230 research outputs found

    Flexible Application-Layer Multicast in Heterogeneous Networks

    Get PDF
    This work develops a set of peer-to-peer-based protocols and extensions in order to provide Internet-wide group communication. The focus is put to the question how different access technologies can be integrated in order to face the growing traffic load problem. Thereby, protocols are developed that allow autonomous adaptation to the current network situation on the one hand and the integration of WiFi domains where applicable on the other hand

    Recent Trends in Communication Networks

    Get PDF
    In recent years there has been many developments in communication technology. This has greatly enhanced the computing power of small handheld resource-constrained mobile devices. Different generations of communication technology have evolved. This had led to new research for communication of large volumes of data in different transmission media and the design of different communication protocols. Another direction of research concerns the secure and error-free communication between the sender and receiver despite the risk of the presence of an eavesdropper. For the communication requirement of a huge amount of multimedia streaming data, a lot of research has been carried out in the design of proper overlay networks. The book addresses new research techniques that have evolved to handle these challenges

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: vehicular ad-hoc networks, security and caching, TCP in ad-hoc networks and emerging applications. It is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks

    Get PDF
    This book presents collective works published in the recent Special Issue (SI) entitled "Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks”. These works expose the readership to the latest solutions and techniques for MANETs and VANETs. They cover interesting topics such as power-aware optimization solutions for MANETs, data dissemination in VANETs, adaptive multi-hop broadcast schemes for VANETs, multi-metric routing protocols for VANETs, and incentive mechanisms to encourage the distribution of information in VANETs. The book demonstrates pioneering work in these fields, investigates novel solutions and methods, and discusses future trends in these field

