The following 

equation is used to develop a random number generator for all vectors from within the 

predefined upper and lower bounds. The random function Random(0, 1) outputs a 

uniform random number within the range (0, 1). 

 - )+  
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1.5.4 Crossover 

To balance the differential mutation search strategy, DE also applies uniform 

crossover to construct trial vectors. A trial vector is constructed from values that have 

been copied from two diverse vectors. In particular, DE crosses each vector as follows: 

 
 
 
 
 

The crossover probability,  ∈ [0,1], is predefined in the classic version of DE, 

and the fraction value of the Cr control is cloned from the mutant vector.  is compared 

with a random number randj(0,1). If the random number is less than or equal to , the 

trial parameter is inherited from the mutant  otherwise, the parameter is cloned from 

the vector . 

1.5.5 Selection 

In this stage, we determine when the trial vector  has an objective function 

value that is less than or equal to that of its target vector . DE swaps the target vector 

in the next iteration; otherwise, the target retains its place in the population. This process 

is carried out by comparing each trial vector with the target vector from which the 

parameters are cloned. After the population is updated, mutation, recombination and 

selection are repeated until the optimum value is found or after a predefined stop criterion 

is reached, such as a certain number of iterations. 

 

 If (  

  



 

23 
 

 
 
 
 
 
 
 

1.5.6 DE Applications and related automated 

Due to the rapid rise of DE as a modest and strong optimizer, developers have 

applied the technique in a wide range of domains and fields of technology1. Yalcin 

proposed a new method for the 3D tracking of license plates from video using a DE 

algorithm, which could be fine-tuned according to the license plate boundaries [17]. A 

color image quantization application using DE was proposed by Qinghua and Hu. The 

main objective of image processing techniques is to, during the color image quantization 

phase, decrease the number of colors in an image with a low amount of deformation. DE 

can be used to adjust colormaps and find the optimal candidate colormap [18]. With 

respect to the bidding market, Alvaro et al. applied DE in developing a competitive 

electricity market application that finds the optimal bids based on daily bidding activity 

[19]. Sickel et al. used DE in developing a power plant control application for a reference 

governor to produce an optimal group of points for controlling a power plant that was 

produced by [20]. Wang et al. proposed a flexible QoS multicast routing algorithm for the 

next-generation Internet that improves the quality of service (QoS) of multicasts to 

manage the increasing demand of network resources [21]. With respect to the electric 

power systems industry, Ela et al. applied DE to determine the optimal power flow [22]. 

Goswami et al. proposed a DE application for model-based well log-data inversion to 

                                                 
1 http://www1.icsi.berkeley.edu/~storn/code.html 
 

 

 If (  

     

http://www1.icsi.berkeley.edu/%7Estorn/code.html


 

24 
 

discover features of earth formations based on the dimensions of physical phenomena 

[23]. Another application applies network system reconfiguration for distributing 

systems. The network reconfiguration application proposed by Tzong and Lee involves 

the application of Improved Mixed-Integer Hybrid Differential Evolution [24]. Another 

DE application developed by Boughari et al. sets suitable controllers for aircraft stability 

and control augmentation systems [25]. 

1.5.7 Parameter Control 

The DE algorithm is a simple and effective optimization algorithm for problems 

from real world when its control parameters are suitably set [8, 26, 27], as reviewed in 

the previous section. In this section, we review the most current improvement approaches 

for DE. First, the DE algorithm applies certain control parameters to the system 

implementation. The accomplishment of DE is influenced by the value of parameters, 

such as the crossover and mutation rate. Although some studies have recommended 

certain values for these parameters, their effect on performance is complex and their 

exact values are unclear. In particular, there is a wide variety of different recommended 

values that are appropriate for different problems [28-30].  

The mutation rate ”, crossover rate “  and population dimension  maintain 

balance between exploration and exploitation [6]. Exploration is associated with finding 

new solutions, and exploitation is associated with searching for new suitable solutions; 

the two processes are linked in the evolutionary search [31, 32]. Therefore, the mutation 

and crossover rates influenced the convergence rate and the effectiveness of the search 

space [33]. 
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However, specifying suitable values for these rates is not easy [34]. Three types 

of strategies are used to set these parameter controls: deterministic parameter control 

(sometimes called random), self-adaptive parameter control and adaptive parameter 

control [10, 35-37]. Adaptive and self-adaptive parameter control [9-14, 38-41] have 

recently been proposed to dynamically alter the control parameters without requiring the 

user’s prior knowledge or information about the problem behaviors throughout the search 

process [42-46]. In the following sections, the self-adaptive parameter, the adaptive 

parameter, and hybrid control strategies are discussed. 

1.5.8 Deterministic Parameter Control 

The parameters are altered using a deterministic rule regardless of the feedback 

from the evolutionary search, with Jitter and Dither being two operators that are used in 

this technique. Dither scales the distance of the vector differentials as the same factor, , 

is applied to all the elements of a subtracted vector. Jitter multiplies each vector element 

of the subtracted vector by a different scale factor, . The rotation creates jitter using an 

essentially different procedure than the classic DE’s constant mutation with F. However, 

this approach shows robustness for non-deceiving objective functions [3]. Nonetheless 

,applied fixed values for each iteration, and F was created for each individual within the 

range [0.4, 1] range, whereas the interval [0.5, 0.7] was selected for Cr [47, 48]. 

Another approach is the composite DE (CoDE) algorithm proposed by Wang et 

al. In CoDE, a trial vector is selected from a set of groups produced by utilizing diverse 

DE strategies [49]. The main objective is to arbitrarily merge many trial vector strategies 

with different parameter at each iteration to construct new trial vectors. These 
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combinations help solve many problems successfully. Wang et al. used group of trial 

vector strategies and group of control parameter (almost three) to create strategy and 

parameter candidate pools. The selected strategies are DE/rand/1/bin, DE/rand/2/bin and 

DE/current-to- rand/1, and the three pair common choices for the control parameter 

settings were (F= 1.0, Cr =0.1), (F =1.0; Cr=0.9), and (F =0.8; Cr=0.2). In each 

generation, the three different strategies are applied, which randomly pick any of the 

control parameter values.  

Then, the trial vector is designated the candidate with the better value of fitnes. 

The parameters are chosen based on whether they are frequently implemented with many 

DEs, and their performances are evaluated. The three pairs of parameter settings that 

provide diverse effects produce new improved candidates. Furthermore, the different 

values of the control parameters maintain different levels of search performance. 

1.5.9 Adaptive Parameter Control 

The adaptive technique has been applied with classic DE/rand/1/bin; while the 

performance is relatively favorable, the technique still suffers from convergence rate 

issues [43, 44]. Very good designed a self-adaptive and adaptive parameter controls can 

enhance the robustness and the convergence rate by automatic adapting to the parameters. 

Approaches other than using the best explored solution use minor resolution in previous 

generations and their variation with the present population as a good area for finding the 

optimum. Adapting the parameters is a method called the adaptive DE algorithm (ADE), 

which applies a adapting evaluation from feedback of F relay on additional parameter (ϒ) 

that necessity be adjusted[50, 51]. However, the self-adaptive parameter controls the 
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value assignments and adjusts them dynamically. A parameter is altered dynamically 

through processing according to pre-defined rules using adaptive control, self-adaptive 

control or a combination thereof [34, 52]. In addition, the self-adaptive parameter control 

mix explores the optimal parameter values with the goal of finding the optimal solutions. 

Indeed the adaptive approach  have been achieved success with different technologies; 

Shojafar et al., 2016 applied the adaptive technique within cloud in order to reach the 

communication optimization framework and exploiting virtualization technologies[53, 

54].  

The main purpose of adaptive DE is to help exploit and explore relationships that 

avoid premature convergence problems and to optimize the final results. In general, there 

are many techniques for hybridizing a conventional evolutionary algorithm to solve 

optimization problems. The initial population of DE is formed by problem-specific 

heuristics. Then, other solutions obtained using another EA might be enhanced with a 

local search. This type of combination is called a memetic algorithm [10, 52]. The 

benefits of this hybridization lead to various operators that might exploit problem 

knowledge, such as merging more promising individuals to be inherited. Furthermore 

mutation operations may be biased to contain solutions of promising individuals with 

higher probabilities than those of others. 

