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Abstract

MACHINE LEARNING APPLICATIONS ON TIME SERIES DATA FOR

SYSTEMATIC INVESTING

Elizabeth M. Fons
A thesis submitted to The University of Manchester

for the degree of Doctor of Philosophy, 2021

This thesis studies the use of machine learning algorithms on financial time series
data. Neural networks in particular are one of the most active areas of research in ma-
chine learning, and their application on financial investment is becoming more relevant
each year. Still, several challenges remain, and one of the central problems of using
neural networks for asset allocation is developing robust methods that generalise well
and will work on real-world, unseen data.

In the first part of the thesis we focus on enhancing an emerging trend in passive
investment called smart beta. Whilst Smart beta strategies perform well in the long
run, these strategies often suffer from severe short-term drawdown (peak-to-trough de-
cline) with fluctuating performance across cycles. To address this, we build a dynamic
asset allocation system using Hidden Markov Models (HMMs) and test it in a variety
of portfolio construction techniques. The resulting portfolios show an improvement in
risk-adjusted returns, especially on more return-oriented portfolios (up to 50% of risk-
adjusted excess return). In addition, we propose a novel smart beta allocation system
based on the Feature Saliency HMM (FSHMM) algorithm that performs feature selec-
tion simultaneously with the training of the HMM, to improve regime identification.
We evaluate our systematic trading system with real life assets using investable indices;
the results show model performance improvement with respect to portfolios built using
full feature HMMs.

We then focus on enhancing active investment strategies by proposing a machine
learning framework for stock trading. Stock classification is a challenging task due to
high levels of noise and volatility of stocks returns. In this work we present a series
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of methodologies to improve model generalization when using neural networks. We
first introduce the use of data augmentation methods whose use in time series classifi-
cation is still at an early stage. This is even more so in the field of financial prediction,
where data tends to be small, noisy and non-stationary. We evaluate several augmen-
tation methods applied to stocks datasets using two neural network models and the
results show that several augmentation methods significantly improve financial perfor-
mance when used in combination with a trading strategy. Furthermore, we introduce
transfer learning and ensemble learning. Transfer learning can help improve stock clas-
sification, by pre-training a model to extract universal features on the full universe of
the S&P500 index and then transferring it to another model to directly learn a trading
rule. Transferred models present more than double the risk-adjusted returns than their
counterparts trained from zero. In addition, we propose the use of data augmentation
on the feature space defined as the output of a pre-trained model (i.e. augmenting the
aggregated time-series representation) and compare this augmentation approach with
the standard one, i.e. augmenting the time-series in the input space.

Finally, we move towards automating data augmentation, where one of the biggest
challenges is how to search over the space of transformations, which can be prohibited
given the large number of possible transformations and their associated parameters. We
propose two adaptive, sample-specific methods that automatically select augmentation
methods or weight their importance during training. We test this methods on time
series datasets and on financial datasets building a trading rule.
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Chapter 1

Introduction

1.1 Context and motivation

Machine learning is involved in virtually every facet of our lives, from recommending
which movies to watch, traffic predictions and social media services to online customer
support. Not surprisingly, machine learning plays an increasingly important role in
finance with each year that passes [dP18].

At present, machine learning is mostly used in back-office functions such as anti-
money laundering and fraud detection and custom-oriented applications (e.g. customer
services and marketing) and is not that present in front-line trading functions [JPPT19].
However, this is expected to massively change in the next few years, with more firms
incorporating it in their investment processes [Buc19, Yal21].

Among the reasons why machine learning is still not widely adopted in asset man-
agement is a perception of risk due to lack of explainability, biases in data and algo-
rithms, poor performances and inadequate controls and validation. Figure 1.1, taken
from a recent report of the Bank of England [JPPT19] on Machine learning in UK finan-
cial services, summarises these risks into three overall categories, with the highest one
being model performance.

Financial investment in general is about predicting the future, be it the future value
of a stock, an index or the risk of a sovereign bond. And as any prediction, an in-
vestment prediction is based on the combination of information (data) with a model or
method. Investment managers who are good at making these predictions are usually
rewarded with higher returns, this is what is normally called generating alpha. Alpha is
a measurement of abnormal returns, i.e. it measures the excess return of an investment
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Figure 1.1: Results from a Bank of England survey on the use of machine learning in
UK financial services. The chart shows the respondents on the financial sector main
concerns regarding the use of machine learning (figure taken from [JPPT19]).

against the market or a benchmark. It represents the result of an investment that is not
a result of the general movement of the market. For example, if an investment yields a
5% annual return, but investing in an index such as S&P500 yields 7% annual return, the
alpha in this investment is negative. Despite the desirability of generating alpha, it is
often the case that many index benchmarks manage to beat asset managers. Moreover,
besides the difficulty of generating alpha, these type of investment have higher fees,
because active buying and selling incurs high transaction costs and often there is a fund
manager fee for managing the fund.

With a growing number of passive indices, or minimally-managed indices such as
smart beta, many investors are questioning whether actively-managed funds are worth
paying for. Smart beta is a relatively new term that has become ubiquitous in asset
management over the last few years. The financial theory underpinning smart beta,
known as factor investing, emerged in the 1960s, when factors were first identified as be-
ing drivers of equity returns [AG17]. These factor returns may be a source of risk and/or
improved return, hence understanding whether any additional risk is adequately com-
pensated with higher returns is important. [Ang14]. By selecting stocks based on their
factor exposures, active managers can build portfolios with particular factor exposures
and therefore use factor investing to improve portfolio returns and/or lower risk, de-
pending on their objectives. Smart beta aims to achieve these goals at a reduced cost by
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utilising a transparent, systematic, rules-based approach, bringing down costs signifi-
cantly when compared to active management [Asn16].

Machine learning has the potential to create a lasting impact in the financial land-
scape [OGS20, dP18]. It can be a way of creating alpha, for example by stock selec-
tion, and indeed there are several hedge funds operating on artificial intelligence (AI)
strategies and it can also be used to create better systematic, rules-based strategies, for
example enhancing smart beta investment.

Stock market prediction is a challenging task primarily driven by a high degree
of noise and volatility influenced by external factors such as extreme macroeconomic
conditions, heightened correlations across multiple markets, and investor’s behaviour.
Whilst smart beta strategies have shown strong performance in the long run, they of-
ten suffer from severe short-term drawdown (peak-to-trough decline) with fluctuating
performance across cycles [ABKW16]. An additional challenge is that financial datasets
tend to be small, ten years of daily stock prices would have around 2520 samples, which
would be insufficient to train even a small neural network (e.g. a single-layer LSTM
with 25 neurons has approximately 2700 parameters).

A common approach when using machine learning for stock prediction is to focus
on developing a model that predicts the movement of an index or of stocks, and then
to build a simple trading rule in order to test the method’s profitability (in some cases
not taking into account transaction costs that could potentially erode some or all earn-
ings) [KDH17, SO18, BYR17, Jia20]. Further, little work has been done using large-scale
datasets such as all S&P500 constituents in a survivorship bias-free way - survivorship
bias is the tendency to view performance of existing stocks as a representative sample
without regarding those that have gone bankrupt and leads to overestimation of histor-
ical performance [GG93]. In general, previous work has focused on predicting either
movement of an index or of a small number of stocks [FK18].

In this thesis, we investigate alternative ways of leveraging machine learning in ex-
isting trading strategies, focusing on equity trading. Secondly, as the use of neural net-
works applied to time series is lagging behind advances of machine learning in other
areas such as computer vision and natural language processing, this thesis explores the
use of data augmentation methods to improve regularization and generalization espe-
cially focusing in adaptive methods that allow more robust models that are data-driven
and less reliable on expert knowledge.
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1.2 Research Questions

In smart beta investment we know that not all smart beta factors behave the same, they
will respond differently to different market regimes and their performance will fluctu-
ate across cycles, so one of our primary objectives is to address these concerns. More
specifically, we want to address the following research questions:

Q1 Regime switching models have been used successfully across many financial appli-
cations [ML16, RM16]; hence, can we use them, in particular hidden Markov models
(HMMs), to detect relevant regimes in smart beta indices?

Q2 Smart beta strategies with exposures to different risk factors will behave differ-
ently in different market conditions; hence, can we use the information provided by
an HMM to build portfolios that rotate between smart beta factors according to expected
returns and covariances in a certain regime?

Q3 Can we build a trading system for multi-factor smart beta investing that is agnostic and
does not depend on expert knowledge?

Q4 Can we further improve a trading system by selecting optimal features for training without
human intervention?

When using machine learning for active investment, for example for stock day-
trading, one of the most frequent concerns of asset managers is how robust the model is
- that is, will it perform well further down the line with unseen data, and, if by frequent
trading, will the transaction costs erode any gains made from the model.

Furthermore, as shown in Figure 1.1, a secondary concern has to do with data qual-
ity. Therefore, in the second part of our work we study the use of neural networks for
stock selection and regularization strategies to improve generalization. Currently, most
efforts for regularization methods have been focused on computer vision and data min-
ing, but less so in time series classification, with almost no existing work done in finance
[IFFW+19a]. For machine learning in finance in general, little work has been done on
large-scale financial datasets, most often it has focused on just a handful of stocks or
indices. Therefore, we wish to address the following research questions focusing specif-
ically on neural networks:

Q5 Given that neural networks can be difficult to train and that they can overfit, espe-
cially with a small dataset, how can we use transfer learning and ensemble learning,
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well established methods to improve generalization of neural networks, especially for com-
puter vision, in a stock classification problem?

Q6 It is often the case that financial datasets are small [TWZ+20], therefore neural net-
works tend to overfit; hence, 1) can we use data augmentation to address this? In
addition, financial time series are not always stationary, future returns might not
be well represented by past returns; hence, 2) can data augmentation be used to im-
prove generalization by enriching the information related to the class distributions in the
training set? Which time series augmentation methods would work best on finan-
cial datasets? Not only on a pure classification metric but 3) which methods would
work better when evaluated in a trading strategy?

Q7 This last question leads to a more general query: can we build an automatic data aug-
mentation method that can use a general pool of transformations and does not require
human intervention to select the best transformations and tune the transformation pa-
rameters?

1.3 Research Aim and Objectives

The research aim of this thesis is to improve robustness of machine learning models
when used for financial investment. Specifically, we investigate the use of machine
learning in equity investment both from a passive perspective, focusing on smart beta
strategies, and on active investment, focusing on neural networks for stock selection
strategies.

The research objectives of this thesis can be summarized as follows:

RO1 Design, implement and evaluate a dynamic asset allocation (DAA) system for
smart beta investing based on HMMs that allows multi-factor smart beta strategies
to be built by rotating allocations depending on the regime.

RO2 Investigate the use of feature saliency hidden Markov models (FSHMM) to further
improve the DAA system by automatically selecting relevant assets for training
and thus improving regime identification.

RO3 Study the use of time series data augmentation methods to improve financial pre-
diction for stock trading when used in combination with neural network models.



CHAPTER 1. INTRODUCTION 31

RO4 Investigate the effectiveness of two popular regularization strategies in machine
learning, transfer learning and ensemble learning, for the task of learning a trading
rule. Furthermore, we want to study the use of data augmentation methods on the
feature space (defined as the output of the pre-trained model) and compare it with
augmentation methods applied to the input vector.

RO5 Design an automatic data augmentation method to combine multiple transforma-
tions adaptively during training, and evaluate the proposed method both on the
stock classification task and on time series datasets.

1.4 Summary of main contributions

• We propose a novel DAA system using an HMM for regime detection that allows
detection of market states. The proposed system is trained with factor indices and
enables estimation of expected returns and covariances that are state dependent
(chapter 3).

• We extend the regime dependent DAA system by incorporating a FSHMM for
feature selection, named Feature-Saliency DAA (FSDAA). The proposed system
recognizes features that are state-dependent (useful features) and features that
are noise from spurious data (state independent) that may worsen model perfor-
mance, leading to improved regime identification (chapter 3).

• We provide the first, to the best of our knowledge, thorough evaluation of popular
data augmentation methods for time series on the stock classification problem;
we perform an in-depth analysis of a number of methods on two state-of-the-art
neural network architectures using daily stock returns datasets.

• We propose using transfer learning to extract universal features from data and
use this to learn a trading rule. Furthermore, we demonstrate how adding data
augmentation on the feature space, defined as the output of the pre-trained model,
benefits the training and we compare this approach with standard augmentation
on the input space.

• Noting the benefits of using data augmentation to learn data invariances, we pro-
pose two automated methods for time series data augmentation. Both methods
are adaptive and sample-specific.
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• All methods are backtested on portfolios built with different risk management
(Chapter 3) or with simple trading rules (Chapters 5 and 6), always considering
transaction costs, in order to better simulate real-life conditions, and on datasets
that avoid look-ahead and survivorship bias.

1.5 Outcomes

The research work presented in this thesis has led to the following outcomes:

• Elizabeth Fons, Paula Dawson, Xiao-jun Zeng, John Keane, Alexandros Iosifidis.
Augmenting transferred representations for stock classification. Accepted at IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2021.

• Elizabeth Fons, Paula Dawson, Jeffrey Yau, Xiao-jun Zeng, John Keane. A novel
dynamic asset allocation system using Feature Saliency Hidden Markov models
for smart beta investing. Expert Systems with Applications, Volume 163, 2021.

• Elizabeth Fons, Paula Dawson, Xiao-jun Zeng, John Keane, Alexandros Iosifidis.
Evaluating data augmentation for financial time series classification. In review,
2021. Pre-print available at: https://arxiv.org/abs/2010.15111.