    Descoberta de recursos para sistemas de escala arbitrarias

    Get PDF
    Doutoramento em InformáticaTecnologias de Computação Distribuída em larga escala tais como Cloud, Grid, Cluster e Supercomputadores HPC estão a evoluir juntamente com a emergência revolucionária de modelos de múltiplos núcleos (por exemplo: GPU, CPUs num único die, Supercomputadores em single die, Supercomputadores em chip, etc) e avanços significativos em redes e soluções de interligação. No futuro, nós de computação com milhares de núcleos podem ser ligados entre si para formar uma única unidade de computação transparente que esconde das aplicações a complexidade e a natureza distribuída desses sistemas com múltiplos núcleos. A fim de beneficiar de forma eficiente de todos os potenciais recursos nesses ambientes de computação em grande escala com múltiplos núcleos ativos, a descoberta de recursos é um elemento crucial para explorar ao máximo as capacidade de todos os recursos heterogéneos distribuídos, através do reconhecimento preciso e localização desses recursos no sistema. A descoberta eficiente e escalável de recursos ´e um desafio para tais sistemas futuros, onde os recursos e as infira-estruturas de computação e comunicação subjacentes são altamente dinâmicas, hierarquizadas e heterogéneas. Nesta tese, investigamos o problema da descoberta de recursos no que diz respeito aos requisitos gerais da escalabilidade arbitrária de ambientes de computação futuros com múltiplos núcleos ativos. A principal contribuição desta tese ´e a proposta de uma entidade de descoberta de recursos adaptativa híbrida (Hybrid Adaptive Resource Discovery - HARD), uma abordagem de descoberta de recursos eficiente e altamente escalável, construída sobre uma sobreposição hierárquica virtual baseada na auto-organizaçãoo e auto-adaptação de recursos de processamento no sistema, onde os recursos computacionais são organizados em hierarquias distribuídas de acordo com uma proposta de modelo de descriçãoo de recursos multi-camadas hierárquicas. Operacionalmente, em cada camada, que consiste numa arquitetura ponto-a-ponto de módulos que, interagindo uns com os outros, fornecem uma visão global da disponibilidade de recursos num ambiente distribuído grande, dinâmico e heterogéneo. O modelo de descoberta de recursos proposto fornece a adaptabilidade e flexibilidade para executar consultas complexas através do apoio a um conjunto de características significativas (tais como multi-dimensional, variedade e consulta agregada) apoiadas por uma correspondência exata e parcial, tanto para o conteúdo de objetos estéticos e dinâmicos. Simulações mostram que o HARD pode ser aplicado a escalas arbitrárias de dinamismo, tanto em termos de complexidade como de escala, posicionando esta proposta como uma arquitetura adequada para sistemas futuros de múltiplos núcleos. Também contribuímos com a proposta de um regime de gestão eficiente dos recursos para sistemas futuros que podem utilizar recursos distribuíos de forma eficiente e de uma forma totalmente descentralizada. Além disso, aproveitando componentes de descoberta (RR-RPs) permite que a nossa plataforma de gestão de recursos encontre e aloque dinamicamente recursos disponíeis que garantam os parâmetros de QoS pedidos.Large scale distributed computing technologies such as Cloud, Grid, Cluster and HPC supercomputers are progressing along with the revolutionary emergence of many-core designs (e.g. GPU, CPUs on single die, supercomputers on chip, etc.) and significant advances in networking and interconnect solutions. In future, computing nodes with thousands of cores may be connected together to form a single transparent computing unit which hides from applications the complexity and distributed nature of these many core systems. In order to efficiently benefit from all the potential resources in such large scale many-core-enabled computing environments, resource discovery is the vital building block to maximally exploit the capabilities of all distributed heterogeneous resources through precisely recognizing and locating those resources in the system. The efficient and scalable resource discovery is challenging for such future systems where the resources and the underlying computation and communication infrastructures are highly-dynamic, highly-hierarchical and highly-heterogeneous. In this thesis, we investigate the problem of resource discovery with respect to the general requirements of arbitrary scale future many-core-enabled computing environments. The main contribution of this thesis is to propose Hybrid Adaptive Resource Discovery (HARD), a novel efficient and highly scalable resource-discovery approach which is built upon a virtual hierarchical overlay based on self-organization and self-adaptation of processing resources in the system, where the computing resources are organized into distributed hierarchies according to a proposed hierarchical multi-layered resource description model. Operationally, at each layer, it consists of a peer-to-peer architecture of modules that, by interacting with each other, provide a global view of the resource availability in a large, dynamic and heterogeneous distributed environment. The proposed resource discovery model provides the adaptability and flexibility to perform complex querying by supporting a set of significant querying features (such as multi-dimensional, range and aggregate querying) while supporting exact and partial matching, both for static and dynamic object contents. The simulation shows that HARD can be applied to arbitrary scales of dynamicity, both in terms of complexity and of scale, positioning this proposal as a proper architecture for future many-core systems. We also contributed to propose a novel resource management scheme for future systems which efficiently can utilize distributed resources in a fully decentralized fashion. Moreover, leveraging discovery components (RR-RPs) enables our resource management platform to dynamically find and allocate available resources that guarantee the QoS parameters on demand

    Resource discovery for distributed computing systems: A comprehensive survey

    Get PDF
    Large-scale distributed computing environments provide a vast amount of heterogeneous computing resources from different sources for resource sharing and distributed computing. Discovering appropriate resources in such environments is a challenge which involves several different subjects. In this paper, we provide an investigation on the current state of resource discovery protocols, mechanisms, and platforms for large-scale distributed environments, focusing on the design aspects. We classify all related aspects, general steps, and requirements to construct a novel resource discovery solution in three categories consisting of structures, methods, and issues. Accordingly, we review the literature, analyzing various aspects for each category

    A patient agent controlled customized blockchain based framework for internet of things