1.5.10 Differential Evolution with Self-Adapting Populations (DESAP) 

Differential Evolution with Self-Adapting Populations (DESAP) dynamically 

adjusts the crossover and mutation parameters δ , η and the population size π [39]. Each 

individual  is connected to its control , , and . δ and π have similar meanings to NP 
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and CR correspondingly. The mutation factor F is retained as static, and η denotes the 

probability of implementing an extra mutation using normally distributed after crossover. 

The main technique of DESAP is unlike that of the traditional DE/rand/1/bin algorithm 

[38]. Parameters are adapted by developing them over the mutation and crossover 

processes, as the procedures are applied to each . The updated values of that parameters 

continue with  if . However, DESAP still requires further development to 

produce better performance. In fact, despite its simplicity, DESAP performs better than 

DE in one of De Jong’s five exam problems, whereas the other solutions are very 

identical. DESAP represents an opportunity to reduce the control parameters further by 

updating the size of population, as is done with the additional parameters. 

1.5.11 Fuzzy Adaptive Differential Evolution (FADE) 

Fuzzy adaptive differential evolution (FADE), presented by Lampinen and Liu 

[41], is a different type of DE algorithm that apply fuzzy logic controllers to adjust the 

controller parameters  and  for the crossover and mutation operations. Similarly to 

DESAP, the size of the population is presumed to be adjusted and is static during the 

evolution procedure [9]. The fuzzy-logic control method has been verified on a group of 

10 functions as benchmark and displays best solutions than those of classic DE for high-

dimensional problems. 
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1.5.12 Self-adaptive Differential Evolution (SaDE) 

Self-adaptive Differential Evolution (SaDE) is simultaneously applied to pair of 

mutation techniques “DE/rand/1” and “DE/current-to-best/2” [45]. The adaptation 

technique of parameter consists of two chunks: the probability of the adaptation , where 

= (1, 2), and the DE parameters  and . The probability of producing a mutation 

vector based on the two strategies approaches 0.5 and is updated every 50 iterations using 

the following method: 

 

 

where  and  are the numbers of offspring vectors constructed by the  i = 

(1, 2) strategy that was a success or failure in the selection process over the last 50 

generations. It is assumed that this adaptation process can progressively develop the most 

appropriate mutation strategy at diverse learning phases for a given problem. The 

mutation factors  are autonomously created at each iteration based on a normal 

distribution ”NR” with a mean of 0.5 and a standard deviation of 0.3,  

= NR(0.5, 0.3) 

The crossover rates  are autonomously formed based on a normal distribution 

with a mean of  and a standard deviation of 0.1. The mean  approaches 0.5, is 

changed every 25 iterations and is set to be the mean of the effective Cr over the previous 

25 generations. 

= NR( , 0.1) 
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where K is the counters of effective Cr values and  indicates the  

value.To accelerate the convergence, a local search technique (Quasi–Newton method) is 

applied to respectable individuals after 200 generations. SaDE has been further developed 

by applying five mutation strategies to resolve a group of constrained problems [55]. 

One of the success fuzzy application that applied on cloud computing which  

consists of numerous of computers linked over instantly transmission network, so it 

provides the capability to instantaneously perform an numerous software on connected 

workstations. The job scheduling is one of vital and interesting aspects in cloud 

computing. FUGE based on fuzzy theory and genetic algorithm that assign jobs to 

resources optimally considering execution time and cost(memory, virtual machine speed,  

network rate, and job intervals) .Applied fuzzy theory with modified the standard genetic 

algorithm (SGA) and used to invention a fuzzy-based steady-state GA. In this approach, 

jobs are denoted as genes and resources of computing allocated to these genes, and 

groups of genes produce chromosomes. They created two different forms of 

chromosomes: first type is based on job length, CPU speed and size of the resources and 

another form is rely on job length and bandwidth of resources. For each type of 

chromosome, population of genes are randomly created and computational resources are 

assigned to gene randomly. Algorithm calculates the value of fitness for each 

chromosome using a fuzzy function. Fuzzy theory is also used in the crossover step of the 

GA. In general, single point or two point crossover are used in crossover approach, but in 

this approach, fuzzy-based crossover that is one of the new approach [56]. 
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1.5.13 Self-adaptive NSDE (SaNSDE) 

Neighborhood search differential evolution (NSDE) is similar to classic DE 

except that Eq. (1) which is replaced with 

 

where  is the differential deviation, N (0.5,0.5) means a Gaussian 

random number with a average of 0.5 and a standard deviation of 0.5 and δ indicte a 

Cauchy random variable with a rate parameter of t=1. 

Self-adaptive DE (SaDE) [8] was developed to resolve the control parameters and 

learning technique . In SaDE, two DE learning strategies are chosen according to their 

performance. The most appropriate learning technique and parameter values are 

increasingly self-adapted according to the learning experience gained during evolution 

[57]. 

SaNSDE is an adaptive differential evolution algorithm that produces mutation 

vectors in a manner similar to SaDE [57]. However, the difference is that the mutation 

factors are established based on a normal distribution or a Cauchy distribution: 

 

where the normal distribution (μ, ) indicates a random value of mean μ and 

variance  and a  (μ, δ) indicates a random value with scale parameters 

μ and δ. The probability  of the spread over is adapted as follows. 
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. 

The crossover rate adaptation is similar to the method used in SaDE, but the 

factor  is changed as a biased average of the successful values  every 25 

iterations. 

  

where the weight is calculated with a positive improvement = f (x) – f (u) in the 

selection related to each successful crossover rate CRsuc(k). 

1.5.14 Self-Adapting Parameter Setting in Differential Evolution (jDE) 

jDE is another adaptive DE algorithm that is similar to the classic DE/rand/1/bin 

algorithm. jDE improves the population size throughout the optimization process based 

on the improved parameters and thus generates vectors that are more likely to survive. 

However, the mechanism of jDE involves adapting the parameters Fi and CRi associated 

with each individual. At the beginning of the process, the parameter values are Fi = 0.5 

and CRi = 0.9 for each individual. However, Fi and CRm are updated from the effective 

records; thus, jDE produces new values within the probabilities = , which are used to 

alter the control parameters. The updated values for Fi and CRi are then obtained using 

uniform distributions over [0.1, 1] and [0, 1], respectively. That is, 
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where j = 1, 2, 3, 4 is the uniform random function ∈[0, 1]. The updated 

parameters are implemented in the mutation and crossover processes to produce new, 

consistent vectors. This mechanism updates the prior parameter with a new one only if 

the new vectors pass the selection phase. However, jDE yields improved results with the 

classic DE/rand/1/ bin strategy. 

1.5.15 Adaptive DE algorithm (ADE) 

Hu and Yan proposed another adaptive DE algorithm. They modified the 

parameters F and Cr to each iteration using the current generation and the fitness [58]. 

They tried to find the optimal value for the parameters F and Cr to find a balance between 

reliability and efficiency. The mutation and crossover operations are calculated for each 

generation. Thus, for each parent  of generation g, the offspring  is constructed as 

follows: calculate the  mutation  and crossover  as 
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1.5.16 Modified DE (MDE) 

MDE uses only one array, which is updated when a better solution is found. 

Therefore, continuously updating the one array improves the convergence speed, leading 

to fewer evaluation procedures than those associated with classical DE [59]. In MDE, and 

by applied distribution of Laplace  “F” is arbitrarily adjusted [59]. The Laplace 

distribution is analogous to the (NP) Normal Distribution [60]. Moreover, the Laplace has 

a longer, skewed, allowing for inference so that it can control more efficiently, thus 

avoiding premature convergence. Experimental results demonstrate that modified DE 

with a Laplace distribution (MDE) offers enhanced performance compared with the 

classical DE approach [61]. 