• Elizabeth Fons, Paula Dawson, Xiao-jun Zeng, John Keane, Alexandros Iosifidis.
Adaptive weighting scheme for automatic data augmentation. In review, 2021.

1.6 Thesis organization

The rest of the thesis is organized as follows. Chapter 2 provides a background on smart
beta and discusses its characteristics and limitations. Next, it introduces regime switch-
ing models that can be used to overcome some of the challenges of smart beta investing
and outlines related work done with regime switching models in finance. Finally, we
present HMM and an extension called FSHMM that improves model performance by
simultaneously doing feature selection and model training. These will be used to build
a dynamic asset allocation system for smart beta.

Chapter 3 contains a main contributions of this thesis: it presents a novel DAA sys-
tem based on HMMs and performs a thorough study of the DAA system on a broad
array of portfolios built with multiple factor indices and with different risk profiles. It

https://arxiv.org/abs/2010.15111
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compares the portfolio performances with two benchmarks, gaining insight into which
risk profiles benefit better from a DAA system that uses regimes. It then constructs an
extension to the DAA system by introducing a FSHMM in the training. Finally, it tests
this improved system in real life, investable assets.

Chapter 4 gives a background on machine learning, especially focusing on neural
networks and an overview of related work on the use of neural networks for stock clas-
sification. Then, it explains the main regularization methods used for neural networks,
especially focusing on work applied to time series and finance. Finally, it outlines open
challenges presented in data augmentation and gives a detailed background on the state
of the art automatic augmentation methods.

Chapter 5 explores the use of data augmentation on financial data, using two differ-
ent size datasets and two network architectures. This study shows in detail the method-
ology and transformation methods applied and it introduces the trading rules used to
present the results in a context of portfolio performance. Chapter 6 explores the use of
transfer learning to learn a pre-determined trading rule and explores the use of data
augmentation both on the input of the neural network and in the feature space. To fur-
ther improve generalization, the chapter introduces ensemble learning. Finally, it shows
the evaluation of each method on a trading rule and calculates several financial metrics
on the resulting portfolios.

Chapter 7 proposes two novel sample-adaptive data augmentation policies that al-
low to combine multiple data transformation methods during training at once by adap-
tively weighting the methods per training batch. We study performance of the methods
in financial data by evaluating the methods on a trading rule. We also test the poli-
cies on mainstream time series datasets and compare our methods with RandAugment
[CZSL20] applied to time series data for the first time.

Finally, chapter 8 evaluates and summarizes the thesis contributions and discusses
possible avenues of future work.



Chapter 2

Background and related work: smart
beta investing and regime switching
models

This thesis focuses on leveraging the use of machine learning in financial investing,
both in a context of passive investing, such as is smart beta, and active investing. In this
chapter we provide an overview of smart beta investing and its basis in factor investing.
We then introduce regime switching models that we will use to build multi-smart beta
strategies and present one regime switching model in particular, hidden Markov model
(HMM) and an extension of this model that allows for automatic feature selection.

The financial crisis of 2008 generated much interest in more transparent, rules-based
strategies for portfolio construction, with smart beta strategies emerging as a trend
among institutional investors. While smart beta strategies have shown strong perfor-
mance in the long run, they often suffer from severe short-term drawdown (peak-to-
trough decline) with fluctuating performance across cycles [ABKW16]. These fluctu-
ations can arise from extreme macroeconomic conditions, elevated volatility, height-
ened correlations across multiple markets and uncertainty monetary and fiscal policy
responses.

To address these concerns, in chapter 3 we propose building a regime switching
model using HHMMs. In section 2.3 we provide the theoretical background of HMMs
and feature saliency Hidden Markov models (FSHMM) that will be the underlying
mechanism for a regime switching model. Finally, we give an overview of related work
done with regime switching models in finance.

34
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Table 2.1: Representative factor indices used for building regime switching frameworks

# Factor Family # Factor Family

1 Book Value Yield Value 14 Operating Margin Growth-1Yr Quality
2 1 Yr Fwd Earnings Yield Value 15 Operating Margin Growth-3Yr Quality
3 Free Cash Flow Yield Value 16 Historical Free Cash Flow Growth-1Yr Growth
4 Sales Yield Value 17 Historical Free Cash Flow Growth-3Yr Growth
5 Dividend Yield Value 18 Historical DPS Growth-1Yr Growth
6 Historical ROE Quality 19 Historical DPS Growth-3Yr Growth
7 Operating (EBIT) Margin Quality 20 6 Month Price Momentum Momentum
8 AltmanZ Quality 21 12 Month Price Momentum Momentum
9 ROA Quality 22 3 Month Avg Mean EPS Quality
10 Piotroski Quality 23 Size Risk
11 Earnings Growth FY1 to FY2 Growth 24 EPSCV Quality
12 Historical Sales Growth-1Yr Growth 25 Beta Risk
13 Historical Sales Growth-3Yr Growth

2.1 Smart beta investing

Smart beta is a systematic, low cost implementation of factor investing, where securities
are selected based on their exposure to an attribute that has been associated with a per-
sistent higher return in the past, called a factor. Factors can be fundamental character-
istics of the economy (macroeconomic factors) or of companies (style factors). Macroe-
conomic factors can be thought of as capturing the broad risks and returns across assets
classes, whilst style factors can be thought of as aiming to explain returns and risks for
securities within asset classes.

This work considers style factors in the equity market; within these style factors,
dozens of indicators have been identified. The majority can be grouped into families,
with style factors within a family measuring similar characteristics and often highly
correlated [Ang14, FF15, DMS17]. An example of this is momentum, which includes
factors measuring returns over different periods (3-months, 6-months, 12-months etc).

While there is no universal definition of these families or the factors that belong in
each family, there are common themes. Typically, families comprise: value, growth,
momentum, quality, size and some sort of volatility/risk/beta measure. There may be
variations on this, for example Dividend Yield is sometimes viewed as a factor family in
its own right or sometimes it is viewed as a member of the Value family; sometimes the
Value family can be split into Value and Deep Value. Table 2.1 shows the factor indices
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and their corresponding families that will be used in Chapter 31 to build regime switch-
ing frameworks and Appendix A presents the construction of each of these factors.

2.2 Regime switching models

Regime-switching models are a class of parametric nonlinear time series models which
have a wide range of applications in multiple fields such as engineering, economics, fi-
nance and many others [ESL18]. The basic principal of regime switching models is that
the model parameters can change over time according to an underlying state process
such as a finite-state hidden Markov chain. There are several popular regime switch-
ing models such as threshold models, which are a generalization of linear autoregres-
sion models, smooth transition autoregression that instead of using an indicator func-
tion, use a smooth cumulative distribution function such as a logistic for the transition
and Markov switching models [Pot99]. Within the Markov switching models, HMMs
have been used extensively in finance since Hamilton proposed the use of a Markov-
switching model to identify economic cycles using the GNP series [Ham89].

As pointed out by [AT12] HMMs simultaneously capture multiple characteristics
from financial return series such as time-varying correlations, skewness and kurtosis,
while also providing good approximations even in processes for which the underlying
model is unknown [AB03, BMB+11, BB06, NML15, NML17].

Further, HMMs allow for good interpretability of results, as thinking in terms of
regimes is natural in finance. Examples of DAA are [RM16] where a HMM is used to
build a dynamic portfolio using currency futures and [BKM14] that uses a HMM to
identify market regimes using different asset classes, with regime information helping
portfolios to avoid risk during left-tail events. Chen et al. build trading strategies using
basic data from an index fund (such as OHLC, volume) and train HMMs to predict next
day state of the market [CYZ20]. They propose using a 3-state HMM interpreted as
bull, bear and mixed market and build a trading strategy to buy, sell or do nothing re-
spectively and also propose using a 5-state model and correspond the states with a bull
market, a small bull market, a mixed market, a small bear market and a bear market.
The 3-state model achieves an accuracy of just over 50%, and the 5-state model achieve

1We kindly thank JP Morgan for providing this dataset, consisting of long and short returns following
the 25 factors.
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an accuracy of 53% and is more profitable when compared with a double moving aver-
age strategy. In their work, they choose the number of hidden states beforehand instead
of doing model selection. Chandrika et al. study the optimal number of regimes for 5
popular stock indices (S&P500, Dow Jones, NIFTY 50, KOSPI and New York Stock Ex-
change (NYSE)) on 5 years of data by doing model selection using Akaike Information
Criterion (AIC) and Bayesian Information Criterion (BIC) and found that the optimal
number of states for those markets is two [CVS20]. Nguyen uses an HMM to predict
monthly closing prices of the S&P500 and use these predictions to trade the stock. They
use 56 years of data for training and first select the optimal number of regimes as 4 by
using four metrics for model selection (AIC, BIC, Hannan Quinn information, and the
Bozdogan Consistent Akaike Information). Then then test performance of the model
over 10 years of data by predicting the next month expected return and if the return is
positive, will buy the stock and sell if it is negative. They report performance consider-
ing transaction costs and show a profit of up to 70% in a 10 year period, and compared
it with a buy and hold strategy that returns 58%. Guidolin provides an extensive review
of applications of Markov switching models in empirical finance covering stock returns,
term structure of default-free interest rates, exchange rates and joint processes of stock
and bond returns [Gui12].

Besides standard HMMs, there has been work on extended versions of HMMs for
financial market prediction. Dias et al. propose the mixture Gaussian hidden Markov
model (MGHMM) that uses to two types of latent variables, the latent state or regime
characteristic of an HMM and a latent class that is time-constant and corresponds to
unobserved heterogeneity between financial assets that allow to cluster them together
[DVR15]. The data used is 21 European stock market indexes daily closing prices span-
ning 15 years. They find that the optimal number of regimes is 3 and the optimal num-
ber of latent classes is 2, where one class corresponds to European developed financial
markets such as France and Germany and the second class is mainly composed of East-
ern European countries and countries whose stock markets have been severely affected
by economic and financial crisis such as Greece and Finland. Elliot et al. propose a com-
bination of HMMs with a smooth transition model that allow to incorporate two types
of switching behavior, smooth state transitions and abrupt changes in hidden states
[ESL18]. They tested their model with simulated data and showed that it converges in
less than 100 iterations to the correct parameters, but when tested in real life data using
two stock indices, the algorithm didn’t converge.
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Outside of asset allocation, HMMs have been used to capture energy prices dynam-
ics [DR14] to build credit risk systems; for example [PCX16] build a credit rating system
using a students’-t HMM, addressing two problems in current systems: their heavy-
tailed actual distribution and their time-series nature; [ESF14] build a model using a
double HMM to extract information about true credit qualities of firms. [DBdV16]
study HMMs and other Bayesian networks to build early warning systems to detect
systemic banking crises and find that Bayesian methods provide superior performance
on early warning compared with traditional signal extraction logic models; and [ZM12]
investigate three popular short-rate models and extend them to capture the switching
of economic regimes using a finite-state Markov chain.

To date, little work has been done on the impact of regime switching models on
factor investing. Among this work, [GT08] found evidence of four economic regimes
in size and value factors that capture time-variations in mean returns, volatilities and
return correlations. Perhaps closest to our work, [LXZ11] and [MMXZ11] study time-
varying risk premiums using a regime switching model with 3 states. The regime
switching model is trained using six well-established factors found in the literature and
the assets used for allocation are 9 sector ETFs (Exchange Traded Fund). They achieve
a Sharpe ratio of 0.18 but the work covers a short period of testing time (9 months) and
does not consider transaction costs. In general, most reviewed works use an HMM to
detect regimes and build a simple trading strategy on top of this consisting on buy, sell
or hold but do not make use of information from the estimated parameters, e.g. pre-
dicted covariances of the regimes, to build more sophisticated strategies that take into
account risk. Additionally, most works use only one asset to train the HMM and ei-
ther use only the assets returns or OHCL data and volume, but do not consider feature
selection, i.e. selecting features to improve model prediction. In the next section we ex-
plain the theoretical background of HMMs and feature saliency HMMs that allows to
perform feature selection simultaneously with training.
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2.3 Theoretical background

2.3.1 Hidden Markov Models (HMMs)

HMMs are sequential models that assume an underlying hidden process modeled by a
Markov chain and a sequence of observed data as a noisy manifestation of this latent
process [Mur12].

Figure 2.1: HMM: squares with xt represent latent variables, circles with yt are observa-
tions and circles with {π,A, µ, σ} represent model parameters.

Given o = {y1, ...,yT} the sequence of observed data where each yt ∈ RL with L

the dimension of observations and x = x1, . . . , xT the latent sequence of states where
xt ∈ {1, . . . , K}with K the number of latent states.

The Gaussian HMM model parameters are Λ = (π,A, µ, σ) where π and A corre-
spond to the initial probability vector and transition probability matrix, and µ and σ are
the mean vector and covariance matrix of the state dependent L−dimensional Gaus-
sian feature distribution (generally called emission probabilities, symbolized here by
bxt), the graphical model of the HMM can be seen in Figure 2.1 where blue squares rep-
resent latent variables, orange circles are observations and green circles represent model
parameters.