    Get PDF
    Although Blockchain implementations have emerged as revolutionary technologies for various industrial applications including cryptocurrencies, they have not been widely deployed to store data streaming from sensors to remote servers in architectures known as Internet of Things. New Blockchain for the Internet of Things models promise secure solutions for eHealth, smart cities, and other applications. These models pave the way for continuous monitoring of patient’s physiological signs with wearable sensors to augment traditional medical practice without recourse to storing data with a trusted authority. However, existing Blockchain algorithms cannot accommodate the huge volumes, security, and privacy requirements of health data. In this thesis, our first contribution is an End-to-End secure eHealth architecture that introduces an intelligent Patient Centric Agent. The Patient Centric Agent executing on dedicated hardware manages the storage and access of streams of sensors generated health data, into a customized Blockchain and other less secure repositories. As IoT devices cannot host Blockchain technology due to their limited memory, power, and computational resources, the Patient Centric Agent coordinates and communicates with a private customized Blockchain on behalf of the wearable devices. While the adoption of a Patient Centric Agent offers solutions for addressing continuous monitoring of patients’ health, dealing with storage, data privacy and network security issues, the architecture is vulnerable to Denial of Services(DoS) and single point of failure attacks. To address this issue, we advance a second contribution; a decentralised eHealth system in which the Patient Centric Agent is replicated at three levels: Sensing Layer, NEAR Processing Layer and FAR Processing Layer. The functionalities of the Patient Centric Agent are customized to manage the tasks of the three levels. Simulations confirm protection of the architecture against DoS attacks. Few patients require all their health data to be stored in Blockchain repositories but instead need to select an appropriate storage medium for each chunk of data by matching their personal needs and preferences with features of candidate storage mediums. Motivated by this context, we advance third contribution; a recommendation model for health data storage that can accommodate patient preferences and make storage decisions rapidly, in real-time, even with streamed data. The mapping between health data features and characteristics of each repository is learned using machine learning. The Blockchain’s capacity to make transactions and store records without central oversight enables its application for IoT networks outside health such as underwater IoT networks where the unattended nature of the nodes threatens their security and privacy. However, underwater IoT differs from ground IoT as acoustics signals are the communication media leading to high propagation delays, high error rates exacerbated by turbulent water currents. Our fourth contribution is a customized Blockchain leveraged framework with the model of Patient-Centric Agent renamed as Smart Agent for securely monitoring underwater IoT. Finally, the smart Agent has been investigated in developing an IoT smart home or cities monitoring framework. The key algorithms underpinning to each contribution have been implemented and analysed using simulators.Doctor of Philosoph