1.5.17 Modified DE with p-best Crossover (MDE_pBX) 

MDE_pBX involves F and Cr values that are produced using a Cauchy 

distribution using a position parameter, and then  adapted relay on the power average  of 

entirely F/Cr ratios producing effective offspring [62]. The mutation strategy used in this 

algorithm scheme (DE/current-to-best/1) can be expressed as follows: 

+  -  +  - ) 

where _  is the finest of the q% vectors arbitrarily selected from the existing 

generation, whereas  and  are two distinctive vectors chosen randomly from the 

current population and are not equal to  or the target.  
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In the p-best crossover process, for each different randomly  vector chosen  from 

the p best-ranking vectors in the present population[63] . Then, a standard crossover is 

executed as per (5) between the vector and the arbitrarily chosen one from  p-top vector 

to produce the trial vector with identical index. The variable p is linearly make smaller 

with following generations as follows: 

 

where  is the present generation value,  is the most extreme number of 

generations and Np is the population number. The parameter adaption mechanism  is 

independently calculated as  

 Cauchy Distribution ( , 0.1) 

(  where  initialized with 0.5 

 = 0.8+0.2* rand(0,1) 

( ) 

where n=1.5 and  is the set of cardinalities. 

The crossover probability adaptation Cr of each individual vector is independently 

created as 

 Gaussian Distribution ( , 0.1)  

(  = 0.8+0.2* rand(0,1) 

( ) 

 where n=1.5 and  is the set of cardinality 

1.5.18 DE with Self-Adaptive Mutation and Crossover (DESAMC) 
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DE with self-adaptive mutation and crossover (DESAMC) is a new version of DE 

[64, 65]. In this approach, F is adapted using an affection index ( ), calculated using 

information about fitness. A minor  shows Which the each on is far away from the best 

global vector (best solution); consequently, a robust global exploration is essential. The 

formula of adaptation is as follows: 

 

where tanh indicates the hyperbolic tangent function  

 

where the crossover is       

where  is the present generation,  is the greatest number of generations and 

 and  are the maximum and minimum values of CR, respectively.  

1.5.19 Adaptive Differential Evolution with Optional External Archive 

Adaptive Differential Evolution with Optional External Archive (JADE) is an 

alternative to adapting the parameters at each generation toward progressive self-

adaptation, based on the success rate [66]. Qin and Suganthan [45] and Zhang and 

Sanderson [66] proposed the new mutation strategy (DE/current-to-pbest/1). 

Furthermore, they used new adaptive parameters,  and  
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The crossover and selection operations are implemented as in the classic DE 

algorithm.The greedy strategy involves a new mutation strategy called DE/current-to-

pbest/1 (without archive) and assists the baseline JADE: 

 - ) 

 - ) 

where  is the best solution that is randomly chosen as one of the best 

individuals from the current population [49]. Similarly, ,  and  are randomly 

selected from the current population. However,  is also randomly chosen from the 

union between  and . 

 = randomly ( ∪  ) 

JADE is also applied to the archiving process. Initially, the archive is unfilled and 

is added to the parent solutions that fail in the selection process [67]. The purpose of the 

archive is to avoid calculation overhead. Moreover, the archive has a limited size; thus, if 

the size of the archive grows beyond then the shrink operation is performed to reduce 

its size so that it does not exceed (α, ).The archive technique provides information for 

the directions to improve the diversity of the population. In addition, arbitrary F values 

can help expand population diversity [68]. 
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1.5.20 Adaptation of  and  

The adaptation technique used for JADE is applied to  and  to produce the 

mutation rate Fi and the crossover rate  related to each individual vector xi. JADE is 

implemented in each iteration i, and the crossover rate CRi of each individual xi is 

individually formed based on a normal random distribution = Normal Distribution ( , 

0.1), where the mean  is initially 0.5 and the standard deviation is 0.1, i.e., 

 Normal Distribution ( , 0.1). 

Then,  is calculated, which represents the set of all effective crossover rates 

. Furthermore, the parameter  is updated in each iteration; this information is saved, 

and random information is deleted from the archive file to keep its size .  is 

calculated as follows: 

 

Similarly, the mutation rate Fi is calculated using the Cauchy distribution ( , 

0.1), with the constraint that Fi =1. If Fi ≥ 1 or Fi ≤ 0 and  is initialized as 0.5, then 

 Cauchy Distribution ( , 0.1) 

where SF indicates the set of all effective mutation rates . Then,  is updated as 

follows:     

where  indicates the Lehmer mean calculated as follows: 

. 
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1.5.21 Differential Covariance Matrix Adaptation Evolutionary 

Algorithm (CMA-ES). 

 
Saurav et al. proposed the Differential Covariance Matrix Adaptation 

Evolutionary Algorithm for real parameter optimization (CMA-ES) [69]. The goal of the 

covariance matrix adaptation is to estimate the reverse Hessian matrix, analogously to a 

quasi-Newton technique. Furthermore, to increase the utility of the DCMA-EA, the 

greedy selection method of DE is applied to improve individuals in the next generation 

[70]. CMA-ES uses a new differential perturbation structure, and the new population 

vector is shaped by the following equation: 

 

where  is a group of random numbers taken from a normal 

distribution with zero mean and a standard deviation of 1 and has an element number 

equal to the dimensions of the function at hand. The parameter “ ” and the evolution of 

 determine the overall standard deviation.  

By using sharing population, the new mutated vectors are produced to the target vectors 

as follows 

 

where  and  are two vectors randomly selected from the population, m is 

the average of the present population, B is an orthonormal of eigenvectors, and D is the 

square root of the commensurate none negative eigenvalues. P is a control value which 
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maintains the contribution of the average vector of the existing population and target ones 

as well.  Both of the scale F and P are computed as follows: 
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CHAPTER 2: DIFFERENTIAL EVOLUTION WITH 

MULTIPLE STRATEGIES 

In this approach, four different mutation strategies and one crossover operator are 

used within a single algorithm framework, as proposed by Elsayed et al. [71]. The main 

objective is to adapt a mutation strategy by choosing one from a pool of allowable 

schemes. In fact, although this algorithm involves different mutation strategies with 

dissimilar features, the authors believe that these different strategies cannot yield suitable 

performance. Therefore, the performance of the mutation strategy is dependent on the 

progression of the evolution, which is based on the success of the search operators. 

Therefore, the feasibility status and the fitness value factors are used to measure 

the enhancement in the infeasibility. If the problem becomes increasingly feasible, the 

improvement index is calculated as follows: 

 

where  is the best individual at generation t and  is the average of the 

violation. 
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2.1 Hybrid DE Algorithms 

Hybridization is another way to increase convergence for optimization. 

Hybridized approaches balance global and local search techniques. Hybridization is the 

method of joining the advantages of two or more algorithms to produce one algorithm 

that is anticipated to generate better offspring [72]. Each approach has its strengths and 

weaknesses. Thus, by combining different approaches, performance is improved [73]. 

Hybridization can be implemented at four stages of interaction [73]. The first is the 

individual stage for the search at examination level, which defines the performance of an 

individual in the population. The second is the population level, which appear as dynamic 

range of a population. The third is the exterior level, which delivers communication with 

other methods. The fourth is the meta data level, in which a superior metaheuristic 

contains its strategies [74]. 

Many attempts have been made to combine different algorithms to construct new 

hybrid algorithms. Genetic algorithms (GAs) and fuzzy philosophy are two recognized 

artificial intelligence methodologies [75, 76]. FUGE is constructed from a fuzzy model 

and a GA, which form a hybrid algorithm that consists of an iterative algorithm to update 

the offspring for job ordering for each VM (virtual machine). Then, the fuzzy algorithm 

obtains the fitness values for all offspring. This technique yields remarkable performance 

with cloud parameters such as those used in real-time communication. 

Each optimization technique has specific operators and procedures; for example, 

the DE algorithm consists of mutation, crossover and selection. In the hybridized 

technique, some operators can cooperate between two algorithms to exploit the 
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complementary characteristics of different optimization strategies [77]. In fact, choosing 

a suitable combination of balanced algorithms is the key to achieving enhanced 

performance. Nevertheless, developing an effective hybrid algorithm is not easy because 

it requires proficiency in different areas of optimization. There are many types of 

problems for which a classic or modified differential evolution algorithm might fail to 

find a suitable solution [78]. Therefore, recently applied DE hybridization approaches 

have become widespread due to their ability to handle many real-world problems. Some 

of the benefits of DE hybridization have been previously discussed [40]. To enhance the 

performance of DE, such as the speed of convergence or the quality of DE, and to solve 

larger systems, DE must incorporate hybrid evolutionary methodologies [79]. In general, 

there are three types of hybridizations for evolutionary algorithms involving global 

optimization: hybridization with local search, hybridization with global optimization and 

hybridization involving both techniques [80]. In this section, we highlight and 

demonstrate several hybrid differential evolutionary algorithms reported in the literature. 