The complete likelihood can be written as:

p(x,y|Λ) = π(x0)bx0(y0)
T∏
t=1

A(xt−1, xt)bxt(yt) (2.1)
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In this work the sequence of noisy observations are factor indices returns and the
underlying hidden process is the state of the market that generates them. We assume
that the emission probabilities are Gaussian. While normal distributions are a poor
fit to financial returns, the mixture of normal distributions provide a much better fit
capturing stylized behaviors including fat tails (kurtosis) and skewness [NML15, AT12].
Kurtosis commonly refers to how heavily the tails of a distribution differ from the tails
of a normal distribution, a higher kurtosis corresponds to greater probability of higher
deviations or outliers and is associated in finance with a high level of risk. Skewness
is a measure of the asymmetry of a probability distribution and can be positive, zero,
negative or undefined (a normal distribution has a skewness of zero).

The training of HMMs is done by the Baum-Welch algorithm, a type of Expectation-
Maximization (EM) algorithm [Rab89]. The E-step calculates the expected value of the
log-likelihood with respect to the probability laws of the state, given the data and cur-
rent model parameters and the M-step maximizes the expectation computed in the pre-
vious step to update the model parameters. The algorithm iterates between these two
steps until convergence.

The expectation of the complete log-likelihood function is given by:

Q(Λ,Λ′) = E[log p(x,y|Λ)|y,Λ′] (2.2)

where Λ are the parameters for the current iteration and Λ′ is the set of parameters from
the previous iteration.

Following [ABC16], we place priors on the parameters and calculate the Maximum
a posteriori (MAP) estimate, so the Q function is modified by adding the prior on the
model parameters, G(Λ):

Q(Λ,Λ′) + logG(Λ) (2.3)

The behaviour of the EM algorithm is as follows, the Q function in 2.2 is calculated in
the E-step and the equation 2.3 is maximized in the M-step.

Example of the use of HMMs on factor data

In this section we present a minimal example of an HMM trained with the returns of
three factors (Value, Quality and Momentum). For example purposes, we selected a
3-state model. Figure 2.2 shows the returns of the three factors coloured by the corre-
sponding predicted hidden state. From the return plots we can see that state 0 in blue



CHAPTER 2. SMART BETA AND REGIME SWITCHING MODELS 41

1995 2000 2005 2010 2015
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Value

State 0
State 1
State 2

Return

Ti
m

e

1995 2000 2005 2010 2015
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Quality

State 0
State 1
State 2

Return

Ti
m

e

1995 2000 2005 2010 2015
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Momentum

State 0
State 1
State 2

Return

Ti
m

e

Figure 2.2: Returns of three factor indices (Value, Quality and Momentum) coloured by
the predicted hidden state from an HMM trained with these factor returns.

corresponds to a big spread of the returns (high volatility) while state 1 in red corre-
sponds to low volatility. The state 2 is a transition state, with intermediate volatility.

Figure 2.3 shows the transition probabilities between states, and we can see that
states 0 and 1 cannot transition to each other, the only way to transition from state 0
(high volatility) to state 1 (low volatility) and vice-versa is always going through state
2 (transition state). This is an interesting result, because it means that the model can
be interpreted as we can’t go from a calm market directly to a distress market without
first going through a transition state. This is one of the very interesting aspects of using
HMMs in finance: they allow for good interpretability.

Finally, if we look at the predicted returns for each state, we can see that for state 0,
the value factor has a predicted daily return of 0.0015 US$ while the other two factors
show negative returns (especially momentum). This shows something well studied in
finance: that Value and Momentum tend to behave differently in high risk market con-
ditions. For state 1, returns tend to be low, and for state 2, Value has negative expected
returns while Quality and Momentum show higher returns. This is just a toy example
of how an HMM could be used in a smart beta setting where we would want to rotate
factors depending on market regimes. The model also outputs the covariance matrices
per state, and as we will see in Chapter 3, this can be use to construct portfolios that
take into account correlations between assets.
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Figure 2.3: Directed graph showing the transition probabilities between states corre-
sponding to a 3-state hidden Markov model trained with facotr returns.

2.3.2 FSHMM

The FSHMM considers a feature relevant if its distribution is dependent on the un-
derlying state and irrelevant if it is independent. Given a set of binary variables z =

{z1, . . . , zL} that indicate the relevance of the feature, i.e. zl = 1 if the l-th feature is
relevant and zl = 0 if its irrelevant, the feature saliency ρl is defined as the probability
that the l-th feature is relevant.

Assuming the features are conditionally independent given the state enables the
multivariate Gaussian to be written as a multiplication of univariate Gaussians, and
the conditional distribution of yt given z and x can be written as follows:

p(yt|z, xt = i, Λ̄) =
L∏
l=1

r(ylt|µil, σ2
il)
zlq(ylt|εl, τ 2l )1−zl (2.4)

where r(ylt|µil, σ2
il) is the Gaussian conditional feature distribution for the l-th feature

and q(ylt|εl, τ 2l ) is the state-independent feature distribution.
The Gaussian FSHMM model parameters are Λ̄ = (π,A, µ, σ, ρ, ε, τ) where the first

four parameters correspond to the regular HMM, ρ is the feature saliency and ε and τ are
the mean and variance of the state independent Gaussian feature distribution. Figure
2.4 shows the FSHMM.



CHAPTER 2. SMART BETA AND REGIME SWITCHING MODELS 43

Figure 2.4: FSHMM: squares with xt represent latent variables, circles with yt are obser-
vations and circles with {π,A, ρ, µ, σ, ε, τ} represent model parameters.

The marginal probability of z is:

p(z|Λ) =
L∏
l=1

ρzll (1− ρl)1−zl (2.5)

The joint probability distribution of yt and z given x is:

p(yt, z|xt = i,Λ) =

L∏
l=1

[ρlr(ylt|µil, σ2
il)]

zl [(1− ρl)q(ylt|εl, τ 2l )]1−zl (2.6)

The complete likelihood for the FSHMM is given by:

p(x,y, z|Λ) = πx0p(y0, z|x0,Λ)
L∏
t=1

axt−1,xtp(yt, z|xt,Λ) (2.7)

The MAP estimation of the FSHMM is similar to the HMM using EM but the Q

function incorporates the hidden variables associated with feature saliency and can be
written as:
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Q(Λ,Λ′) = E[log p(x,y, z|Λ)|y,Λ′]

=
∑
x,z

log p(x,y, z|Λ)P (x, z|y,Λ′) (2.8)

The update steps of the EM algorithm are shown in Appendix B and the pseudocode
for the MAP FSHMM formulation is given in Algorithm 12. A detailed description of
the equation derivations and the steps of the algorithm can be found in [Ada15].

Algorithm 1 MAP FSHMM Algorithm

1: Select initial values for πi, aij, µil, σil, εl, τl and ρl for i = 1 . . . I, j = 1 . . . I , and l =
1 . . . L

2: Select initial values for the prior hyperparameters p̄i, āij,mil, sil, ζil, ηil, bl, cl, νl, ψl
and kl for i = 1 . . . I, j = 1 . . . I , and l = 1 . . . L following B.8 to B.14

3: Select stopping threshold δ and maximum number of iterations M
4: Set absolute percentage change in the posterior probability between current itera-

tion and previous iteration ∆L to∞ and the number of iterations it to 1
5: while ∆L > δ and it < M do
6: E-step: calculate probabilities γt(i), ξ(i, j), eilt, hilt, gilt, uilt, vilt following B.1 to B.7
7: M-step: update parameters πi, aij, µil, σ2

il, εl, τ
2
l , ρl following B.15 to B.21

8: ∆L
9: it = it+ 1

10: end while
11: Perform feature selection based on ρl and construct reduced models

As well as the parameters estimated through EM, the model also has several hyper-
parameters to set in advance. The most relevant is the weight parameter kl that can be
used as an informative exponential prior on ρ. Setting higher values of kl for a feature
translates into assigning a higher cost to it (e.g. making explicit that collecting the fea-
ture is more expensive), so in order for the algorithm to select the feature, it requires
more evidence of its relevance. This can be used either to reduce the number of selected
features or as a proxy for the cost of selecting a feature in the optimization process. The
heuristic to select a reasonable value of kl is to scale it with the number of observations
as T/4 with T the number of observations.

2The implementation of the algorithm can be downloaded from: https://github.com/elifons/
FeatureSaliencyHMM

https://github.com/elifons/FeatureSaliencyHMM
https://github.com/elifons/FeatureSaliencyHMM
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2.4 Chapter summary

Smart beta has become ubiquitous in asset management over the last few years due to
its ability to combine characteristics of active management (factor investing) in a rules-
based, passive way. While it shows a strong performance in the long run, it can suffer
from underperformance in the short term. In this thesis we focus on addressing this
short-term underperfomance by proposing use of a Dynamic Asset Allocation DAA)
system based on a regime switching model.

Chapter 3 will present a methodology to build the DAA system using HMMs and
then a modified DAA system that uses FSHMMs which enhances the performance of a
traditional HMM by doing feature selection simultaneously with training, leading to a
more precise identification of regimes.



Chapter 3

A novel dynamic asset allocation system
for smart beta investment

3.1 Introduction

Smart beta is a type of investment that is becoming more popular in finance as it evi-
dences a growing appetite for more passive, systematic investments that do not incur
large transaction costs. While smart beta shows strong performance over long periods
of time, it can suffer from severe short-term drawdown (peak-to-trough decline) with
fluctuating performance across cycles [ABKW16].

In this chapter we address these concerns by building a dynamic asset allocation
system that uses HMMs to detect market regimes and smart beta behaviour within the
regimes. Furthermore, given that there are different styles of smart beta strategies that
correspond to exposure to different families of factors, as explained in subsection 2.1,
these factors behave differently in different regimes, e.g. during an economic expansion
period Momentum might be a very profiting strategy but not Quality, so having expo-
sure to both factors is not desirable. Therefore, building multi-factor investments that
do not cancel each other out is a challenge and factor rotation becomes an important
issue that can be addressed using HMMs.

Additionally, we propose a novel smart beta allocation system called FS-DAA, based
on the Feature Saliency HMM (FSHMM) algorithm [Ada15] that performs feature selec-
tion simultaneously with the training of the HMM, to improve regime identification.
Traditionally, regime switching models use one or just a handful of features for train-
ing, and the features are normally selected by expert knowledge. By incorporating a

46
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FSHMM into the dynamic asset allocation system, we allow the model to select the fea-
tures that are more relevant to detect regimes, without the need for expert knowledge
and allowing to evaluate more features that are normally used.

We show that portfolios built using the DAA system with HMMs shows an im-
provement in risk-adjusted returns with respect to their benchmarks, especially on more
return-oriented portfolios (up to 50% of return in excess of market adjusted by relative
risk annually). In addition, we evaluate our FS-DAA system with real-life assets using
MSCI indices; further, the results (up to 60% of return in excess of market adjusted by
relative risk annually) show model performance improvement with respect to portfolios
built using full feature HMMs.

The main contributions of this chapter are the following:

1. We build a DAA system using an HMM for regime detection and perform a sys-
tematic study using multiple combinations of assets to compare performance with
their single-regime portfolio counterparts. We show that the DAA system consis-
tently out-performs the benchmarks;

2. We extend our DAA system by incorporating a Feature Saliency HMM for feature
selection, thus improving regime identification;

3. We test the DAA system with embedded feature selection on real-life investable
indices using MSCI indices; this gives an improvement in risk-adjusted return on
multi-factor strategies built using the DAA system with FSHMM with respect to
multi-factor strategies built using the DAA system without feature selection.

This chapter is organized as follows: Section 3.2 introduces the methodology to build
a DAA system, the datasets, the system architecture explaining model selection and sys-
tem calibration and finally the DAA system incorporating feature saliency. Section 3.3
presents the experimental results of the DAA system, and the incorporation of embed-
ded feature selection; conclusions and further work are presented in Section 3.4.

3.2 Methodology

Investment on single factor strategies has been shown to have significant returns over
the long term; however, it is not straightforward to build multi-factor strategies and ro-
tate factors according to market conditions. Factor indices are time series data, hence we
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Table 3.1: Description of datasets.

Dataset Date Nr of features Frequency

1: Factor data Jan-1988 to Feb-2016 25 Daily
2: MSCI Enhanced Jan-1999 to Feb-2016 6 Daily

take advantage of the capacity of HMMs to identify underlying regimes in sequences
of observations and build a DAA system. We will firstly determine the optimal number
of hidden states to model market regimes and then, in order to avoid excessive transac-
tions costs through frequent rebalancing, we optimize the rebalancing signal.

3.2.1 Datasets

Below is the description of the two datasets used in this work; Table 3.1 summarises
their main characteristics.

Dataset-1: Daily factor data from S&P500 index

Dataset-1 is a set of style factors which are constructed based on the S&P 500 universe
of US stocks. The style factor for each individual stock is determined, the universe is
ranked and a portfolio is constructed with the top 20% of stocks and short positions
(negative weights) in the bottom 20% of stocks. This is repeated each month. The re-
sulting style factor portfolio will have a strong exposure to the factor and no exposure
to the overall market (as the negative holdings offset the positive weights) - Table 2.1
shows these. The data is supplied by a broker and consists of 25 style factors covering a
time period from 1988 to 2016 1. This dataset is used throughout the analysis.

Dataset-2: Daily MSCI USA enhanced indices

Dataset-2 is supplied by MSCI and consists of a range of indices which they publish. As
with Dataset-1, the individual style factors are calculated using underlying stocks and
their style factor exposures. These individual style factor indices are then grouped into
six style factor families, and it is these indices that are used in this work. We use the six
MSCI USA enhanced style indices:: value, low size, momentum, quality, low volatility

1We thank JP Morgan for kindly providing this dataset, consisting of long and short returns following
the 25 factors.



