45,533 research outputs found

    Connected Coordination: Network Structure and Group Coordination

    Get PDF
    Networks can affect a group’s ability to solve a coordination problem. We utilize laboratory experiments to study the conditions under which groups of subjects can solve coordination games. We investigate a variety of different network structures, and we also investigate coordination games with symmetric and asymmetric payoffs. Our results show that network connections facilitate coordination in both symmetric and asymmetric games. Most significantly, we find that increases in the number of network connections encourage coordination even when payoffs are highly asymmetric. These results shed light on the conditions that may facilitate coordination in real-world networks

    Evolutionary games on graphs

    Full text link
    Game theory is one of the key paradigms behind many scientific disciplines from biology to behavioral sciences to economics. In its evolutionary form and especially when the interacting agents are linked in a specific social network the underlying solution concepts and methods are very similar to those applied in non-equilibrium statistical physics. This review gives a tutorial-type overview of the field for physicists. The first three sections introduce the necessary background in classical and evolutionary game theory from the basic definitions to the most important results. The fourth section surveys the topological complications implied by non-mean-field-type social network structures in general. The last three sections discuss in detail the dynamic behavior of three prominent classes of models: the Prisoner's Dilemma, the Rock-Scissors-Paper game, and Competing Associations. The major theme of the review is in what sense and how the graph structure of interactions can modify and enrich the picture of long term behavioral patterns emerging in evolutionary games.Comment: Review, final version, 133 pages, 65 figure

    Game Theory Meets Network Security: A Tutorial at ACM CCS

    Full text link
    The increasingly pervasive connectivity of today's information systems brings up new challenges to security. Traditional security has accomplished a long way toward protecting well-defined goals such as confidentiality, integrity, availability, and authenticity. However, with the growing sophistication of the attacks and the complexity of the system, the protection using traditional methods could be cost-prohibitive. A new perspective and a new theoretical foundation are needed to understand security from a strategic and decision-making perspective. Game theory provides a natural framework to capture the adversarial and defensive interactions between an attacker and a defender. It provides a quantitative assessment of security, prediction of security outcomes, and a mechanism design tool that can enable security-by-design and reverse the attacker's advantage. This tutorial provides an overview of diverse methodologies from game theory that includes games of incomplete information, dynamic games, mechanism design theory to offer a modern theoretic underpinning of a science of cybersecurity. The tutorial will also discuss open problems and research challenges that the CCS community can address and contribute with an objective to build a multidisciplinary bridge between cybersecurity, economics, game and decision theory

    Social dilemmas in an online social network: the structure and evolution of cooperation

    Full text link
    We investigate two paradigms for studying the evolution of cooperation--Prisoner's Dilemma and Snowdrift game in an online friendship network obtained from a social networking site. We demonstrate that such social network has small-world property and degree distribution has a power-law tail. Besides, it has hierarchical organizations and exhibits disassortative mixing pattern. We study the evolutionary version of the two types of games on it. It is found that enhancement and sustainment of cooperative behaviors are attributable to the underlying network topological organization. It is also shown that cooperators can survive when confronted with the invasion of defectors throughout the entire ranges of parameters of both games. The evolution of cooperation on empirical networks is influenced by various network effects in a combined manner, compared with that on model networks. Our results can help understand the cooperative behaviors in human groups and society.Comment: 14 pages, 7 figure

    Network Formation with Adaptive Agents

    Get PDF
    In this paper, a reinforcement learning version of the connections game first analysed by Jackson and Wolinsky is presented and compared with benchmark results of fully informed and rational players. Using an agent-based simulation approach, the main nding is that the pattern of reinforcement learning process is similar, but does not fully converge to the benchmark results. Before these optimal results can be discovered in a learning process, agents often get locked in a state of random switching or early lock-in.agent-based computational economics; strategic network formation; network games; reinforcement learning
    corecore