2.2. Hybridization of DE with Other Evolution Algorithms 

DE has been frequently hybridized with PSO because both algorithms implement 

simple difference processes to perturb the current population [81]. The variation between 

the current and the best individual is utilized both in the refresh population method of 

PSO and in the DE/current- to-best/1 mutation strategy. 

The particle swarm optimization (PSO) method was offered by J. Kennedy and 

R.C. Eberhart [82, 83]. The technique shows perfect act compared with that of other 

evolutionary algorithms or metaheuristics. This approach mimics human cognition and 
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has been applied to the optimization problems. The goal is to apply a group of individuals 

called a swarm of particles [84]. The same notation used for DE is used for PSO; a vector 

is used as a solution for an optimization task t. At each loop t, a Particle alterations index, 

affected by its velocity  via the equation . However, two 

equations control the updating of the velocity . 

 

gbest represent the whole population; lbest describes the subpopulation 

encompassing the particle. The gbest is practical of best results. Let pg be the better 

results of the population; thus, social influence is mathematically expressed as 

. Therefore, updating the particles at each loop as follows: 

 

 

where ρ1 and ρ2 are the control parameters. 

PSO has several disadvantages, the most significant of which is its premature 

convergence. PSO consists of three components: previous velocities , present 

behavior  

, and social behavior . 

Because PSO is built on these three components, it will not operate if any of those 

components has any issue; for example, a vector consisting of a bad solution will retard 

the optimal solution. However, DE does not carry the initial two features of PSO. The 
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individual construct is based on a random walk algorithm in the search space, which then 

selects the optimal position index [85].  

In PSO, the next position is based on the present optimal position pi and by the 

particle’s velocity vi. In addition, the third feature of PSO could be inferred in DE as the 

RAND/BEST strategy. PSO refresh the velocity of a particle applying three expressions. 

In the proposed strategy, the particle velocities are updated by carrying the 

subtract of the index vectors of any two dissimilar particles arbitrarily selected from the 

swarm. Das et al. proposed PSO-DV (particle swarm with differentially perturbed 

velocity) [86]. In the proposed scheme, particle velocities are perturbed by a new term 

containing the weighted difference of the position vectors of any two dissimilar particles 

randomly selected from the swarm. This differential velocity term mimics the DE 

mutation [87]. PSO-DV applies the DE differential operator to update the velocity of 

PSO. Two vectors are chosen randomly from the population. Then, unlike in PSO, a 

particle is moved to a new position only if the new position produces a better fitness 

value. In PSO-DV, for each particle i in the swarm, two other separate particles j and k (i 

≠ j ≠ k) are chosen randomly. The difference between their locations is calculated as a 

difference vector: 

 

 

where CR is the crossover rate,  is the component of the subtract vector and  

is a factor rate in the range [0, 1]. Hendtlass proposed the first combination of DE and 

PSO and called it SDEA, as the individuals comply swarm principles [55]. DE is used to 
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transfer the individuals to the promised region in random fashion. Xiaobing Yu et al. 

proposed an adaptive hybrid algorithm based on PSO and DE (HPSO-DE) with a 

composed populations among PSO and DE [88]. The strategy incorporates the 

advantages of the two algorithms and maintains population diversity. Therefore, HPSO-

DE has the ability to move to local optima [89]. Zhang et al. offered DEPSO, which 

apples the similar standard of updating PSO individuals via DE [90]. DEPSO performs 

well with numerical integer problems but is not efficient for small feasible space 

problems. Mutations are maintained by a DE operator on , with a trail vector  for 

the dth dimension: 

 

where k is a random value within the domain [1, D], which include that the 

mutation has at least one dimension. CR is a crossover constant, and , is the case of 

N=2 for the general difference vector , which is defined as follows: 

 

 

where is the difference vector and are chosen from the p-best set at 

random. Liu et al. offered a hybridization of PSO and DE in a pair of population scheme 

[91]. Three mutation strategies are borrowed from DE (DE/rand/1, 

DE/current_to_best/1DE/rand/2) are applied to refresh the former best solutions [92]. 

Trivedi et al. proposed a hybrid of DE and GA to resolve scheduling challenges [93]. GA 

operates on the binary element variables through the DE process to enhance the related 
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power-related variables [94]. The advantage of a GA lies in its ability to discover a 

decent solution to a problem whenever the iterative approach is too expensive in time and 

the mathematical approach is unobtainable [95]. GA allows for the fast discovery of the 

solution. Although the genetic algorithm is not excessively complex, the parameters and 

implementation of the GA generally require a tremendous amount of tuning [96]. 

The advantage of DE is that, in general, it frequently shows better solutions than 

those yielded by GA and other evolutionary algorithms [97-99]. Furthermore, DE is easy 

to apply to a wide variety of problems regardless of noisy, multi-modal, multi-

dimensional spaces, which typically make problems difficult optimize. Although DE 

consists of two important parameters, Cr and F, those parameters do not require the same 

amount of tuning as those associated with other evolutionary algorithms [100]. and Liao 

has proposed a hybridization of DE and a local search algorithm modeled after the 

harmony search (HS) algorithm to find the global optimum [101]. The main goal of this 

type of hybridization method is to advance the use of mixed discrete and real-valued-

dimensional problems.  

Boussaïd et al. proposed a hybridization of DE and Biogeography Based 

Optimization (BBO) to deliver solution through the optimal power distribution method in 

a Wireless Sensor Network(WSN)[102, 103]. 

Dulikravich et al. proposed a hybridized multi-objective, multi variable optimizer 

by combining non-dominated sorting differential evolution (NSDE) with the strength 

Pareto evolutionary algorithm (SPEA) and multi-objective particle swarm optimization 

(MOPSO) [104]. 
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Haixiang Guo and others have proposed a form of DE enhanced among self-

adaptive parameters that depend on simulated annealing algorithms in the collection of 

DE; the classic selection technique is a greedy equation [105]. The greedy rule is easily 

trapped in a local optimum. However, a new selection technique based on simulated 

annealing is used in this algorithm. The approach is expressed as follows: 

 

 

 

where represents the generation temperature. Pholdee and Bureerat offered 

a hybrid algorithm involving the trial vector method of DE called the Real-Coded 

Population-Based Incremental Learning (RCPBIL) algorithm [106]. The RPBIL can be 

extended to multi-objective optimization similarly to multi-objective PBIL using binary 

codes for which the population is serve as a likelihood vector for single-objective 

problems [107]. When addressing multi-objective problems, more probability vectors are 

utilized to maintain population variety. Likewise to the binary code of PBIL, the multi-

objective style of the RPBIL uses numerous possibility matrix that appear for a real code 

population, where each probability matrix is called a tray [108].  

Three-dimensional matrix  which is represent a group of probability trays is a 

with dimensions n* * , that  is the number of trays required for each tray drive to be 

used to produce a real-code subpopulation, which has approximately  form results 

as its members. 
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An initial population is formed for the search procedure of multi-starting with 

early likelihood trays. An initial Pareto archive is gained, and non-dominated results are 

then designated to update the probability trays. Then, the centroid of the non-dominated 

solution set ( ) is used to update a probability tray in the series, where the  of the set 

that has the lowest value of the first objective function is applied to update the first tray 

and so on.  

The updating procedure for each tray can be improved by substituting  with 

. Subsequently, a population yielding the updated trays is shaped. The Pareto archive is 

changed by substituting its members with non-dominated solutions saved from the 

mixture of the current population and the elements in the preceding archive. If the 

number of archive elements is larger than the constant archive size, the clustering method 

is initiated to eliminate non-dominated solutions from the archive. These steps are 

repeated until a stopping condition is fulfilled [109].  

Neri et al. [110] proposed a compact DE hybridized with a memetic search to 

yield faster convergence [111]. The algorithm represents the population as a multi-

dimensional Gaussian distribution and is called Disturbed Exploitation compact 

Differential Evolution (DEcDE) [112]. The DEcDE algorithm utilizes an evolutionary 

framework based on DE logic assisted by a shallow depth for processing the local search 

algorithm [112]. 