CHAPTER 3. DAA SYSTEM FOR SMART BETA 49

and dividend yield [BBMS13] 2. These have different inception dates, with the most
recent beginning in 1999, which limits the period for which we can use this dataset to
1999-2016. Figure 3.1 shows the cumulative return of the MSCI indices for the testing
period, net of market.

The advantage of using a published set of indices (such as MSCI indices) is that they
can be packaged into an easy to purchase product. A stock index by itself has the ad-
vantage of being investable and transparent, given that the methodology used for its
construction is specified. One cannot directly invest in an index but can buy an index
fund, that can either be a mutual fund or an exchange-traded fund (ETF) that track the
index. Tracking the index means trying to replicate the construction of the index by buy-
ing the same stocks in the same proportion. The tracking error is the resulting difference
in performance between an index fund and the index. The objective of the mutual fund
or the ETF is just to replicate the original index, not to ourperform it. As an example, an
investor who wants to buy US value stocks can buy an MSCI US enhanced Value ETF
provided by a separate invetment company, which would involve buying one security
(the ETF) rather than the underlying stocks. By removing the need to analyse and pur-
chase the underlying companies, the complexity and cost of implementing a smart beta
strategy can be reduced. Using the MSCI indices, allows us to test our DAA system
using real world assets which, if successful, an investor could then replicate fairly easy
by buying a tracking index.

3.2.2 DAA system architecture

As we mentioned, selecting the correct combination of factors and rotating them ac-
cordingly so they don’t cancel out is a difficult task, of great interest in the financial
community. Therefore, we propose a dynamic allocation system that is able to identify
regimes between the factors and automatically provide information to perform port-
folio optimization. We design the dynamic trading framework with daily evaluations
and monthly re-adjustments as shown in Figure 3.2. Each day a new vector of returns
is added to the training set with an expanding window, and the state is predicted. Re-
turns are lagged by one day in order to avoid look-ahead bias. The DAA system can be
roughly thought of as two parts, an HMM that we use to detect regimes and a portfolio
optimization part that rebalances the portfolio changing the allocation of the different
factors depending on the detected regime. The advantage of using an HMM in the DAA

2We thank MSCI for kindly proving the dataset consisting of the 6 USA enhanced style indices.
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Figure 3.1: Cumulative returns of MSCI USA enhanced factors. Returns are in excess of
the market in USD, for the date range Jan 2012 to Feb 2016.

system is that the identified regimes give multiple distributions for the assets used, and
therefore the assumption of a single static return distribution of traditional models such
as the mean-variance portfolio can be relaxed. This way, the predicted mean and co-
variance provided by the HMM allow to optimize different utility functions that derive
in a wide array of portfolios. Bae et al. also build a DAA system using HMMs, in their
case they are interested in identifying regimes in varied financial markets by using three
indices (one stock index, one bond market index and one commodity index) [BKM14].
Besides the HMM, they use a stochastic programming approach that allows to include
a level of risk tolerance on the optimization process. Because there is virtually no re-
search done on using HMMs for factor allocation, we decided to build a simpler DAA
system that just takes the predicted return and covariances of the assets for the regimes
and use this information to directly build the portfolios by optimizing the desired util-
ity function. Given that this prediction is noisy, we determine an optimal window of
consecutive days in the new state before the portfolio is rebalanced. Once a change of
state has been accepted, the vector of means and covariance matrix from the new state
are retrieved and the portfolio weights optimized using the different portfolio construc-
tion techniques, with transaction costs calculated after rebalance. Once a full month has
passed, we add this new batch of data to the training set with an expanding window and
retrain the model. Figure 3.3 shows how data is added daily with an expanding win-
dow. While the monthly retraining will not produce immediate changes in the model
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Figure 3.2: Dynamic Asset Allocation system diagram.
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Figure 3.3: Data scheme shows data is added daily using an expanding window.

parameters (transition matrix and emission distributions), in time they should change
slightly to accommodate the new information. Therefore, we can capture changes on
the dynamics of the system over time, and this relaxes the condition of stationarity of
the HMMs.

Model selection

The number of latent states in a HMM has to be set before training. An option is to use
the Bayesian Information criterion (BIC), a penalized log-likelihood function that can be



CHAPTER 3. DAA SYSTEM FOR SMART BETA 52

used for model selection [Sch78]. BIC is defined by:

BIC = −2 log p(D|θ̂) + d log(N)

where d is the number of free parameters in the model and N is the number of samples.
Thus, calculating the score over a range of K states, we can select the model with the
lowest value. Another option is to follow a greedy approach, calculating performance
of the portfolios built with a different number of regimes and selecting the model with
highest performance.
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Figure 3.4: The top plot shows the boxplot of BIC number for different number of states
for 200 combinations of assets: a two state model has a higher BIC but there is no dis-
tinction between three, four and five; the bottom plot shows performance of portfolios
as a function of number of hidden states. The two state model yields better performance
for the majority of portfolios.

In the financial HMM literature [GT08], regime switching models normally range
between 2 and 4 states so we selected random combinations of 5 assets each (where each
asset belongs to a factor family as described in Table 2.1) and used these combinations
to train an HMM with 2, 3, 4, 5 and 6 hidden states respectively. Keeping the number of
states low allows better interpretability, and with more hidden states (5 or 6) we observe
that some states only occur for a few days so is more likely to be caused by over-fitting,
and the covariance calculation is inaccurate for these states. We draw 200 combinations
of assets to build portfolios in order to estimate the optimal number of states (more
than 15% of the total number of possible combinations). From each HMM information
we built different types of portfolios - explained in Section 3.3.1. The performance of
each portfolio was calculated using the Information Ratio (IR - the ratio between excess
return and standard deviation of excess returns, annualized [Bac12]); the plots of BIC
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and performance as a function of number of states are shown in Figure 3.4. The BIC
score is quite similar for states 3 to 6 (4 being the lowest) and is slightly higher for 2
states. While this suggests use of a 4-regime model, performance of portfolios for 3 and
4 states is significantly lower than for 2 states, so we have selected a two-state model.
Two-state models can be interpreted as expansion-contraction.

System calibration

The DAA system requires a trained HMM to model regime changes and the selection
of an optimal time window to decide when a change of state has taken place and the
portfolio has to be rebalanced.

For the first part of the work - where we test if the proposed DAA system adds
value to multi-factor strategies - we use multiple combinations of factors, and calibrate
the system for each combination. From a pool of 25 factor indices we select n assets
randomly and use their returns to train a HMM. As factors can be grouped into five
families (following Table 2.1), we randomly select one factor from each group so all
families are represented. This yields a total of 1260 combinations. We then use the same
factors to build the portfolios.

We divide the data set into three subsets: training set (15 years), validation set (9
years) and test set (4 years). In order to avoid getting stuck in a local maximum we
do random initialization with initial parameters calculated from the training data and
select the model with highest score. Figure 3.5 shows the process of training, validation
and test using the DAA system.

The regime prediction is done by passing the whole series of returns up to the pre-
vious day to decode the most probable sequence of hidden states, and keep the last
value as the state prediction. This daily prediction is noisier than it would be if a whole
month of returns was passed together, and we cannot re-balance a portfolio each time
a change of state is flagged without incurring large transaction costs, as quite often this
would mean a daily re-balance. Instead, in the validation set, we look for a window
of d consecutive days in the same new state and then we flag a change of regime and
re-balance the portfolio accordingly. Figure 3.6 shows the performance of a selection
of portfolios as a function of the time window d. While certain combinations of assets
perform consistently better than others with larger windows, smaller windows have
the worst performance in all cases. The main reason is that performance of portfolios is
adjusted for transaction costs, so smaller windows mean higher portfolio turnover and
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Figure 3.5: Full schematic of calibration and usage of the DAA system for smart beta
investing.

therefore, higher costs. We use the training set to identify the optimal window for each
combination of assets.
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Figure 3.6: A subset of the 1260 portfolios is plotted. The colormap corresponds to the
performance measured by IR (adjusted for transaction costs) as a function of window
size. In the majority of cases performance is low for smaller windows due to frequent
re-balance; performance tends to improve with window size, 15. However, if the win-
dow is too large, performance may decrease again as it fails to take advantage of more
frequent regime changes.
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3.2.3 DAA system with Feature Saliency: FS-DAA

So far, we have proposed a DAA system where the time series to train the HMM were
known in advance, which can be a limitation. To address this, we propose a novel
DAA system that incorporates an embedded feature selection method during training,
by using a FSHMM, described in Section 2.3.2. This new method, termed FS-DAA,
allows selection of features that contribute to the regime identification, called regime
dependent, and rejects features that do not depend on the regimes.

Figure 3.7 shows the different stages for training, validation and test using FS-DAA.
FS-DAA takes multiple time series data and fits an FSHMM, that assigns a saliency
to each factor time series. Higher saliency means that the feature is more relevant and
therefore is selected. Because FSHMM proposes that features are conditionally indepen-
dent, the fitted model has diagonal covariance matrices. We therefore take the selected
relevant features and used them to train a HMM with full covariance matrices.

Figure 3.7: Full schematic of calibration and usage of the FS-DAA system with embed-
ded feature selection for smart beta investing.

As a first step to assess whether FSHMM can distinguish between relevant features
and noise, we generated irrelevant features of random noise and added them to our
daily factor data set. We tested this using different numbers of relevant and irrelevant
features (following [ABC16]), number of observations and values of kl. For each case, kl
was the same for all features, both relevant and noise. Results are summarized in Tables
B.1 and B.2. In all cases, the algorithm assigned low values of saliency for the irrelevant
features and high values for the relevant ones.
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Secondly, we train a DAA system using all 25 features from the factor dataset, and
we train an FS-DAA system that takes the 25 features, selects the relevant ones and then
trains a HMM only with those factors and compares the regimes obtained. Finally, using
both systems, we build a strategy using an MSCI USA enhanced family of factor indices.
Both models are trained using 16 years of data (1990-2006) and then retrained every
month until 2016. We use 7.5 years of trading data to estimate mean and covariance of
the MSCI indices for each regime, (Jan 1999-June 2006), to obtain a robust estimation of
the covariance matrix for both regimes. We then use a validation set of 6 years to select
the optimal time window to set a change of state, and a test set of 4 years.

An advantage of the proposed DAA system is that it allows the data used to train the
HMM to detect regimes to be decoupled from the data used for allocation. This is useful
for factor investing as we can build factors with a long history (as the factor dataset) and
then use real life, investable assets that have a shorter history (MSCI enhanced data) to
build portfolios.

3.3 Results

We compare the DAA system performance with baseline strategies on the large factor
dataset. Then, the implementation of the FSHMM algorithm is discussed. Lastly, we
test the proposed FS-DAA system with real life assets using the MSCI indices dataset.

3.3.1 Trading strategies and benchmarks

Instead of constructing one kind of portfolio we build several: Risk Parity, Maximum di-
versification, Minimum Variance, Max return, Max Sharpe and a modified max return,
where all portfolios are long only, i.e. the weights are always positive. In most cases,
portfolio construction is an optimization problem, where the weights of the portfolio
are optimized to maximize/minimize a desired utility function, as described below.

• Max return: Given an estimated vector of means, it maximizes the return given a
constraint that no asset can have a weight greater than 80%.

• Dyn: If all estimated mean asset returns are positive, it weights the assets propor-
tional to their mean, otherwise it equally weights them.
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• Sharpe: A classic mean-variance portfolio that maximizes return given a set level
of risk.

• Risk parity: Focuses on allocation of risk: each asset in the portfolio contributes
the same risk as defined by:

wj(V w)j√
wV w′

where V is the covariance matrix.

• Max diversification Maximizes the diversification ratio defined as:

w′Σ
2
√
w′V w

where Σ is a vector of all asset volatility and V is the covariance matrix.

• Min Var: finds the portfolio with minimum variance, defined by:

w′V w

where V is the covariance matrix.

Risk Parity (RP), Maximum diversification (MD) and Minimum Variance (MV) are
constructed taking into account only the covariance matrix, so they can be considered
more risk aware. Max return (MR), Max Sharpe (Sharpe) and modified max return
(Dyn) all consider the mean of the return during the construction, so they tend to be
more aggressive.

For comparison, we built an equally weighted portfolio and a benchmark for each
asset combination. Each benchmark is constructed using the same optimization method
as its DAA system counterpart, but are rebalanced monthly and the covariance matrix is
estimated using “single regime” past returns. The DAA system instead has two covari-
ance matrices, one for each regime. All portfolios and their benchmarks are constructed
considering transaction costs. Costs are calculated by multiplying portfolio turnover
(how much a portfolio is rebalanced) with a transaction cost of 50bps (0.5%), for each
selling and buying.
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3.3.2 DAA system compared to baseline

We first evaluated our DAA system by using 1260 combinations of randomly selected
assets to train the HMM and for the allocation, and compared it with their benchmarks.

Figure 3.8 shows the performance measured through the Sortino ratio of all port-
folios calculated using the DAA system, and their benchmarks. The Sortino ratio is
the annualized return divided by the downside risk, therefore it differentiates harmful
volatility from total overall volatility in contrast with IR (no risk free asset is consid-
ered). We see that all portfolios constructed using regime information perform better
than their counterpart. Using the mean returns in the optimization steps, the more
return-oriented portfolios show great improvement relative to their benchmark. More
risk-focused portfolios show an improvement with respect to their single-regime coun-
terparts but show a similar performance to equally weighted portfolios.
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Figure 3.8: Boxplots corresponding to the Sortino ratio for all portfolios calculated us-
ing a HMM (blue) and their benchmarks (orange) and an equally weighted portfolio
(green).