    Secure identity management in structured peer-to-peer (P2P) networks

    Get PDF
    Structured Peer-to-Peer (P2P) networks were proposed to solve routing problems of big distributed infrastructures. But the research community has been questioning their security for years. Most prior work in security services was focused on secure routing, reputation systems, anonymity, etc. However, the proper management of identities is an important prerequisite to provide most of these security services. The existence of anonymous nodes and the lack of a centralized authority capable of monitoring (and/or punishing) nodes make these systems more vulnerable against selfish or malicious behaviors. Moreover, these improper usages cannot be faced only with data confidentiality, nodes authentication, non-repudiation, etc. In particular, structured P2P networks should follow the following secure routing primitives: (1) secure maintenance of routing tables, (2) secure routing of messages, and (3) secure identity assignment to nodes. But the first two problems depend in some way on the third one. If nodes’ identifiers can be chosen by users without any control, these networks can have security and operational problems. Therefore, like any other network or service, structured P2P networks require a robust access control to prevent potential attackers joining the network and a robust identity assignment system to guarantee their proper operation. In this thesis, firstly, we analyze the operation of the current structured P2P networks when managing identities in order to identify what security problems are related to the nodes’ identifiers within the overlay, and propose a series of requirements to be accomplished by any generated node ID to provide more security to a DHT-based structured P2P network. Secondly, we propose the use of implicit certificates to provide more security and to exploit the improvement in bandwidth, storage and performance that these certificates present compared to explicit certificates, design three protocols to assign nodes’ identifiers avoiding the identified problems, while maintaining user anonymity and allowing users’ traceability. Finally, we analyze the operation of the most used mechanisms to distribute revocation data in the Internet, with special focus on the proposed systems to work in P2P networks, and design a new mechanism to distribute revocation data more efficiently in a structured P2P network.Las redes P2P estructuradas fueron propuestas para solventar problemas de enrutamiento en infraestructuras de grandes dimensiones pero su nivel de seguridad lleva años siendo cuestionado por la comunidad investigadora. La mayor parte de los trabajos que intentan mejorar la seguridad de estas redes se han centrado en proporcionar encaminamiento seguro, sistemas de reputación, anonimato de los usuarios, etc. Sin embargo, la adecuada gestión de las identidades es un requisito sumamente importante para proporcionar los servicios mencionados anteriormente. La existencia de nodos anónimos y la falta de una autoridad centralizada capaz de monitorizar (y/o penalizar) a los nodos hace que estos sistemas sean más vulnerables que otros a comportamientos maliciosos por parte de los usuarios. Además, esos comportamientos inadecuados no pueden ser detectados proporcionando únicamente confidencialidad de los datos, autenticación de los nodos, no repudio, etc. Las redes P2P estructuradas deberían seguir las siguientes primitivas de enrutamiento seguro: (1) mantenimiento seguro de las tablas de enrutamiento, (2) enrutamiento seguro de los mensajes, and (3) asignación segura de las identidades. Pero la primera de los dos primitivas depende de alguna forma de la tercera. Si las identidades de los nodos pueden ser elegidas por sus usuarios sin ningún tipo de control, muy probablemente aparecerán muchos problemas de funcionamiento y seguridad. Por lo tanto, de la misma forma que otras redes y servicios, las redes P2P estructuradas requieren de un control de acceso robusto para prevenir la presencia de atacantes potenciales, y un sistema robusto de asignación de identidades para garantizar su adecuado funcionamiento. En esta tesis, primero de todo analizamos el funcionamiento de las redes P2P estructuradas basadas en el uso de DHTs (Tablas de Hash Distribuidas), cómo gestionan las identidades de sus nodos, identificamos qué problemas de seguridad están relacionados con la identificación de los nodos y proponemos una serie de requisitos para generar identificadores de forma segura. Más adelante proponemos el uso de certificados implícitos para proporcionar más seguridad y explotar las mejoras en consumo de ancho de banda, almacenamiento y rendimiento que proporcionan estos certificados en comparación con los certificados explícitos. También hemos diseñado tres protocolos de asignación segura de identidades, los cuales evitan la mayor parte de los problemas identificados mientras mantienen el anonimato de los usuarios y la trazabilidad. Finalmente hemos analizado el funcionamiento de la mayoría de los mecanismos utilizados para distribuir datos de revocación en Internet, con especial interés en los sistemas propuestos para operar en redes P2P, y hemos diseñado un nuevo mecanismo para distribuir datos de revocación de forma más eficiente en redes P2P estructuradas.Postprint (published version

    Software-Defined Networking: A Comprehensive Survey

    Get PDF
    peer reviewedThe Internet has led to the creation of a digital society, where (almost) everything is connected and is accessible from anywhere. However, despite their widespread adoption, traditional IP networks are complex and very hard to manage. It is both difficult to configure the network according to predefined policies, and to reconfigure it to respond to faults, load, and changes. To make matters even more difficult, current networks are also vertically integrated: the control and data planes are bundled together. Software-defined networking (SDN) is an emerging paradigm that promises to change this state of affairs, by breaking vertical integration, separating the network's control logic from the underlying routers and switches, promoting (logical) centralization of network control, and introducing the ability to program the network. The separation of concerns, introduced between the definition of network policies, their implementation in switching hardware, and the forwarding of traffic, is key to the desired flexibility: by breaking the network control problem into tractable pieces, SDN makes it easier to create and introduce new abstractions in networking, simplifying network management and facilitating network evolution. In this paper, we present a comprehensive survey on SDN. We start by introducing the motivation for SDN, explain its main concepts and how it differs from traditional networking, its roots, and the standardization activities regarding this novel paradigm. Next, we present the key building blocks of an SDN infrastructure using a bottom-up, layered approach. We provide an in-depth analysis of the hardware infrastructure, southbound and northbound application programming interfaces (APIs), network virtualization layers, network operating systems (SDN controllers), network programming languages, and network applications. We also look at cross-layer problems such as debugging and troubleshooting. In an effort to anticipate the future evolution of this - ew paradigm, we discuss the main ongoing research efforts and challenges of SDN. In particular, we address the design of switches and control platforms—with a focus on aspects such as resiliency, scalability, performance, security, and dependability—as well as new opportunities for carrier transport networks and cloud providers. Last but not least, we analyze the position of SDN as a key enabler of a software-defined environment
    corecore