The output of the algorithm was introduced to create an MC model to gain high 

efficiency on a diverse set of problems, regardless of its limits, in terms of complexity 
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and memory usage. At the start of the DEcDE algorithm, an  probability vector 

(PV) is produced. 

 

where and  are, respectively, the mean and standard deviation values for 

each design variable from a Gaussian probability distribution function (PDF) truncated 

within the interval [-1, 1].  

 

Zhi-hui Zhan and Jun Zhang proposed a differential evolution (DE) algorithm 

with a random walk (DE-RW) [113]. DE-RW is analogous to the classic DE algorithm, 

with a minor alteration in the crossover procedure that mixes the individual vector and 

the mutant vector to perform a random walk, forming the target vector as follows: 

 

where  and  are the low and high search restrictions of the  dimension and 

the parameter RW is used to control the effect of the random walk. The parameter RW is 

controlled as follows: 

 

where g and G are the current generation number and the maximum number of 

generations, respectively. A few some remarkable DE algorithms are shortened in 

Table2. 
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Table 2.1. Summary of different DE algorithms with verity of approaches 

 

Algorithm  Strategy  Note 
Multi PopulationDEalgo- 
rithm (MPDE)[114] 

DE/best/1 MPDE created subpopulation in 
random manner form main population 
and, then the migration of the best 
vector from subpopulations to main 
population 

Adaptive DE[115] six DE strategies and one strategy is 
randomly selected by a roulette 
wheel 

Adaptively selects a trial vector 
generation, scale factor “F” is 0.8 and it 
is constant for all strategies also the 
crossover rate is constant = 0.5 

Self-Adapting Parameter 
Setting in Differential 
Evolution (jDE) 

DE/rand/1/ bin jDE enhanced the population size based 
on the developed the DE parameters 

Self-adaptive Mutation DE 
(SaMDE) 

DE/rand/1,DE/best/1,DE/best/2andDE/ 
current-to-rand/1 

The strategy is chosen by a roulette 
wheel strategy. The scale factor is 
dynamic and chosen form range [ 0.7; 
1.0) after each generation. 

Modified DE(MDE)with 
pbest 
crossover(MDE-pBX)[116] 

DE/current-to-best/1,  DE/current-to-
gr_best/1 [  gr indicate for group  ]  

F and Cr directed by the information of 
their effective values that were capable 
to produce improved offspring 

Modified DE algorithm 
(MDE) 

DE/rand/1 ,  DE/ 
best/1 

One of the two strategies, is chosen 
based on a probability. 

DE with Self-Adaptive 
Mutation and Crossover 
(DESAMC) 

Classic DE Strategy Working to self-adaptive the 
parameters values  

Differential Covariance 
Matrix Adaptation 
Evolutionary Algorithm 
(CMA-ES) 

new population vector is created using  
DE/rand/1/ bin 

Parameters are chosen randomize  

Differential Evolution with 
Multiple Strategies 

DE/best/1/bin,rand/1/bin, 
DE/best/1/exp ,and DE/rand/1/exp 

Parameters are chosen randomize 

DE-PSO Classic DE strategy + The two basic 
equations which govern the working of 
PSO   

“DE-PSO” Hybrid differential evolution 
- Particle Swarm Optimization.  The 
inclusion of PSO phase creates a 
perturbation in the population. 

Hybrid of DE and GA ( 
hGADE)[117] 

hybridized GA with only 2 classical DE 
variants 

randomly generated binary unit 
commitment matrices while the RPM of 
all the individuals in the initial 
population are generated 

hybridization of DE and 
Biogeography Based 
Optimization (BBO)[118] 

classical DE/rand/1/ bin + classic BBO The main operator of DE/BBO is the 
hybrid migration operator, 
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CHAPTER 3: RESEARCH PLAN 

3.1 Introduction 

The DE algorithm has been applied in several applications such as scheduling, 

image processing, multi-modal methods, non-convex methods, and among many others 

[119-121]. The traditional performance of DE is based on the chosen strategy and the 

control parameters[122, 123]. This strategy consists of mutation, crossover, and selection, 

and there are three control parameters: the number of populations “NP”, the mutation 

factor “F” (sometimes called the scaling factor), and the crossover rate “Cr”[124-126]. 

Indeed, the performance of DE relies on the values of the population size “NP”, the 

mutation factor “F”, and the crossover rate” Cr”[127, 128]. Many studies have been 

conducted in classic DE, such as using mutation with perturbation, mutation with 

selection pressure, and a neighborhood mutation operator[129].  

The second phase is the crossover and there are two different crossover 

techniques, either binomially or exponentially, produced different quality of results[40, 

130]. The major aspect of the crossover is to determine the element of the trail vector that 

will be inherited from the target vector[131]. Additionally, the performance of DE relies 

on strategies and the right control parameter values [132-135]. Extensive researches have 

been conducted to determine what the best control parameter values. There are two 

approaches for setting these control parameters: predefined (also called deterministic) and 

adaptive approaches. In fact, in the deterministic technique there are some recommended 
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values for these parameters for which it is not required to obtain any feedback. 

However, with adaptive technique the parameters values assigned and adjusted 

dynamically through the processing according to pre-defined rules. Unfortunately, 

the adaptive and self-adaptive techniques that are often time-consuming for the evolution  

for each parameter value because of their high complexity[136]. In fact, adaptive and 

self-adaptive  are very effective for small dimensional problems, however they are 

produce poor results when the dimensions are increased[137]. Therefore, researchers 

have focused on finding suitable and efficient strategies to speed up the convergence 

rate[138, 139].  

In this work we introduce a new proposes a Multi-Layer Strategies Differential 

Evolution (MLSDE) approach, which uses different mutation strategies in order to reach 

a fast convergence rate and avoid premature convergence due to the loss of diversity in 

the population. Multilayer techniques were applied since there is no single method that 

has proven fit for every problem. Some strategies may work perfectly with some 

problems, while other strategies perform poorly with other problems. ndeed the MLSDE 

works to improve the diversification of offspring by using different strategies in a 

multiple-layered approach. This approach spread out the population so that the sampled 

vectors can easily generate improved offspring. One of the advantages of this technique is 

its ability to reach a very quick rate of convergence to find the optimal solution with a 

minimum number of iterations. 
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3.2 Multi-Layer Strategies Differential Evolution 

The multi-layer strategies differential evolution (MLSDE) approach operates in 

the same manner as classic differential evolution with an initialization population, 

mutation, crossover, and then the selection operation. However, MLSDE consists of a 

group of mutations, crossovers, and selections that are performed in sequence. 

In MLSDE, the first step is to initialize the main matrix with random population 

within constraints of upper and lower bound values. Then, the different vectors are 

chosen as the core of the mutation operations. These vectors differ in the way in which 

they present in domain space because of their different composition. Therefore, to obtain 

the diversity of the domain space, six vectors are chosen V1, V2, V3, V4, Vbest, and VHill 

from the population. Two approaches are used to construct the best vectors. The first 

approach, Vbest uses the objective functions to find best vector in the main matrix, 

whereby each row represents an independent vector. The second approach, uses Hill 

Climb method to construct vector VHill. The best vectors would often leads to a fast 

convergence and performs well when solving for unimodal problems. The combination of   

Vbest, and  VHill helps to balance between exploration and exploitation.  
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Following the mutation stage the, the crossover between vectors occurs to 

produce improved vectors [136]. Crossover results in high diversity in populations by 

applying the crossover equations (11),(12), and (13).The crossover probability, Cr ∈ 

[0,1], is pre-defined value that controls the fraction of parameter values that are copied 

from the mutant. To control which source contributes a given parameter, uniform 

crossover. Compares Cr to the output of a uniform random number generator ,randj(0,1). 

If the random number is less than or equal to Cr, the trial parameter is inherited from the 

mutant, Vi, j  otherwise, the parameter is copied from the vector, Xi, j . In addition, the 

trial parameter with randomly chosen index, jrand, is taken from the mutant to ensure that 

the trial vector does not duplicate Xi, j Because of this additional demand, Cr only 

approximates the true probability that a trial parameter will be inherited from the 

mutant[140].  
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Once chosen, the different vectors are used in the below equations to calculate new 

vectors Vy1 , Vy2, and Vy3. This stage is referred to as the MLSDE mutation. 