The highest performing portfolio is Sharpe, that considers both mean and covariance
in the construction process. Figure 3.9-Top shows the annualized return as a function
of annualized volatility for the Sharpe portfolios and their benchmarks. Portfolios built
using HMMs show a higher return and less volatility than their unconditional counter-
part, and higher return and volatility than the EQ portfolios. Figure 3.9-Bottom shows
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Table 3.2: Average performance of portfolios built using HMMs and their benchmarks.
Top portfolios that are more aggressive have a higher risk adjusted return (measured
through IC and Sortino ratios) than their unconditional counterpart and the equally
weighted portfolio. Bottom portfolios that are more defensive (only the covariance ma-
trix is taken into account in the construction process) perform better than their bench-
mark counterparts but are similar in performance to the EQ portfolio.

Ann ret Ann vol IR Skw kurt D. risk Sortino DD DD days

EQ 0.77 2.88 0.26 -0.14 0.81 2.05 0.37 379 318
Dyn HMM 1.67 4.73 0.34 -0.19 1.35 3.37 0.48 32 291
Dyn Bench -0.60 3.98 -0.14 -0.40 1.68 2.96 -0.19 1136 682

Sharpe HMM 2.31 4.66 0.53 -0.19 1.16 3.29 0.75 429 253
Sharpe Bench -3.14 4.89 -0.64 -0.79 4.49 3.80 -0.82 1375 873

MR HMM 3.19 7.03 0.46 -0.19 1.34 4.98 0.65 35 264
MR Bench -5.03 7.20 -0.69 -0.78 3.71 5.63 -0.88 >4000 1001
MV HMM 0.61 2.41 0.24 -0.14 0.96 1.72 0.35 662 309
MV Bench -0.12 2.24 -0.07 -0.11 0.83 1.61 -0.09 520 511
MD HMM 0.69 2.54 0.26 -0.14 1.01 1.80 0.37 340 306
MD Bench 0.01 2.39 -0.02 -0.12 0.84 1.71 -0.02 454 447
RP HMM 0.63 2.58 0.24 -0.13 1.04 1.84 0.34 212 302
RP Bench 0.20 2.40 0.07 -0.13 1.04 1.72 0.10 475 416
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Figure 3.9: Top plot shows annualized return as a function of annualized volatility for
Sharpe portfolios built using HMM information (blue), Sharpe portfolios rebalanced
monthly (orange) and EQ portfolios (green). Bottom plot corresponds to the Sortino
distribution of the plots. All plots correspond to the test set (are out of sample).

the Sortino ratio for the same portfolios. We see that the HMM portfolios yield better
performance than their benchmarks.

Table 3.2 shows different performance metrics averaged for each type of portfolio. In
most cases, HMM portfolios show better performance than their single-regime bench-
marks on all metrics, and more return-oriented portfolios perform better than equally
weighted ones. Performance improvement comes both from higher returns and risk
reduction in return-oriented portfolios. Additionally, skewness and kurtosis are lower
than benchmark returns and maximum drawdown is lower (and for a shorter period of
time) in most cases. To study if the difference in performance of portfolios built using
HMMs and their benchmarks is significant, we perform significance test by applying
paired t-tests. Tables 3.3 and 3.4 show the p-values obtained from the test on the returns
and IR, respectively. In all cases, HMM portfolios outperform their single-regime coun-
terparts at statistically significant levels, both when analysing returns and IR, and the
return-oriented portfolios (Dyn, MR, Sharpe) outperform the EQ portfolios at statisti-
cally significant levels.

3.3.3 DAA system with FSHMM

We then used the FSHMM algorithm to detect relevant features in our data set of 25
factor indices. To ensure the algorithm is indeed differentiating between relevant and
irrelevant features, we tested it on feature vectors that consist of factor returns (relevant
features) and random noise (irrelevant features). Tables B.1 and B.2 in B.2 show the
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Table 3.3: Comparison of annualized returns of portfolios built using HMMs and their
single-regime benchmarks (b) and EQ portfolio. The models are listed per row and are
compared to their counterparts listed per column (p-values are colored if significant).

MV RP MD Dyn MR Sharpe EQ
hmm b hmm b hmm b hmm b hmm b hmm b EQ

MV (hmm) 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000
RP (hmm) 0.000 0.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000
MD (hmm) 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 0.998
Dyn (hmm) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.000
MR (hmm) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Sharpe (hmm) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000

Table 3.4: Comparison of IR of portfolios built using HMMs and their single-regime
benchmarks (b) and EQ portfolio. The models are listed per row and are compared to
their counterparts listed per column (p-values are colored if significant).

MV RP MD Dyn MR Sharpe EQ
hmm b hmm b hmm b hmm b hmm b hmm b EQ

MV (hmm) 0.000 0.024 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 0.968
RP (hmm) 0.976 0.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 0.992
MD (hmm) 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 0.680
Dyn (hmm) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.000
MR (hmm) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000
Sharpe (hmm) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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Figure 3.10: Selected features in the training set (T = 3800 observations) of the 25 factor
return series with different values of k. With small values of k all features are accepted.
With k ≥ T/4 the algorithm selects a relevant subset of features.

saliency of all features for 2 and 3-state models, for different lengths of the time series
and two values of k. In all cases, irrelevant features are discarded (saliency values are
close to zero) and when k is small, saliency of the relevant features is close to one.

Figure 3.10 shows the feature saliencies of all factor return series for different values
of k. As the training set has about 3800 observations, we chose values of k closer to
a quarter of that number following the heuristic proposed in [ABC16]. The selected
features are: Book Value Yield, 1 Yr Fwd Earnings Yield, Sales Yield, 6 Month Price
Momentum, 12 Month Price Momentum, EPSCV, Beta. This is of interest as the selected
factors represent four of the six factor families mentioned in Section 2.1.

For comparison, we trained a HMM using all 25 features and a model trained with
the selected assets. Figure 3.11 shows the predicted state and estimated probabilities
for the model after training; we identify state 1 as a “good state”, and state 0 as a “bad
state”. The plots clearly identify the 2008 economic crisis - the first steps developed
in August and September of 2007 with some episodes between January and May 2008
before the big crash in September 2008. Both models identify spikes of state 0 in the
second half of 2007 and transition fully to state zero during 2008. The model trained
with relevant features tends to be more sensitive to the distress state - it spends 24% of
the time in this state versus 20% of the model trained with the full set of features. The
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Figure 3.11: Top plot corresponds to predicted state and state probabilities for the model
trained with relevant features. Bottom plot corresponds to the HMM trained with all 25
features.

average duration of state 0 is 3.8 days vs average length of 3.2 days of the full model.
No smoothing was applied to the predicted probabilities to calculate these values.

3.3.4 FS-DAA system with MSCI indices

In this section we evaluate performance of the FS-DAA system using a subset of factors
from the daily factor dataset after feature selection, and MSCI enhanced factors for al-
location, and compare it with the DAA system without feature selection, that trains the
HMM with all 25 factors from the dataset.

For simplicity we calculated only Sharpe, MR and Dyn portfolios, as they showed
a significantly better performance when using a regime switching model in their con-
struction than risk-focused portfolios and their benchmarks. Figure 3.12 shows the cu-
mulative return of these portfolios with a full feature HMM, FSHMM and the bench-
marks constructed without regime information. Both HMM portfolios perform better
than their benchmarks (top plot) and portfolios constructed using an HMM with feature
selection perform slightly better than portfolios built with a full feature HMM (bottom
plot).

Metrics performance for all portfolios and for the MSCI enhanced indices net of mar-
ket are shown in Table 3.5. All metrics are annualized and are out-of-sample, covering
the period Jan-2012-Feb-2016. The results obtained using DAA and FS-DAA show a
robust improvement with respect to their benchmarks. We see that only three MSCI
indices have a positive IR in the period, and two of the three FSHMM portfolios show
the highest IR in all cases. Reduction of downside risk is achieved in most cases that use



CHAPTER 3. DAA SYSTEM FOR SMART BETA 64

Jul 2012 Jan 2013 Jul 2013 Jan 2014 Jul 2014 Jan 2015 Jul 2015 Jan 2016

−0.15

−0.1

−0.05

0

0.05

0.1

Dyn MR Sharpe Dyn_FS MR_FS
Sharpe_FS Dyn_bench MR_bench Sharpe_bench

C
um

ul
at

ed
 r

et
ur

n

Jul 2012 Jan 2013 Jul 2013 Jan 2014 Jul 2014 Jan 2015 Jul 2015 Jan 2016

0

0.02

0.04

0.06

0.08

Dyn MR Sharpe Dyn_FS MR_FS Sharpe_FS

C
um

ul
at

ed
 r

et
ur

n

Figure 3.12: Top plot corresponds to portfolios built using information from an HMM
with feature saliency, portfolios built using information from an HMM with full fea-
tures and their benchmarks. Both HMM portfolios accumulate higher returns than the
benchmarks.
Bottom plot shows that cumulative returns of FSHMM and fullHMM portfolios built
using FS have a better performance. Returns are in excess of the market in USD, for the
period Jan 2012 to Feb 2016.

either a full-feature HMM or a FSHMM with respect to their benchmarks and the MSCI
indices. Table 3.6 shows the comparisons between the portfolios built using HMM and
FSHMM, their regime counterparts and the individual MSCI indices. The HMM and
FSHMM portfolios outperform their single-regime counterparts at statistically signifi-
cant levels always, but when compared to the MSCI indices, they only outperform at a
significant level the MSCI High Dividend Yield index. MSCI Momentum index is the
only one that outperforms the single-regime portfolios at a statistical level. Table 3.7
reports performance of the portfolios and MSCI indices based on French-Fama 5 factor
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Table 3.5: Metrics for portfolios built using FSHMM, all assets (HMM), their benchmark
and the individual MSCI indices used to build the portfolios. The metrics covered the
period Jan 2012 to Feb 2016.

Ann ret Ann vol IR Skw kurt D. risk Sortino DD DD days

Sharpe FSHMM 0.06 0.50 0.12 -0.71 2.85 0.37 0.16 -94 387
Sharpe HMM -0.11 0.65 -0.16 -0.70 3.84 0.49 -0.22 -164 522
Sharpe Bench -1.62 0.92 -1.76 -2.75 15.0 0.82 -1.98 19825 1452
Dyn FSHMM 0.39 0.65 0.61 -0.41 0.84 0.47 0.84 -52 141

Dyn HMM -0.02 0.60 -0.03 -1.12 9.03 0.45 -0.04 -175 566
Dyn Bench -1.10 1.03 -1.07 -2.76 16.2 0.88 -1.24 -1508 1123

MR FSHMM 2.02 3.20 0.63 -0.39 1.83 2.30 0.88 -82 62
MR HMM 1.85 3.19 0.58 -0.39 1.84 2.29 0.80 -92 62
MR Bench -3.46 3.78 -0.91 -2.71 20.5 3.17 -1.09 -4032 1250

MSCI Quality 0.50 2.76 0.18 0.20 2.02 1.90 0.26 -208 837
MSCI Enhanced Value 0.03 3.97 0.01 0.03 0.86 2.83 0.01 -105 599

MSCI High Dividend Yield -2.16 3.22 -0.67 0.38 0.85 2.24 -0.96 -2374 1317
MSCI Momentum 2.48 4.35 0.57 -0.35 1.42 3.11 0.80 -144 475

MSCI Minimum Volatility -0.89 3.58 -0.25 0.10 0.69 2.52 -0.35 -38371 906
MSCI Equal Weighted -0.27 2.94 -0.09 -0.05 0.74 2.09 -0.13 -135 675

models 3 [FF15]. Only the regime-based portfolios show significant factors, while the
single regime benchmarks do not. Most of the regime-based portfolios show negative
exposure to factors with the exception of Sharpe HMM and Dyn FSHMM which show
that size (SMB) and investment (CMA) factors are significant. For completeness we run
the regression on the MSCI indices.

3.4 Chapter summary

The main focus of this chapter is to improve smart beta strategies through the use of
regime switching models. The main contributions from this work are:

1. We have shown that constructing a portfolio using information from a HMM with
two latent states trained with the same assets that will be used for allocation, im-
proves performance with respect to the same portfolio built with a single regime
approach.

3The data for this analysis was downloaded from Kenneth French website: http://mba.tuck.
dartmouth.edu/pages/faculty/ken.french/data_library.html

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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We have tested this by calculating different types of portfolios, ranging from more
risk focused to more aggressive. The improvement is more significant for return-
oriented and balanced portfolios where return or risk-adjusted return is optimized
achieving on average an information ratio of 50% annually in excess of market,
and is less evident in risk-focused portfolios (Risk Parity, Minimum Variance and
Maximum diversification) with an improvement on IR of 25% on average annu-
ally.

2. We have developed a systematic framework for asset allocation using an embed-
ded feature selection algorithm to identify features of relevance to the model. This
improves the model’s accuracy and allows for a more objective approach to port-
folio construction in the sense that it should help to prevent biases in the feature
selection process which is normally done by a financial expert.

We used a FSHMM algorithm to select relevant features from a pool of well known
factor indices and compared it with a HMM trained with the whole set of assets.
Both models showed agreement on regime identification, with the model trained
using only relevant features being more sensitive to periods of economic distress.

