8,757 research outputs found

    Natural Variation and Neuromechanical Systems

    Get PDF
    Natural variation plays an important but subtle and often ignored role in neuromechanical systems. This is especially important when designing for living or hybrid systems \ud which involve a biological or self-assembling component. Accounting for natural variation can be accomplished by taking a population phenomics approach to modeling and analyzing such systems. I will advocate the position that noise in neuromechanical systems is partially represented by natural variation inherent in user physiology. Furthermore, this noise can be augmentative in systems that couple physiological systems with technology. There are several tools and approaches that can be borrowed from computational biology to characterize the populations of users as they interact with the technology. In addition to transplanted approaches, the potential of natural variation can be understood as having a range of effects on both the individual's physiology and function of the living/hybrid system over time. Finally, accounting for natural variation can be put to good use in human-machine system design, as three prescriptions for exploiting variation in design are proposed

    Automatic programming methodologies for electronic hardware fault monitoring

    Get PDF
    This paper presents three variants of Genetic Programming (GP) approaches for intelligent online performance monitoring of electronic circuits and systems. Reliability modeling of electronic circuits can be best performed by the Stressor - susceptibility interaction model. A circuit or a system is considered to be failed once the stressor has exceeded the susceptibility limits. For on-line prediction, validated stressor vectors may be obtained by direct measurements or sensors, which after pre-processing and standardization are fed into the GP models. Empirical results are compared with artificial neural networks trained using backpropagation algorithm and classification and regression trees. The performance of the proposed method is evaluated by comparing the experiment results with the actual failure model values. The developed model reveals that GP could play an important role for future fault monitoring systems.This research was supported by the International Joint Research Grant of the IITA (Institute of Information Technology Assessment) foreign professor invitation program of the MIC (Ministry of Information and Communication), Korea

    Factored expectation propagation for input-output FHMM models in systems biology

    Full text link
    We consider the problem of joint modelling of metabolic signals and gene expression in systems biology applications. We propose an approach based on input-output factorial hidden Markov models and propose a structured variational inference approach to infer the structure and states of the model. We start from the classical free form structured variational mean field approach and use a expectation propagation to approximate the expectations needed in the variational loop. We show that this corresponds to a factored expectation constrained approximate inference. We validate our model through extensive simulations and demonstrate its applicability on a real world bacterial data set

    Cyclic Incrementality in Competitive Coevolution: Evolvability through Pseudo-Baldwinian Switching-Genes

    Get PDF
    Coevolving systems are notoriously difficult to understand. This is largely due to the Red Queen effect that dictates heterospecific fitness interdependence. In simulation studies of coevolving systems, master tournaments are often used to obtain more informed fitness measures by testing evolved individuals against past and future opponents. However, such tournaments still contain certain ambiguities. We introduce the use of a phenotypic cluster analysis to examine the distribution of opponent categories throughout an evolutionary sequence. This analysis, adopted from widespread usage in the bioinformatics community, can be applied to master tournament data. This allows us to construct behavior-based category trees, obtaining a hierarchical classification of phenotypes that are suspected to interleave during cyclic evolution. We use the cluster data to establish the existence of switching-genes that control opponent specialization, suggesting the retention of dormant genetic adaptations, that is, genetic memory. Our overarching goal is to reiterate how computer simulations may have importance to the broader understanding of evolutionary dynamics in general. We emphasize a further shift from a component-driven to an interaction-driven perspective in understanding coevolving systems. As yet, it is unclear how the sudden development of switching-genes relates to the gradual emergence of genetic adaptability. Likely, context genes gradually provide the appropriate genetic environment wherein the switching-gene effect can be exploite

    Investigating modularity and transparency within bioinspired connectionist architectures using genetic and epigenetic models

    Get PDF
    Machine learning algorithms allow computers to deal with incomplete data in tasks such as speech recognition and object detection. Some machine learning algorithms take inspiration from biological systems due to useful properties such as robustness, allowing algorithms to be flexible and domain agnostic. This comes at a cost, resulting in difficulty when one attempts to understand the reasoning behind decisions. This is problematic when such models are applied in realworld situations where accountability, legality, and maintenance are of concern. Artificial gene regulatory networks (AGRNs) are a type of connectionist architecture inspired by gene regulatory mechanisms. AGRNs are of interest within this thesis due to their ability to solve tasks in chaotic dynamical systems despite their relatively small size.The overarching aim of this work was to investigate the properties of connectionist architectures to improve the transparency of their execution. Initially, the evolutionary process and internal structure of AGRNs were investigated. Following this, the creation of an external control layer used to improve the transparency of execution of an external connectionist architecture was attempted.When investigating the evolutionary process of AGRNs, pathways were found that when followed, produced more performant networks in a shorter time frame. Evidence that AGRNs are capable of performing well despite internal interference was found when investigating their modularity, where it was also discovered that they do not develop strict modularity consistently. A control layer inspired by epigenetics that selectively deactivates nodes in trained artificial neural networks (ANNs) was developed; the analysis of its behaviour provided an insight into the internal workings of the ANN

    Stochastic Resonance Can Drive Adaptive Physiological Processes

    Get PDF
    Stochastic resonance (SR) is a concept from the physics and engineering communities that has applicability to both systems physiology and other living systems. In this paper, it will be argued that stochastic resonance plays a role in driving behavior in neuromechanical systems. The theory of stochastic resonance will be discussed, followed by a series of expected outcomes, and two tests of stochastic resonance in an experimental setting. These tests are exploratory in nature, and provide a means to parameterize systems that couple biological and mechanical components. Finally, the potential role of stochastic resonance in adaptive physiological systems will be discussed

    Metaheuristic design of feedforward neural networks: a review of two decades of research

    Get PDF
    Over the past two decades, the feedforward neural network (FNN) optimization has been a key interest among the researchers and practitioners of multiple disciplines. The FNN optimization is often viewed from the various perspectives: the optimization of weights, network architecture, activation nodes, learning parameters, learning environment, etc. Researchers adopted such different viewpoints mainly to improve the FNN's generalization ability. The gradient-descent algorithm such as backpropagation has been widely applied to optimize the FNNs. Its success is evident from the FNN's application to numerous real-world problems. However, due to the limitations of the gradient-based optimization methods, the metaheuristic algorithms including the evolutionary algorithms, swarm intelligence, etc., are still being widely explored by the researchers aiming to obtain generalized FNN for a given problem. This article attempts to summarize a broad spectrum of FNN optimization methodologies including conventional and metaheuristic approaches. This article also tries to connect various research directions emerged out of the FNN optimization practices, such as evolving neural network (NN), cooperative coevolution NN, complex-valued NN, deep learning, extreme learning machine, quantum NN, etc. Additionally, it provides interesting research challenges for future research to cope-up with the present information processing era
    • …
    corecore