Next stage is selection stage. The trail vectors produced from equation (11),(12) 

and (13)  are compared with target vectors. If the trial vector, U1(i,j), U2(i,j), and U3(i,j) 

have an equal or lower objective function value than that of its target vector, X1(i,j), 

X2(i,j)   , and U3(i,j) they replace the target vector in the next generation; otherwise, the 

target retains its place in the population. The flowchart of MLSDE algorithm is prsented 

in Figure.2. 
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Figure 3.1. The flowchart of Proposed MLSDE 
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CHAPTER 4: IMPLEMENTATION AND RESULTS 

4.1 Implementation and Test Plan 

We have conducted experimental tests on the optimization benchmark suite four 

typical minimization problems introduced in the CEC 2013 benchmark functions suite 

experiments. Therefore, the growing research area is divided into adaptive, self-adaptive, 

and hybridization strategies. Thus, this study may provide a roadmap through which 

developers may gain a full understanding of this field. To evaluate the reliability and 

robustness of the different DE algorithms, we introduce a general framework that 

includes the control parameters for evaluating the efficiency of the different algorithms. 

In addition, the proposed MLSDE algorithm is examined on the classical benchmark 

functions provided by the CEC2015 Special Session. 

4.2 Results  

The well-studied domain of function optimization was used to test the 

performance of the proposed MLSDE algorithm , which was evaluated  based on the 

classical benchmark functions provided by the CEC2015 Special Session [141]. The 

algorithms was used for the comparison of different  algorithms include JADE, JDE, and 

SADE  [141, 142]. In this section, MLSDE is employed to minimize a set of 16 scalable 
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benchmark functions with dimensions of D=30 and D=100. The parameters of MLSDE 

were fixed at F=0.5 and Cr=0.8, which represent better parameter values as reported in 

literature [29, 143]. The optimal values for all of these functions were equal to 0. The 

functions F1-F5 were unimodal functions and F5 exhibited multiple minima in high-

dimensional case. Functions F6-F12 were multimodal functions and F13 is an expanding 

multimodal function (quartic function). The number of demission D was set for 30 and 

100 at all 16 test functions. Table 3 Experimental Results of MLSDE, JADE, JDE and 

SADE for 50 independent runs of 30 Variables. 

Table 4.1. Mean experimental results for 30 Variables over 50 runs 
 

 

 

 

 

 

 

 

 

 

 

 

 

Func MLSDE JADE JDE SADE 

F1 1.28E-82 2.69E-56 1.46E-28 3.42E-37 

F2 3.68E-28 3.18E-25 9.02E-24 3.51E-25 

F3 2.37E-74 6.11E-81 1.16E-13 1.54E-14 

F4 7.53E-26 5.29E-14 2.44E-14 6.39E-27 

F5 2.09E-04 1.59E-01 1.04E-03 7.98E-02 

F6 0.0E+00 0.00E+00 0.00E+00 0.00E+00 

F7 5.07E-06 6.14E-04 3.35E-03 2.06E-03 

F8 0.0E+00 0.00E+00 0.00E+00 0.00E+00 

F9 0.0E+00 0.00E+00 0.00E+00 0.00E+00 

F10 4.38E-12 4.14E-15 8.26E-15 4.04E-15 

F11 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

F12 0.00E+00 1.57E-32 5.99E-30 1.57E-32 

F13 3.02E-30 2.17E-32 1.80E-27 1.35E-32 

F14 1.06E-11 1.68E-09 7.31E-01 1.25E+02 

F15 2.08E-02 2.00E-01 1.98E-01 1.56E-01 

F16 2.14E-08 2.78E-05 6.08E-10 2.94E-06 
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The performance of MLSDE was further compared with three other state-of-the-

art DEs, JADE [17], JDE [15], and SADE [18]. The experimental results aver-aged over 

50 runs are listed in Tables 1 for D=30 and Table 2 for D=100.  Ac-cording to the graphs 

in Figs. 6.3 and 6.4, MLSDE resolved the optimization problem and showed superior 

performance compared to other algorithms JADE, JDE, and SADE. These compared 

algorithms were able to find a near-global optimum on most of the benchmark functions, 

because they all utilized different strategies to improve the algorithms’ robustness. 

 

 

 

 

 

 

 

 

   Figure 4.1 Comparing between MLSDE, JADE, JDE, and SADE for D=30  

 

However, JADE, JDE, and SADE sometimes became stuck at local optima on 

some functions such as F2, while our proposed MLSDE reached a near-global optimum 

in every run in both 30 and 100 dimensions. However, for D=30 the JADE performed 

best for F3 and SADE performed best for functions F4, F10, and F13. JDE achieved 

better for F16. 
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Generally, the proposed MLSDE algorithm accomplished the best performance on 

11 functions (F1, F2, F5, F6, F7, F8, F9, F11,F12, F14, and F15) out of the 16 benchmark 

functions with D=30 .In case of D=100, the results also showed better and the MLSDE 

able to find the optima for 10 functions (F1, F2, F3, F4, F5, F6, F7, F9, F12, F14). 

Even for functions where MLSDE was not able to achieve a better solution than 

the other algorithms, it has the capability to achieve near-global optimum with 

competitive solution accuracy. For D=100, the JADE performed better for F10, F13, F15, 

F16 and SADE performed better with function F11. However, the MLSDE achieved 

near-global optimum with these functions as well. 

The experimental results averaged 50 independent runs are listed in Table 1 for D=30 

and Table 4 for D=100.  According to the graphs presented in Figs. 1 and 2, MLSDE 

resolved the optimization problem for some functions and showed superior performance 

compared to   JADE, JDE, and SADE 
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Table 4.2 Mean experimental results for 100 Variables over 50 runs 
Func MLSDE JADE JDE SADE 

F1 4.02E-70 5.13E-62 2.09E-20 1.09E-27 

F2 1.29E-27 5.19E-16 1.82E-12 1.09E-15 

F3 2.14E-58 6.85E-03     7.47E+03     4.96E+00 

F4 9.01E-02 1.62E-01    1.60E+00 1.90E-01 

F5 1.03E-02    4.96E+01    9.20E+01     8.49E+01 

F6 0.0E+00    0.00E+00    0.00E+00     0.00E+00 

F7 1.81E-03 2.04E-03 2.08E-02      6.85E-03 

F8 5.07E+04    3.94E+03 2.81E-08    1.89E+01 

F9 1.19E+00    1.03E+02     6.01E+00   1.05E+02 

F10 6.01E-12 7.69E-15 1.73E-11 1.05E-14 

F11 1.02E-02 8.87E-04     0.00E+00 2.96E-04 

F12 7.12E-43 4.71E-33 4.47E-21 6.75E-30 

F13 1.72E-17 1.35E-32 1.91E-17 5.56E-27 

F14    8.02E+04     1.51E+05     2.07E+05    1.69E+05 

F15 4.29E-01 3.28E-01 3.80E-01 3.60E-01 

F16 6.89E-08 1.12E-11 4.78E-03 5.78E-03 

 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 

Figure.4.2. Experimental Results for 100 Variables 
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CHAPTER 5: APPLICATION 

In denote image processing which is indicated by two-dimensional functions of 

the formula f(x, y). The value of function f(x,y) (called amplitude) is always  a positive 

quantity that is calculated  by the source of the image. When an image is produced from a 

sensor its intensity values are proportional to energy emitted by this sensor. As a import 

that f(x,y)  essential be finite and nonzero. 

However, the function f(x, y) is  consisted  of two components: (1) the quantity of 

source illumination, and (2) the reflectance  which meaning the quantity of illumination 

reflected by the object. Therefore, these are the illumination and reflectance are denoted 

by  i(x. y) and r(x, y), respectively. The product of f (x, y ) as following  

 
 

 
 

 
 

 
5.1 Image Sampling and Quantization 

There are many methods to obtain images, but the goal is to produce digital 

images from sensors. The production from sensors is a continuous voltage whose 

amplitude and spatial are linked to the object phenomenon that being sensed.  