3. We have tested both models using real, investable assets through MSCI USA en-
hanced factor indices. Portfolios constructed using information from the FSHMM
trained with relevant features show a higher performance than the same portfolios
constructed using a HMM trained with a full set of features.

An extension of the work to select relevant economic series could be to include
macroeconomic series in the HMM, where the embedded feature selection could allow
for a more precise identification of economic cycles. This could be of interest for other
asset classes such as fixed income.

A drawback of using HMMs is that the number of latent states has to be known
in advance, or selected through BIC, which is not always effective, or to use a greedy
approach to choose the model with higher performance. This could be addressed in
future work by using an infinite HMM [BGR02].



Chapter 4

Background and related work: Machine
learning for stock classification

One of the main interests in this thesis is to explore machine learning strategies in the
area of financial applications, especially focusing on making more robust models that
have good generalization on unseen samples - a major concern when using neural net-
works in finance [JPPT19]. This chapter provides an overview of the background rel-
evant to machine learning, especially focusing on neural networks. It then gives an
introduction to neural networks and what are the main architectures of interest for our
work. We then explain the main regularization methods that we will study in this the-
sis. Finally, it also provides an introduction to the current state of the art on automated
data augmentation methods that motivates the last part of our work, related to develop
such methods for time series datasets.

4.1 Machine learning in finance

This section provides an overview of the main applications of machine learning in fi-
nance, with a special focus in financial time series forecasting. Within time series fore-
casting in Subsection 4.1.1 we present the literature review of machine learning methods
applied to price forecasting of different asset classes and in the following subsections we
cover a range of financial applications of machine learning such as algorithmic trading,
portfolio management, risk assessment and more. Note that there are some overlaps
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between different topics, given that in some cases a paper might fit into multiple appli-
cation areas such as portfolio management with price prediction, or algorithmic trading
in combination with financial text analysis.

4.1.1 Financial time series forecasting

For several decades, machine learning methods have been applied in various fields
within finance, with thousands of research papers being published. Ozbayoglu et al.
[OGS20] give a brief overview of the more relevant survey papers covering both a gen-
eral perspective of machine learning methods in a non-specific application area and
more focused surveys on specific machine learning methods but also without specific
applications. Within finance, stock market prediction is one of the most widely studied
problems due to its challenging nature. Without giving an exhausting overview, we
mention Patel et al. [PSTK15] who compares artificial neural networks, support vector
machines, random forests and naive-Bayes using two different inputs of data, first us-
ing ten technical parameters derived from open, high, low and close prices and then
focusing on representing these technical parameters as red data. They evaluate the
methods using data from two stocks covering 10 years and show that random forests
outperform the other methods, and there’s a gain in performance when they represent
the technical parameters as trend data. Rizvi et al. use Gaussian Process regression to
predict volatility of financial returns and compare it with traditional approaches such
as generalized autoregressive conditional heteroskedasticity (GARCH), outperforming
traditional methods [RRON17], Nava et al. combine empirical mode decomposition and
support vector machines to predict the S&P500 index from 30s to 25m ahead [NDMA18]
and Adebiyi et al. compare AutoRegressive Integrated Moving Average (ARIMA) and
neural networks for stock price prediction revealing that neural networks outperform
ARIMA [AAAA14]. Ijegwa et al. uses fuzzy logic to build a recommendation system
to buy, sell or hold stocks using data from the Nigerian Stock Exchange [IVFI14] while
Naranjo et al. uses fuzzy logic to detect candlestick patters in a stock trading system
and test it on Nasdaq-100 and Eurostoxx stock markets showing that their strategy out-
performs traditional trading strategies [NAS18]. For a more comprehensive overview,
Obthong et al. [OTJW20] present a survey on machine learning methods for stock pre-
diction covering 25 machine learning methods and describing their advantages and dis-
advantages.
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More recently, Gu et al. performed a large-scale comparative analysis of machine
learning methods to measure asset risk premiums, using a representative group of lin-
ear models (that includes linear regression, generalized linear models, dimension re-
duction via principal components regression and partial least squares) and non-linear
models such as regression trees (including boosted trees and random forests) and neural
networks [GKX20]. They argue that the use machine learning methods are particularly
attractive due to certain aspects of empirical asset pricing. In first place, given that
the main two research areas in modern empirical asset pricing research are to describe
and understand differences in expected returns across assets and studying the dynam-
ics of the combined market equity risk premium, and these are essentially prediction
problems, machine learning methods are ideally suited given that they are fundamen-
tally designed for prediction tasks. Secondly, given the large number of possible condi-
tioning variables (features) for the risk premium, with hundreds of stock-level features
[HLZ15, GHZ13] and dozens of macroeconomic features [WG07] predicted in the liter-
ature, traditional prediction methods cannot cope when the number of features is close
to the number of observations or the features are highly correlated. In contrast, machine
learning is a good fit in these cases by reducing degrees of freedom (feature selection)
and condensing redundant variation (dimensionality reduction). In third place, Gu et
al. discuss that beyond the large number of predictors of risk premiums, there is the
question of how should they be used in the models, should they be linear or non-linear,
or should we consider combinations? This leads to a an increasingly large number of
potential model specifications that machine learning can address for three reasons; the
first is the diverse set of models within machine learning, secondly, the range of models
are explicitly designed to approximate complex nonlinear associations and third, overfit
and false discovery can be avoided by leveraging parameter penalization and conserva-
tive model selection that complement the breath of machine learning methods. Overall,
the conclusion of their work is that machine learning methods can improve the empir-
ical understanding of asset prices, with neural networks and partially, regression trees,
the best performing methods. The reason of these methods success lies in their abil-
ity to accommodate nonlinear interactions that other methods do not have. Similarly,
Feng et al. [FHP18] evaluate the use of neural networks to predict excess return of the
S&P500 index using different period specifications (by using a moving window and a
cumulative window) to train the model over a large period of time (around 90 years of
monthly data). They compare different neural network structures to more traditional
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methods such as ordinary least squares (OLS), ridge regression, partial least squares,
Lasso and elastic-net and find that the neural networks are able to learn highly nonlin-
ear factors from the data. Furthermore, they evaluate neural networks and tree-based
methods (Classification and Regression Trees (CART), boosting trees, random forest) to
predict market crashes, effectively transforming the regression problem into a classifi-
cation one, and while they show that none of the methods achieve a good in-sample fit,
neural networks are the higher performing method. In line with these findings, in the
last few years neural networks, and therefore the field of deep learning, have emerged
as the best performing predictors within the field of machine learning in various areas.
One of the reasons for this is that performance of neural networks tends to scale with
the size of the dataset, while machine learning models performance plateau at certain
size of data and doesn’t improve with more. So in the small data regime one can find
similar performance with machine learning methods, but with increasing amount of
data, neural networks tend to outperform.

For stock market prediction, neural networks have gain a lot of interest in the last
few years not only for their potential on predicting abnormal risk premium as was men-
tioned, but also due to their ongoing rapid development and success in other research
areas such as computer vision, natural language processing and medicine [Jia21]. An-
other reason is the constant availability of new data from different sources, the increase
in parallel processing ability of graphics processing units (GPUs) and the continuous
development of programming packages. In the following subsections we present the
literature review of machine learning methods for price forecasting of different asset
classes, with a particular focus on neural networks.

Stock price forecasting

In the area of asset price forecasting, there’s been a lot of interest in using neural net-
works with stock prediction being the most popular and most studies application of
all [SGO20]. In stock price forecasting predictions can range from high frequency trad-
ing and intraday price movements to daily or even monthly stock prices and the fea-
tures used for the prediction models can either be technical, fundamental analysis or
news and social media feeds. In the case of using only raw time series data Chong
et al. [CHP17] perform a systematic analysis of the use of neural networks for stock
market prediction using high-frequency intraday stock returns as input to predict the
stock prices in the Korea Composite Stock Price Index (KOSPI) and Chen et al. [CZD15]
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Table 4.1: Summary of literature on financial time series forecasting using machine
learning methods for stock price.

Reference Dataset Period Method Performance
[GKX20] Stocks from NYSE, AMEX,

NASDAQ (30000 stocks)
1957 - 2016 Linear models, regression

trees, neural networks
R2, Sharpe
ratio

[FHP18] Returns from NYSE, AMEX,
NASDAQ

1975-2017 CART, boosting trees, RF,
DNN

R2, RMSE

[CHP17] KOSPI 2010-2014 DNN NMSE, RMSE,
MAE

[CZD15] Stocks from China stock market 1990-2015 LSTM Accuracy
[MEMK18] Stocks from NSE India and NYSE 1997-2016 MLP, RNN LSTM, CNN MAPE
[SF17] Stocks from Colombo Stock

Exchange
2012-2013 RNN, GRU, LSTM, DNN MAD, MAPE

[LY20] 10 stocks from S&P500 1997-2016 RNN, LSTM, GRU Accuracy,
return

[CQW+18] High frequency data from CSI300 2017 DNN, ELM, RBF RMSE, MAPE,
Accuracy

[LZM17] Chinese stocks 2007-2017 CNN-LSTM Annualized
return

[YZS18] 12 stocks from SSE Composite
Index

2000-2017 RNN+CNN MSE

[ZAQ17] 50 stocks from NYSE 2007-2016 State Frequency Memory
RNN

MSE

[KDH17] Stocks from S&P500 1990-2015 DNN, gradient boosted
trees, RF, ensembles

Returns,
financial
indicators

[AN18] Japan Index constituents 1990-2016 DNN Accuracy, MSE
[FXY17] US macroeconomic time series 1959-2008 DNN R2
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uses daily data of the China stock market and demonstrate a two-fold in predicted accu-
racy by using long short-term memory networks when compared to random prediction.
With the development of a wide array of neural network architectures that specialize in
different properties of the data (e.g. recurrent neural networks for sequence data, con-
volutional neural networks for visual data) or the representation learning process, sev-
eral studies implemented multiple types of neural networks to compare performance.
Hiransha et al. [MEMK18] use four types of deep learning architectures (multilayer per-
ceptrons (MLP), Recurrent neural networks (RNN), LSTMs and Convolutional neural
networks (CNN)) to predict the stock price of a company based on the historical prices,
using transfer learning for the evaluation, where they train using prices of a company
and evaluate the performance of the prediction of five different companies, showing
that the CNN architecture outperforms the others. Samarawickrama et al. [SF17] com-
pare different types of RNNs (a simple RNN, a Gated recurrent unit (GRU) and an
LSTM) and feedforward networks to predict daily stock prices for a series on individ-
ual companies finding that RNNs and LSTMs generally produce lower errors, while
GRU have comparatively higher forecasting errors. Interestingly, feedforward neural
networks also show low forecasting errors, abut this might be due to the training data
consisting on only two past days of data for prediction instead of a longer time series.
Similarly, Lee and Yoo [LY20] do a comparative study of a simple RNN, and LSTM
and a GRU using 10 stocks in the S&P500 index and show that the LSTM outperforms
the others when forecasting 1-month ahead and use this predictions to build predic-
tive threshold-based portfolios. Beyond the scope of neural network architectures that
we use on this thesis, Chen et al. [CQW+18] compare an MLP, an extreme learning ma-
chine and the radial basis function neural network on 1-minute stock index futures data
and found that both the extreme learning machine and the radial basis function neural
network outperform a traditional MLP. Additionally, they conclude that increasing the
amount of data increases predictive performance by comparing three different dataset
scales.

Furthermore, beyond the evaluation of different single architectures, there’s been
developments on hybrid models that combine these architectures such as Liu et al.
[LZM17] who propose the use a hybrid CNN-LSTM network that uses the CNN part
to detect stock trend and the LSTM network to perform a quantitative timing strategy
and outperform a basic Momentum strategy this way. Similarly, Yuan et al. [YZS18]
combined RNN and CNNs to propose the Deep and Wide Neural Networks which can
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process temporal data in depth direction (time step) and also extracts the correlation
feature in breadth direction (multiple sets of data). They evaluate their proposed archi-
tecture using daily stock data from 12 stocks and show that their network outperforms
an RNN network. Zhang et al. [ZAQ17] focus on addressing the non-stationary and
non-linear nature of the stock price time series by proposing a novel State Frequency
Memory recurrent network that captures multi-frequency trading patterns from mar-
ket data by decomposing the hidden states of the memory cells into multiple frequency
components, similarly to a Discrete Fourier Transform. Krauss et al. [KDH17] perform
an in-depth analysis on the effectiveness of deep neural networks, gradient-boosted-
trees, random forests, and several ensembles of these methods in the context of sta-
tistical arbitrage using lagged returns of all stocks in the S&P500. They generate daily
one-day-ahead trading signals based on the probability forecast of a stock to outperform
the general market and build long-short portfolios to evaluate performance.

Besides using raw price data for stock prediction, other studies incorporate tech-
nical and fundamental analysis, macroeconomic data, financial statements and more.
Abe and Nakayama [AN18] use 25 fundamental features in combination with a neural
networks to predict one-month-ahead stock returns from the Japan index constituents,
additionally showing that deep networks outperform shallow ones while Fan et al. use
macro economic data (such as GDP, unemployment and inventories) to forecast macroe-
conomic variables [FXY17]. Table 4.1 presents the summary of machine learning ap-
proaches for stock price forecasting.

