445 research outputs found

    Metaheuristic design of feedforward neural networks: a review of two decades of research

    Get PDF
    Over the past two decades, the feedforward neural network (FNN) optimization has been a key interest among the researchers and practitioners of multiple disciplines. The FNN optimization is often viewed from the various perspectives: the optimization of weights, network architecture, activation nodes, learning parameters, learning environment, etc. Researchers adopted such different viewpoints mainly to improve the FNN's generalization ability. The gradient-descent algorithm such as backpropagation has been widely applied to optimize the FNNs. Its success is evident from the FNN's application to numerous real-world problems. However, due to the limitations of the gradient-based optimization methods, the metaheuristic algorithms including the evolutionary algorithms, swarm intelligence, etc., are still being widely explored by the researchers aiming to obtain generalized FNN for a given problem. This article attempts to summarize a broad spectrum of FNN optimization methodologies including conventional and metaheuristic approaches. This article also tries to connect various research directions emerged out of the FNN optimization practices, such as evolving neural network (NN), cooperative coevolution NN, complex-valued NN, deep learning, extreme learning machine, quantum NN, etc. Additionally, it provides interesting research challenges for future research to cope-up with the present information processing era

    Proceedings of the SAB'06 Workshop on Adaptive Approaches for Optimizing Player Satisfaction in Computer and Physical Games

    Get PDF
    These proceedings contain the papers presented at the Workshop on Adaptive approaches for Optimizing Player Satisfaction in Computer and Physical Games held at the Ninth international conference on the Simulation of Adaptive Behavior (SAB’06): From Animals to Animats 9 in Rome, Italy on 1 October 2006. We were motivated by the current state-of-the-art in intelligent game design using adaptive approaches. Artificial Intelligence (AI) techniques are mainly focused on generating human-like and intelligent character behaviors. Meanwhile there is generally little further analysis of whether these behaviors contribute to the satisfaction of the player. The implicit hypothesis motivating this research is that intelligent opponent behaviors enable the player to gain more satisfaction from the game. This hypothesis may well be true; however, since no notion of entertainment or enjoyment is explicitly defined, there is therefore little evidence that a specific character behavior generates enjoyable games. Our objective for holding this workshop was to encourage the study, development, integration, and evaluation of adaptive methodologies based on richer forms of humanmachine interaction for augmenting gameplay experiences for the player. We wanted to encourage a dialogue among researchers in AI, human-computer interaction and psychology disciplines who investigate dissimilar methodologies for improving gameplay experiences. We expected that this workshop would yield an understanding of state-ofthe- art approaches for capturing and augmenting player satisfaction in interactive systems such as computer games. Our invited speaker was Hakon Steinø, Technical Producer of IO-Interactive, who discussed applied AI research at IO-Interactive, portrayed the future trends of AI in computer game industry and debated the use of academic-oriented methodologies for augmenting player satisfaction. The sessions of presentations and discussions where classified into three themes: Adaptive Learning, Examples of Adaptive Games and Player Modeling. The Workshop Committee did a great job in providing suggestions and informative reviews for the submissions; thank you! This workshop was in part supported by the Danish National Research Council (project no: 274-05-0511). Finally, thanks to all the participants; we hope you found this to be useful!peer-reviewe

    Book reports

    Get PDF

    Energy efficient enabling technologies for semantic video processing on mobile devices

    Get PDF
    Semantic object-based processing will play an increasingly important role in future multimedia systems due to the ubiquity of digital multimedia capture/playback technologies and increasing storage capacity. Although the object based paradigm has many undeniable benefits, numerous technical challenges remain before the applications becomes pervasive, particularly on computational constrained mobile devices. A fundamental issue is the ill-posed problem of semantic object segmentation. Furthermore, on battery powered mobile computing devices, the additional algorithmic complexity of semantic object based processing compared to conventional video processing is highly undesirable both from a real-time operation and battery life perspective. This thesis attempts to tackle these issues by firstly constraining the solution space and focusing on the human face as a primary semantic concept of use to users of mobile devices. A novel face detection algorithm is proposed, which from the outset was designed to be amenable to be offloaded from the host microprocessor to dedicated hardware, thereby providing real-time performance and reducing power consumption. The algorithm uses an Artificial Neural Network (ANN), whose topology and weights are evolved via a genetic algorithm (GA). The computational burden of the ANN evaluation is offloaded to a dedicated hardware accelerator, which is capable of processing any evolved network topology. Efficient arithmetic circuitry, which leverages modified Booth recoding, column compressors and carry save adders, is adopted throughout the design. To tackle the increased computational costs associated with object tracking or object based shape encoding, a novel energy efficient binary motion estimation architecture is proposed. Energy is reduced in the proposed motion estimation architecture by minimising the redundant operations inherent in the binary data. Both architectures are shown to compare favourable with the relevant prior art

    Hidden Markov Models

    Get PDF
    Hidden Markov Models (HMMs), although known for decades, have made a big career nowadays and are still in state of development. This book presents theoretical issues and a variety of HMMs applications in speech recognition and synthesis, medicine, neurosciences, computational biology, bioinformatics, seismology, environment protection and engineering. I hope that the reader will find this book useful and helpful for their own research

    Domain adaptation with minimal training

    Get PDF
    The performance of a machine learning model trained on labeled data of a (source) domain degrades severely when they are tested on a different (target) domain. Traditional approaches deal with this problem by training a new model for every target domain. In natural language processing, top performing systems often use multiple interconnected models; therefore training all of them for every target domain is computationally expensive. Moreover, retraining the model for the target domain requires access to the labeled data from the source domain which may not be available to end users due to copyright issues. This thesis is a study on how to adapt to a target domain, using the system trained on source domain and avoiding the cost of retraining and the need for access to the source labeled data. This thesis identifies two key ingredients for adaptation without training: broad coverage resources and constraints. We show how resources like Wikipedia, VerbNet and WordNet that contain comprehensive coverage of entities, semantic roles and words in English can help a model adapt to the target domain. For the task of semantic role labeling, we show that in the decision phase, we can replace a linguistic unit (e.g. verb, word) with another equivalent linguistic unit residing in the same cluster defined in these resources (e.g. VerbNet, WordNet) such that after replacement, text becomes more like text on which the model was trained. We show that the model's output is more accurate on the transformed text than on original text. In another instance, we show how to use a system for linking mentions to Wikipedia concepts for adaptation of a named entity recognition system. Since Wikipedia has a broad domain coverage, the linking system is robust across domain variations. Therefore, jointly performing entity recognition and linking improves the accuracy of entity recognition on the target domain without requiring training of a new system for the new domain. In all cases, we show how to use intuitive constraints to guide the model into making coherent predictions. We show how incorporating prior knowledge about a new domain as declarative constraints into the decision phase can improve performance of a model on the new domain. When such prior knowledge is unavailable, we show how to acquire knowledge automatically from unlabeled text from the new domain and domains similar to both source and target domains
    corecore