 In order to construct a digital image, we essential to change the continuous data 

into digital form. This includes two procedures: sampling and quantization. The essential 

idea of sampling and quantization that a continuous image f which required to change to 
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digital image which continuous the x- and y-coordinates, and amplitude.  However, the 

sampling is the first step in this to converting process which is digitizing the coordinate 

values.  However, the quantization process that is digitizing the amplitude values. The 

Fig. 7.1(b) illustrate one-dimensional function of continuous image that is a plot of 

amplitude (intensity level) values. This continuous image along the line part AB in Fig 

7.1(a).  

Since there is noise in the image that cause the random variations. Thus, similarly 

spaced samples along line AB is taken in order sample this function. The spatial position 

of each apiece sample is specified by a vertical value in the bottom part as show in the 

figure 7.2. 

The white squares in figure 7.2 representing the set of discrete positions that 

provides the sampled function. Though, these values are in vertically a continuous range 

and it required to convert the value of the intensity as well. The conversion an intensity 

values to digitalized   called quantized. The Figure. 7.2 displays the intensity scale in 

discrete intervals, extending from black to white. In the quantization process is assigning 

values from the right-side scale to each sample. In fact, the digitizing is made reliant on 

the vertical proximity of a sample. As result, as the number of discrete levels applied, the 

accuracy attained in quantization. Therefore, the quantization is extremely dependent on 

the noise contented of the sampled signal. 
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Sampling in the manner just described assumes that we have a continuous image 

in both coordinate directions as well as in amplitude. Practically, the sampling technique  

is defined by the sensor arrangement  that applied to construct the image. Moreover, 

spatial sampling is achieved by choosing the number of individual mechanical increases 

at which how the sensor was activated to gather data. Obviously, the quality of a digital 

image is specified by the number of samples and discrete intensity levels applied. 

 
 
Figure 5.1 Generating a digital image (a) Continuous image (b) A 
scan line from A to Bin the continuous image, used to illustrate the 

     

Figure 5.2 Generating a 
digital image Sampling 
and quantization. 
 
 



 

66 
 

5.2 Representing Digital Images 

The image in the continuous form represent as function f(s,t). However, the main 

goal to convert this f(s,t) into a digital image form by applying  both sampling and 

quantization. Then in sampling phase the continuous image turns to 2-D array, as discrete 

coordinates f(x, y) with size of  M rows and N columns where x = 0, 1, 2, ... , M - 1 and 

y= 0, 1, 2, ... , N-1. The coordinate is indicated to the number of samples. For example, 

the sample (0, 1) is indicate to the second sample along the first row where sample (0,0) 

is origin sample. In addition, the actual value of the image at any coordinates (x, y) is 

represented f(x, y), where x and y are integers.  

However, the image so complex and it has too much detailed and thus it is 

difficult to interpret from plots. However, gray-scale image sets can be expressed as 

triplets of the form (x, y, z), where x and y are coordinates and z is the value of f  at that 

coordinates (x, y).  

Therefore, the intensity of each point is proportional to the value of f at that point. 

For example, if the intensity is normalized to the in boundary [0, l], so apiece of point in 

the image may have the value 0, 0.5, or 1. Those values converts to black, gray, or white, 

respectively. The third representation is displaying the  f(x, y) as an array  if the size  of f 

is 600 X 600 elements which is equal 360,000 number. 
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Figure 5.3 Intensity of each point(pixels) speared in Matrix format 
 
 

This digitization procedure needs to decide what the number of discrete intensity 

levels L. However, because of storage and quantizing hardware limitation considerations, 

the number of intensity levels naturally is an integer power of 

L=  (intensity level) where k number of bits 
The number of bits ‘b’ essential to store a digitized image is ; b= M*N*K 

For example, if intensity level of k-bit image such as 256 possible discreet 

intensity values could be 8-bit image. However, the storage requirement for 8-bit image 

is 1024*1024. 

5.3 Image quantization 

The objective of color quantization is to constitute the many colors in the image 

with a decrease number of dissimilar colors and with minimum distortion. Original color 

images consist of thousands of colors up to 16,777,216 colors. However, as many colors 
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using an image that can lead to an improved output image .Though, too many colors can 

lead to image-processing problems. In fact, during image-processing such as object 

detection and object extraction that the number of colors consider crucial feature. In case 

many colors represent single object that lead to real problem. Thus, in image processing 

techniques conduct reduce number of colors as preprocessing step. 

However, the color quantization contains of pixel-mapping phases by design 

palette. In the design palette phase is the collection of selected colors that use 

demonstrate the image with minimum distortion.  In fact, the pixel-mapping phase is the 

assign each pixel in the image to one of the colors in the designed palette. Color 

quantization approaches apply a clustering procedure to design the palette and then map 

each pixel with the designed palette Consequently, the level of distortion is specified by 

the clustering algorithm that is applied for design palette. 

Color image quantization is the procedure of decreasing the number of colors 

existing in a digital color image. The color quantization is applied to decrease the colors 

number of a digital image with a minimum visual deformation. It used to regenerate 

images on visuals hardware that has restricted number of simultaneous colors (e.g. frame 

memory displays with 4 or 8-bit colormaps). The color quantization reduces space 

necessities for storing of image data and decreases broadcast band width necessities in 

multimedia applications. Similarly, quantization defined as the procedure of mapping a 

continuous variable to a discrete set of values. Color quantization usually denotes to the 

issue of selecting k colors from a color space to constitute n ( k < n ) colors from the 

same color space and its target to reduce the total error. Color image quantization can be 
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representing in formal way as follows [27]: Assumed a set of NS  colors where S' ⊂ RNd 

and Nd is the dimension of the data space. Color image quantization can be representing 

in formal way as follows: fq : S'  S′′  where S′′ is a set of Ns′′ colors such that  S′′ ⊂ S′ 

and . The objective is to minimize the quantization error resulting from 

replacing a color C ∈ S′  with its quantized value  fq (C)  ∈  S''. Color image quantization 

is a significant issue in the image processing fields.  

Color image quantization contains of two main steps.  The first step is forming a 

colormap which also called a palette that form a small set of colors in the range of  8-256. 

This palette is selected from the 224 potential mixtures of red, green and blue.which 

abbreviated as “RGB”. The second step that it is mapping each color pixel to one of the 

appropriate colors in the palette. 

There are numerous techniques for color quantization. The class splitting 

algorithms which split the color space into separate regions, by repeated dividing up the 

space. Then each region a color is selected to indicate to the region in the color palette. 

The median-cut algorithm (MCA) and the variance-based algorithm (VBA) are two 

famous algorithms of this type. In fact, splitting algorithms have very good speed 

performance. However, the drawback of this type that it is hard to reach global optima, 

since a choice for splitting at one phase cannot be undone at a further phase. The color 

quantization classified as NP-complete. Therefore, is not feasible to search for the global 

optimal solution since this will need an excessive amount of time. 
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5.3.1 Related work 

Numerous color image quantization techniques have been proposed. Most of 

these techniques applied clustering method. The clustering defines as the method of 

finding collections similar or related of objects to one another and those collection are 

different from unrelated to the objects. Furthermore, the problem of m-dimensional 

clustering to decrease the maximum inter cluster error or distance. It can be stated as 

discovery a divider of n points in m-dimensional Euclidean space to k separated clusters  

such as B1, B2, . . . , Bk where maximum (M1, M2, . . . , Mk), , thus  Mi is the max 

distance between two centroids  in cluster Bi, is reduced . In fact, a divider with small 

maximum inter cluster distance contains of small clusters where centroid for every cluster 

are near to each other in order to be an effective group. Intuitively, this is an optimization 

clustering which is corresponding to the minimal maximum quantization measure when 

m = 1. Because all points in cluster Bi  are now spread along a line , and furthermore  , 

Mi is the distance of the line segment (i.e., the length between the datapoint at throughout 

of the line and the datapoint at the opposite end). Centroid of the line segment select 

around  middle  of the line segment. Obviously, reducing  the length of this line is 

corresponding to minimizing the length between the centroid and the endpoints. In fact, 

the main classification of image quantization techniques are post-clustering and pre-

clustering. 

5.4 K-Means Clustering Algorithm  

The KM algorithm is one of the most extensively clustering   techniques has been 

applied [48]. For example  , given a dataset X={  } ∈   the goal of KM is to 
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divider X into K comprehensive and totally unrelated clusters S= {  },  = 

X , ∩ =Θ for 1≤i≠j≤K by reducing the sum of squared error (SSE) 

SSE=  
 
 

Where  denotes to  Euclidean ( ) norm and is the center of cluster  found 

it as the mean of the data of cluster. 