Stock markets can be affected by some public events, which can be determined by
analyzing online news data from different sources. Given the great advances on NLP,
one of the fastest growing areas of research in finance is related to financial text mining
[OGS20], where textual sources such as financial news from Reuters and Bloomberg and
Twitter data to predict short term stock movements [PJ16, STW+19, BMZ11, HHW+16].
Withing NLP, there’s been research in sentiment analysis, in particular with RNN-type
architectures, both for regression (price forecasting) and classification (price movement
prediction) purposes [LBW17, DBkR18]. Ding et al. propose a novel neural tensor net-
work to represent events extracted from the news and use this to model both short-term
and long-term influences of events on stock price movements [DZLD15] while Wang et
al. [WLHL19] proposes an event attention network that uses convolutional neural net-
works to extract features from transformed event representations. Section 4.1.6 presents
the literature on financial sentiment analysis and text mining.
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Index forecasting

Closely related to stock price forecasting, several researchers have studies the prediction
of stock market indices, which are generally less volatile than individual stocks because
they are an aggregation of multiple stocks from different sectors which are more rep-
resentative of the overall general state of the market [SGO20]. Table 4.2 summarizes
the literature of index forecasting using machine learning. The most commonly studied
is the S&P500 index, that has a long history and returns are easily available. Bao et al.
[BYR17] use stacked autoencoders and LSTM networks to predict the next day’s closing
price of six indices representing different markets, S&P500 and DJIAN index for US,
CSI 300 index from China, Nifty 50 index representing India stock market Hang Seng
index trading in Hong Kong market and Nikkei 225 index in Tokyo. Borovykh et al.
propose an adaptation of Wavenet, which uses dilated convolutions using the S&P500,
VIX and CBOE interest rate to predict the next day price and conclude that networks
that use convolutions are well suited for performing regression and are easier to im-
plement than recurrent neural networks [BBO17]. Althelaya et al. [AEAM18] evaluate
the performance of bidirectional and stacked LSTM networks using the S&P500 and
a short- and long-term prediction and show that the bidirectional LSTM has the bet-
ter performance. Rout et al. use a recurrent Functional Link Artificial Neural Network
(FLANN) in combination with an evolutionary learning approach to predict the price of
the Bombay Stock exchange and the S&P500 data over a period varying from one day
to one month ahead, where FLANN is a single layer neural network in which the hid-
den layers are replaced by transforming the input into a high dimensional space using
polynomial basis functions, allowing for a low complexity model [RDDB17]. Hans-
son uses an LSTM network to predict returns of three stock indices, S&P500, Bovespa
50 from Brazil and OMX30 in Sweden, showing that the LSTM networks have similar
performance to traditional time series methods such as autoregressive–moving-average
(ARMA) and GARCH when using a regression approach but outperform the time se-
ries models when using a classification approach to predict change of direction in the
price [Han17]. Li et al. [LT17] use a real-time wavelet transform to denoise stock data
in combination with a LSTM to predict six East Asian stock indices, Hong Kong Hang
Seng Index (HSI), Shanghai Stock Exchange Composite Index (SSE), Shenzhen Stock Ex-
change Composite Index (SZSE), Taiwan Capitalization Weighted Stock Index (TAIEX),
Tokyo Nikkei Index (NIKKEI) and Korea Composite Stock Price Index (KOSPI), and
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Table 4.2: Summary of literature on financial time series forecasting using machine
learning methods for index price.

Reference Dataset Period Method Performance
[BYR17] S&P500, DJIAN, CSI 300, Nifty

50, Hang Seng, Nikkei 225
2010-2016 Autoencoder and LSTM MAPE,

Correlation,
THEIL-U

[BBO17] S&P500, VIX, CBOE 2005-2016 Wavenet MASE, HIT,
RMSE

[AEAM18] S&P500 2010–2017 Stacked LSTM and
bidirectional LSTM

MAE, RMSE,
R-squared

[RDDB17] S&P500, Bombay SE 2004-2012 FLANN + EA TBD
[Han17] S&P500, Bovespa 50, OMX30 2009–2017 LSTM MSE, Accuracy
[LT17] HSI, SSE, SZSE, TAIEX, NIKKEI,

KOSPI
2010-2016 Wavelet+LSTM Accuracy,

MAPE

show that using wavelet denoising in combination with LSTM improves performance
with respect to only using a LSTM model.

Commodity forecasting

Beyond the more popular topics of stock and index forecasting, there has been also
research particularly focused on price prediction of commodities, such as oil, gold and
silver. Table 4.3 summarizes the literature of machine learning for commodities price
forecasting.

In the case of crude oil price forecasting, Zhao et al. proposes two approaches to pre-
dict crude oil price from different factors, in a first approach they use stacked demonis-
ing autoencoders to model nonlinear relationships of oil price with its factors, and the
second method consists of using an ensemble approach using bootstrap aggregation
(bagging) to train a set of stacked denoising autoencoders instead of a single instance.
They investigate the West Texas Intermediate (WTI) crude oil spot price using 198 time
series as exogenous variables such as price series, flow and stock series and macroeco-
nomic and financial series, all monthly, ranging from 1986 to 2016. Chen et al. also use
price data in the WTI crude oil markets and propose a hybrid method of forecasting
using both linear models such as ARMA and random walk (RW) and neural network
based models, such as deep belief networks and LSTM, assuming equal contribution of
the linear and non-linear methods for the final forecasting [CHT17].
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Table 4.3: Summary of literature on machine learning for commodity price forecasting.

Reference Dataset Period Method Performance
[ZLY17] WTI 1986-2016 Stacked denoising AE,

bagging
Accuracy,
MAPE, RMSE

[CHT17] WTI 2007-2017 ARMA + DBN, RW +
LSTM

MSE

[DKB17] Commodity, FX 1991-2014 DNN Accuracy,
F1-score,
Sharpe ratio

[Wid17] 12 futures contracts 1993-2017 DNN, RNN Accuracy,
Sharpe ratio

[SdS+15] Copper prices 2002-2014 MLP, Elman RNN RMSE

Dixon et al. [DKB17] use a deep neural network on a dataset consisting of 5-minute
mid-prices for 43 CME listed Commodity and FX futures where the prediction is a clas-
sification problem representing negative, flat or positive price movement; additionally
they use a simple trading strategy to backtest their model and demonstrate that the
prediction accuracy translates to strategy profitability. Widegren [Wid17] studies the
use of feedforward and recurrent neural networks on twelve futures contracts covering
commodities, FX and rates and finds that deeper networks tend to outperform more
shallow networks, but this is closely dependent on the used features, and does not
find in their set up that recurrent neural networks outperform feedforward neural net-
works. Lasheras et al. [SdS+15] compares the forecasting performance of ARIMA with
two types of neural networks, MLP and Elman networks, using data of copper spot
prices from the New York Commodity Exchange (COMEX), and show that both neural
network models outperform ARIMA.

Volatility forecasting

Volatility is the dispersion of returns for a given security or index and is closely associ-
ated with risk assessment. In most cases, the higher the volatility, the riskier the security.
Table 4.4 summarizes machine learning approaches for volatility forecasting.

A mainstream classical econometric method to estimate volatility is GARCH and in
recent years, models from machine learning have been used for volatility forecasting.
Kim et al. [KW18] build a hybrid model for volatility forecasting that integrates LSTM
with multiple GARCH models and test it on KOSPI200 index data. Instead of com-
bining a single GARCH model with a neural network, they propose that using three
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GARCH-type models as input of the LSTM allows to acquire various economic charac-
teristics; the GARCH model is suitable to capture volatility clustering and leptokutorsis
information, while the exponential GARCH model (EGARCH) is useful for leverage
effect modelling and the exponential weighted moving average model (EWMA) cap-
tures short-term changes. They compare their hybrid model to single the single models
GARCH, EGARCH, EWMA, to a deep feedforward neural network and LSTM. They
also compare their model with a hybrid model using a deep feedforward neural net-
work with one GARCH-type model and show that their proposed hybrid model has
the lowest prediction errors in terms of mean absolute error (MAE), mean squared error
(MSE), heteroscedasticity adjusted MAE (HMAE), and heteroscedasticity adjusted MSE
(HMSE).

Other hybrid approaches can be found in Nivolaev et al. [NTS13] that combines
a recurrent mixture density network (RMDN) that capture general density specifica-
tions using mixtures of Gaussians with a GARCH model and test their model on artifi-
cially generated series and on DEM/GBP exchange rates calculating several measures
of out-of-sample performance, namely the normalized mean squared error (NMSE),
the normalized mean absolute error (NMAE), the hit rate (HR) and the weighted hit
rate (WHR). Psaradellis et al. [PS16] focuses on the modeling and trading of three daily
market implied volatility indices (VIX, VXN and VXD) using a heterogeneous autore-
gressive process (HAR) combined with a genetic algorithm–support vector regression
(GASVR) model.

There are studies that use only single methods from machine learning for volatility
forecasting, for example, Xiong et al. [XNS16] use a LSTM network to model S&P500
volatility, incorporating macroeconomic factors and Google domestic trends as indica-
tors of the public mood and find that their model outperforms linear Ridge/Lasso and
autoregressive GARCH models. Zhou et al. [ZHX+19] use a LSTM network for CSI300
volatility predictions using the Baidu index as proxy variables, where the Baidu index
represents a normalized search volume for selected keywords, instead of the absolute
search volume built by Baidu; they show that the LSTM networks is able to extract
meaningful information from noisy financial time series data. Doening et al. [DFM17]
use CNNs for high-frequency market micro-structure forecasting where the target are
forecasts of price movement and price volatility of the Barclay’s stock at the London
Stock Exchange covering one year of data between June 2007 and June 2008, and the
inputs are previous snapshots of limit-order book’s state and event flow.
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Table 4.4: Summary of literature on machine learning applied to financial time series
forecasting for volatility.

Reference Dataset Period Method Performance
[KW18] KOSPI200, Korea Treasury Bond

(KTB) interest rate, AA-grade
corporate bond interest rate,
gold, crude oil

2001-2011 LSTM + GARCH,
EGARCH, EWMA

MAE, MSE,
HMAE, HMSE

[NTS13] DEM/GBP exchange rate 1984-1991 RMDN-GARCH NMSE, NMAE,
HR, WHR

[PS16] VIX, VXN, VXD 2002-2014 HAR-GASVR MAE, RMSE
[XNS16] S&P500, Google domestic trends 2004-2015 LSTM MAPE, RMSE
[ZHX+19] CSI300, Baidu index 2006-2017 LSTM MSE, MAPE
[DFM17] Barcley’s stock 2007-2008 CNN Accuracy,

Kappa

Bond price forecasting

When compared to stock and index price forecasting, research on bond price prediction
using machine learning is very scarce [SGO20]. Table 4.5 summarizes machine learning
approaches for bond forecasting, with the relevant datasets and main methods. Bianchi
et al. [BBT20] show that extreme trees and neural networks provide strong statistical evi-
dence in favor of bond return predictability and finds that forecasts based on macroeco-
nomic and yield information achieve higher economic gains than forecasts made using
only yields when using a neural network. Wagener et al. [WvSBvM16] evaluates a novel
hybrid forecasting approaches which combines techniques of cointegration analysis 1

with neural networks to predict interest rates and test their model on government bond
yields in Germany and France. Verner et al. [VTT21] propose a nonlinear autoregressive
neural networks to improve long-term bond price prediction while Kondratyev [Kon18]
uses neural networks to learn curve dynamics of froward crude oil prices and interest
rate swap rates and finds that neural networks has the potential to replace principal
component analysis (PCA) as the main curve analysis tool.

Forex price forecasting

Foreign exchange markets have the highest trading values among all financial markets,
with an estimated trading volume of more than 5 trillion USD a day, with the top traded
currencies pair being USD/Euro and USD/GBP [Ven19]. This leads to a lot of interest in

1Two time series xt and yt are cointegrated if they are individually integrated of order d(I(d)) and
they share a common stochastic trend, where a linear combination of both variables is I(d− b) with b > 0.
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Table 4.5: Summary of literature on financial time series forecasting for bonds.

Reference Dataset Period Method Performance
[BBT20] 10-years US treasury bonds,

macroeconomic indicators
1971 - 2018 PCA, partial least

squares, Ridge, Lasso and
elastic-net regressions,
regression trees, neural
networks

R2, returns,
Sharpe ratio

[WvSBvM16] German and French interest rates
(2,5 and 7 years maturities)

1999-2006 Cointegration+MLP RMSE, R2

[VTT21] 50 year interest-rate swaps
denominated in EUR and
volatility index VIX

2016-2021 MLP MSE, R2

[Kon18] Brent oil forward price and USD
interest rate swap curve

1992-2017 MLP, Autoencoder -

building profitable trading strategies and therefore, there is a high number of research
papers based on machine learning models to predict forex price and build strategies.
Table 4.6 summarizes the literature of machine learning approaches for forex price fore-
casting. Chao et al. [CSZ11] uses deep belief networks to predict both GBP/USD and
Indian rupee/USD (INR/USD) weekly exchange rates, and compare their method to
MLPs, finding that deep belief networks have better performance. Similarly, Zheng et
al. [ZFZ19] also uses deep belief networks to predict exchange rate data using INR/USD
and CNY/USD pairs. Shen et al. [SCZ15] also use deep belief networks but using con-
tinuous restricted Boltzmann machines to construct the deep belief network, and add a
conjugate gradient method to accelerate learning.