In fact, K is random centers which selected from the data [51]. Every point in this 

data then labeled to the adjacent center, and respectively new center is recalculated as the 

mean of cluster.  Repeating those steps until a termination condition is satisfied. The 

pseudocode for this algorithm is given in Algo. (1) Notes: 1. m[i] indicate the 

membership of point , that mean the index of the cluster center that is nearest to  

The main drawbacks of KM are that it frequently ends at a local minimum and 

that its outcome is influenced by the preliminary selected of the cluster centers. 

Furthermore, pixel mapping stage is wasteful, because of a full search of the palette is 

essential to find the adjacent color. However, the pre-clustering techniques frequently 

operate and store the palette in a superior data structure such as binary trees which lets 

moving to nearest neighbor faster and the search during the mapping stage more feasible. 

The proposed Color Quantization using MLSDE (CQ-MLSDE) is presented, 

which is post-clustering quantization technique. It produces clustering of the color map.In 

the MLSDE context, a single individual represents a colormap (i.e. an individual contains 

K cluster centroids indicated as RGB color colormap). Each individual is vector Xi built 

as Xi = (mi,1,…,mi,k), where mi,k denotes the kth cluster centroid vector of the ith 
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individual. Therefore, the population consists of several candidates’ colormaps. The 

quality of each individual is evaluated using the MSE (Eq. 8) as follows:   

                              f(Xi)= MSE(Xi)      (9) 

1. Input : X= {x1,x2,.xn} ϵ ℝD (N×D input dataset) 

2. Output: C= {c1,c2,.cn} ϵ ℝD (K cluster centroid) 

3. Choose arbitrary subset of X as primary set of cluster centroid  

4. While termination condition is  not satisfied do  

5. For (i=1 ; i<= N; i=i+1) do (For loop#1) 

6. Assign Xi  to close cluster  

7. m[i]=  

8. End (For loop#1) 

9. Determine  the new centroid of cluster   

10. For(k=1 ; k<= K; k=k+1) (For loop#2) 

11. Sk cluster consist of set points xi which are closer to centroid Ck 

12. Sk = { Xi | m[i]= k} 

13. Calculate Ck as new center for Sk 

14. Ck =    1/SK  

15. End (For loop#2) 

16. End While  

In fact, this technique begins by initializing each individual arbitrarily from the 

color image to contain K centroids (i.e. color plate). The set of K color plate indicates the 

colormap. The K-means clustering is then applied to each Induvial in a probability 
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manner, pkmeans. The Kmeans is applied to improve the selected colors and to decrease 

the search space. Then every pixel is allocated to the cluster with the nearest centroid. 

The fitness function of each individual is determined by applying Eq. 9. 

Afterwards, the population is reordered and updated, and this process is repeated 

till a stopping criterion is matching. The color map of the global best individual after 

exceeding max iterations is selected as the optimal result. 

The Image quantization using CQ-MLSDE is summarized below: 

1) Initialize Population Matrix with each individual  by arbitrarily selecting K color 

centroid  where i=0 (each row considers K cluster possible solution) 

2) While  (stop Criteria not satisfied ) do  

3) Calculate MSE (all clusters) 

4) Assign Zp to proper    { where min  

5) Find V_best = Find_best (Population Matrix) 

6) Choose randomly V1, V2, V3 , Vx 

7) Calculate  K-means with small number of iterations with probability rate pkmens 

8)   Calculate  for all clusters  

9)   Assign Zp to proper    { where min  

10) Calculate the fitness f(x)  

11) Update the best solution yˆ(t) 

12) Update the centroids using MLSDE 

Although the parameters s, K and tmax are fixed, the best practice is that s,  K and 

tmax << Np. This MLSDE and image quantization technique   have been applied to four 
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frequently used color images; Lenna (shown in Figure 1(a)), peppers, jet, and mandrill. 

The image size is 512 × 512 pixels, and they are quantized to 16, 32 and 64 colors. To 

demonstrate the performance of color image quantization using MLSDE, its results are 

compared with other famous color image quantization technique. However, the 

simulations were run for 10 times and the outcomes are illustrated as averages and 

standard deviations. The results of MLSDE show the ability to converge to the best 

solution found by the preliminary phase by using a Vbest approach. The MLSDE 

parameters were initially set as follows: pkmeans = 0.1, s = 20, tmax = 50.  The Table 5 

shows the comparative result. MSE results of MLSDE illustrate that color quantization 

using CQ-MLSDE [12] remarkably enhances the quantized image quality in most of the 

cases. 

 Figure 5.4 Quantization result of images 

 
(A1) Lenna Original 

 
(B1) Quantized Lenna using CQ-

MLSDE 16 colors 

 
(C1) Quantized Lenna using CQ-

MLSDE 32 colors 
 

(D1) Quantized Lenna using CQ-
MLSDE 64 colors 
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(A2) Pepper Original  

(B2) Quantized Pepper using 
CQ-MLSDE 16 colors 

(C2) 
Quantized Pepper using CQ-MLSDE 

32 colors 

 
(D2) Quantized Pepper using 

CQ-MLSDE 64 colors 

 
(A3) Jet Original  

(B3) Quantized Jet using CQ-
MLSDE 16 colors 

 
(C3) Quantized Jet using CQ-MLSDE 

32 colors 
 

(D3) Quantized Jet using CQ-
MLSDE 64 colors 

 
(A4) Mandril Original 

 
(B4) Quantized Mandril using 
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CQ-MLSDE 16 colors 

 
(C4) Quantized Mandril using CQ-

MLSDE 32 colors 
 

(D4) Quantized Mandril using 
CQ-MLSDE 64 colors 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5.1 The MSDE was tested by picking number of clusters 16, 32, 64 for lenna, pepper, jet 
and mandrill images. Fig. 1 to 4 demonstrate the quantization of lenna, pepper, jet and mandrill 
images. 

 
 

 
 
 

image K 
 

SOM 
 

GCMA 
 

PSO 
 

CQ-MLSDE 

 
Lenna 

16 235.6 
 

332  210.203 201.894 
 

32 126.40 
 

179 119.167 
 

112.1360 
 

64 74.700 
 

113 77.846 
 

72.107 
 

 
Peppers 

16 425.60 
 

471 399.36 
 

387.6023 
 

32 244.50 263 232.046 
 

229.2507 
 

64 141.60 
 

148 137.322 
 

138.463 
 

 
Jet 

16 121.70 
 

199 122.867 
 

113.506 
 

32 65.000 
 

96 71.564 
 

43.500 
 

64 38.100 
 

54 56.339 
 

40.421 
 

 
Mandril 

16 629.00 
 

606 630.975 
 

519.4218 
 

32 373.60 
 

348 375.933 
 

269.851 
 

64 234.00 
 

213 237.331 
 

139.1367 
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Figure 5.5 Experimental results Jet 

 

 
Figure 5.6 Experimental results Lenna 
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Figure 5.7 Experimental results Mandril 

 
 
 
 
 

 
Figure 5.8 Experimental results Peppers 
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CHAPTER 6: CONCLUSIONS 

A multi-layer strategy for DE, MLSDE has been proposed in this paper. Due to 

the multi-strategy approach, the diversity of the offspring can be preserved. MLSDE 

involves three mutation and crossover strategies to produce three different trail vector 

generations. These three strategies provide many advantages, such as diversity and ability 

to search around promise area and can therefore complement each other. MLSDE 

depends entirely on these strategies; thus, the parameters are fixed during the evolution 

process. The experimental of 16 global numerical optimization problems showed that the 

operations of MLSDE are more efficient and effective than those other algorithms. The 

performance of the MLSDE algorithm was validated over a set of 16 benchmark 

functions. The experimental results demonstrate that the multi-layer strategies approach 

is successful in maintaining population diversity. MLSDE not only performed better than 

the JADE, JDE, and SADE for most of functions but was also competitive and it reach 

near global optima. The proposed MLSDE can get more improvements such as it can be 

employed with other distributions such as e Cauchy distributions that have shown 

promising results in evolutionary algorithms. 
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