Di Persio and Honchar study the use of MLP, CNNs and LSTM and test it on S&P500
index and FOREX EUR/USD and find that a combination of wavelets and CNNs out-
performs basic neural network approaches [PH16]. Maknickiene et al. [MM13] uses an
Evolino RNN in combination with the Delphi expert evaluation for its investment port-
folio decision making process and demonstrate the profitability of the model using a
trading simulation. Panda et al. [PPP22] uses a hybrid approach of a CNN model with a
random forest regression layer, and test it using three major currency pairs: Australian
Dollar against the Japanese Yen (AUD/JPY), the New Zealand Dollar against the US
Dollar (NZD/USD) and the British Pound Sterling against the Japanese Yen (GBP/JPY);
to compare performance they use ARIMA, MLP and linear regression models and find
that the hybrid CNN surpasses all models.

Sermpinis et al. [SLKD12] investigate the use of two classes of artificial intelligence
models, the Psi Sigma Neural Network (PSI) and the Gene Expression algorithm (GEP),
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Table 4.6: Summary of literature on machine learning for forex price forecasting.

Reference Dataset Period Method Performance
[CSZ11] GBP/USD, INR/USD 1976-2003 Deep belief networks,

ANN
RMSE, MAE,
MAPE, accuracy,
Pearson correlation

[ZFZ19] CNY/USD, INR/USD 1997-2016 Deep belief networks MAPE, R2

[SCZ15] GBP/USD, BRL/USD,
INR/USD

1976-1993,
2000-2004,
1994-2003

DBN (CRBM) RMSE, MAE,
MAPE, DA, Corr

[PH16] S&P500, EUR/USD 1950-2016 Wavelet+CNN Accuracy, log-loss
[MM13] EUR/USD, EUR/JPY,

USD/JPY, EUR/CHF
Evolino RNN R2, Return, Sharpe

ratio
[PPP22] AUD/JPY, NZD/USD,

GBP/JPY
2003-2020 CNN+RF, ARIMA, MLP,

linear regression
R2, MAE, RMSE

[SLKD12] EUR/USD 2001-2010 PSI, GEP, MLP, RNN, GP,
ARMA

MAE, MAPE,
RMSE, Theil-U,
information ratio,
volatility, return,
MDD

[SSD14] EUR/USD, EUR/GBP,
EUR/CHF

1999-2012 MLP, RNN, PSN, Kalman
filter, SVR

Information ratio,
Sharpe ration

[KH17] USD/GBP, oil and gold
quotes

2016 AE+CNN PnL, Sharpe ratio

one-day-ahead forecasting and trading task using EUR/USD exchange rate and com-
pare their results with a MLP, a RNN, a genetic programming algorithm and ARMA. In
a follow-up work, Sermpinis et al. [SSD14] evaluate traditional strategies, random walk
(RW), ARMA and Smooth Transition Autoregressive Model (STAR), three network ar-
chitectures, namely multi-layer perceptron, RNN and a Psi-Sigma network (PSN) and
forecasting combinations techniques to integrate the neural network predictions using
Lasso, Kalman filter, genetic programming and support vector regression (SVR) in a
forecasting and trading task on EUR/USD, EUR/GBP and EUR/CHF exchange rates.
Additionally, they introduce a hybrid leverage factor based on volatility forecasts and
market shocks and a specialized loss function for the neural networks, finding that the
PSN model and SVR outperform their benchmarks.

Beyond using only supervised learning, Korczak et al. [KH17] uses neural networks
in relation with a multi-agent stock trading system called A-Trader and finds that the
agent that uses an auto encoder with CNNs as the prediction model has better perfor-
mance when evaluated in a forex trading strategy using GBP/PLN.
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Cryptocurrency forecasting

Since the rise in popularity of cryptocurrency in the last few years, especially with the
jump in price of Bitcoin from 1000 USD in January 2017 to 20,000 USD in January 2018,
there has been a lot of interest not only from the financial industry in cryptocurrency, but
also from the general public. Unlike stocks or forex, Bitcoin price fluctuates 24-hours a
day since it does not have a closing time and might have large price movements during
the weekend or holiday days. Although cryptocurrency forecasting is a relatively new
area, there have been many studies focused on price forecasting using machine learn-
ing. Table 4.7 summarizes the literature of cryptocurrency prediction using machine
learning.

Albariqi et al. [AW20] describe baseline neural networks models to predict the short-
term and long-term Bitcoin price change, using MLP and RNN models and show that
long-term prediction has a higher accuracy than short-term. Sin and Wang [SW17]
explore the relationship between a set of 200 Bitcoin features and the next day price
change using a neural network ensemble approach called Genetic algorithm based se-
lective neural network ensemble (GASEN) and show the results on a trading strategy.
Felizardo et al. [FODMHC19] performs a comparative study of Bitcoin price prediction
for different forecasting times (daily, weekly and monthly), using traditional techniques
such as ARIMA, machine learning approaches namely random forest, support vector
machine, Wavenets and LSTMs.

All previous cited works focus on Bitcoin price prediction until the year 2017, before
the price jump of the following years. Ji et al. [JKI19] compare various deep learning
methods on a more recent Bitcoin dataset covering 2011 to the end of 2018. They evalu-
ate deep neural networks, LSTM, CNNs, deep residual networks (DRN) and their com-
bination through ensemble learning and show that the LSTM-based models outperform
the other networks for price prediction (regression) but the deep neural network mod-
els perform better for a classification task of price up and down prediction. Qiang and
Shen [QS21] evaluate CNNs and LSTMs networks for high-frequency trend prediction
of Bitcoins and develop a hybrid CNN-LSTM model; they use minute level prices from
2020 to 2021.

Beyond only Bitcoin prediction, Livieris et al. [LPSP20] combines ensemble-averaging,
bagging and stacking with neural network models to forecast hourly prices of major
cryptocurrencies, namely Bitcoin, Ethereum (ETH) and Ripple (XRP). The networks
used in the ensemble models are LSTM and Bi-directional LSTM, and the models were
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Table 4.7: Summary of literature on machine learning for cryptocurrency price forecast-
ing.

Reference Dataset Period Method Performance
[AW20] Bitcoin 2010-2017 MLP, RNN Accuracy
[SW17] Bitcoin 2015-2017 GASEN Accuracy, profit
[FODMHC19] Bitcoin 2012-2016 ARIMA, RF, SVM, Wavenet,

LSTM
ME, MAE, RMSR, MPE,
MAPE

[JKI19] Bitcoin 2011-2018 DNN, LSTM, CNN, DRN,
CNN+RNN, ensembles

MAPE, Accuracy,
Precision, Revall,
Specificity, F1-score,
Profitability

[QS21] Bitcoin 2020-2021 CNN, LSTM, CNN+LSTM Accuracy, Sharpe ratio,
NAV

[LPSP20] Bitcoin, ETH,
XRP

2018-2019 LSTM, Bi-directional LSTM +
ensembles

RMSE, Acc, AUC,
F1-score

evaluated both in a regression and classification setting and show that their ensemble
learning approach is able to efficiently predict prices. Other works that focus on cryp-
tocurrency prediction beyond exclusively Bitcoin are [HO21, PLS+20, AMSCCQ20].

4.1.2 Algorithmic trading

A prevalent application of machine learning in finance is algorithmic trading, which is
defined as buy-sell decisions based solely in algorithmic models. Algorithmic trading
is highly coupled with price prediction as oftentimes, price prediction models are use
to time the decisions that trigger the buy and sell signals. As is the case with price
prediction, the majority of studies on algorithmic trading are focused on the prediction
of stock or index prices [SGO20]. Table 4.8 summarizes algorithmic trading approaches
using machine learning.

Karaoglu et al. [KAA17] build a trader decision support system by using a LSTM
to detect buy-sell signals automatically using market micro-structure indicators while
Mourelatos [MAAL18] also proposes utilizing a LSTM network for the modeling and
trading of financial indices, and evaluate their technique in the Athens SE FTSE/ASE
Large Cap Index; they compare their model with a hybrid approach combining Genetic
Algorithms and Support Vector Machines and show that the LSTM-based model out-
performs the baselines. Tran et al. [TMK+17] investigate the effectiveness of using tensor
representation for mid-price prediction using high frequency limit order book data by
proposing two multilinear methods, namely multilinear discriminant analysis (MDA)
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and Weighted Multichannel Time-series Regression (WMTR). Yong et al. [YARA17] pro-
poses a stock trading system utilizing feed-forward deep neural network to forecast
index price of Singapore stock market using the FTSE Straits Time Index (STI), where
the DNN forecasting predictions define the entry and exit rules to enter a trade.

Sezer et al. [SOD17] propose a stock trading system based on optimized technical
analysis parameters for creating buy-sell points using genetic algorithms, where the op-
timized parameters are then passed to a deep MLP neural network for buy-sell-hold
predictions. They test their model on Dow30 stocks and find that optimizing the techni-
cal indicator parameters enhances stock trading performance. Fischer et al. [FK18] apply
LSTM networks to all S&P500 constituents and we provide an in-depth guide on data
preprocessing, as well as development, training, and deployment of LSTM networks for
financial time series prediction and trading. Given the black-box nature of neural net-
works, they study the sources of profitability, generally finding that stocks selected for
trading high volatility, below-mean momentum, extreme directional movements in the
last days prior to trading, and a tendency for reversing these extreme movements in the
near-term future. Finally, they incorporate their findings into a simplified, rules-based
trading strategy that builds a long-short strategy by selecting the winning and loosing
stocks. In the following chapters of this thesis we use Fischer et al. framework for stock
prediction to evaluate our proposed regularization methods.

Due to the success of CNNs on image classification problems, several studies focus
on utilizing CNN based models. Hu et al. [HHY+18] apply Convolutional AutoEncoder
to candlestick charts to learn a stock representation and construct a portfolio using the
stocks with higher Sharpe ratio. Tsantekidis et al. [TPT+17] proposes the use of a CNN
that predicts the price movements of stocks, using as input large-scale, high-frequency
time-series derived from the order book data.

Beyond algorithmic trading applications that have embedded price prediction, sev-
eral algorithmic trading models are based on reinforcement learning. Reinforcement
learning uses experience gained through interacting with the environment and evalua-
tive feedback to improve the decision making process [SLDR17]. Depending on the rein-
forcement learning algorithm used, they can directly output the discrete trading signals
[DL06, MS01] or continuous signals such as the portfolio weights [JXL17]. Given the
great success of deep reinforcement learning in other areas such as AlphaGo [SHM+16],
there is also an increased interest in using deep reinforcement learning in finance, where
the deep learning part is used to extract hidden features and the reinforcement learning
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to make decisions. Using reinforcement learning can update the trading strategy de-
pending on the market environment and therefore adjust future actions depending on
past experience and market conditions to reduce the loss. While reinforcement learning
is a very fitting framework for algorithmic trading, it does have several setbacks, for
example, is very difficult to train, building a simulator where to train the model can be
very costly, etc.

Jeong et al. [JK19] study trading systems using reinforcement learning and propose a
trading system that predicts the number of shares to trade independently of the trading
actions, secondly, they explore several action strategies to account for market uncer-
tainty and finally, to account for insufficient data, they propose a transfer learning ap-
proach using a subset of the component stocks of a certain index to pre-train the model
and then transfer the weights of the model to use it directly with an index. They ver-
ify their system using four different indices, S&P500, KOSPI, HSI, and EUROSTOXX50
and found that when all three parts of the system are used, the trading system increases
total profits by 13 times to 30 times depending on the index. Si et al. [SLDR17] proposes
a multi-objective deep reinforcement learning approach for intraday trading that uses
a LSTM, which uses the previous action as the feedback in order to make continuous
actions. They propose using two objectives with different weights to measure profit and
risk separately. Other applications of reinforcement learning for algorithmic trading can
be found in [Lu17, HSC20, LGDD20].

4.1.3 Portfolio management

Portfolio management is the process of selecting and combining a group of assets for
a certain period of time. It is mostly an optimisation problem that in general covers
portfolio optimisation, portfolio selection and portfolio allocation. There are some com-
monalities between portfolio management and algorithmic trading, but the correspond-
ing timeframes are usually quite different. in the case of algorithmic trading, it tends
to be implemented on shorter times, i.e. milliseconds, hours or days while the normal
timeframe for portfolio management is typically in the days and months. Table 4.9
summarizes portfolio management approaches with the main methods, dataset used
and performance measures.
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Table 4.8: Summary of literature on algorithmic trading applications

Reference Dataset Period Method Performance
[KAA17] Garanti Bank stock 2016 LSTM MSE, RMSE, MAE,

RSE, R2

[MAAL18] Greek stock exchange index 1009-2014 LSTM Return, volatility,
SR, Accuracy

[TMK+17] FI-2010 dataset [NMK+18] 2010 MDA, WMTR Accuracy, precision,
recall, F1-score

[YARA17] Singapore stock market 2010-2017 DNN RMSE, MAPE,
Sharpe ratio

[SOD17] Dow 30 stocks 1996-2016 GA+DNN Annualized return
[FK18] Stocks from S&P500 1990-2015 LSTM Returns, financial

indicators
[HHY+18] FTSE100 2000-2017 Convolutional AE Return, Sharpe ratio,

MDD
[TPT+17] Finnish companies Kesko Oyj,

Outokumpu Oyj, Sampo,
Rautaruukki and Wartsila Oyj.

2010 CNN Recall, precision,
F1-score, Cohen’s
Kappa

[JK19] S&P500, KOSPI, HSI, and
EUROSTOXX50

1987 - 2017 RL+DNN Total Profit,
correlation

[SLDR17] Minute-level stock index
futures

2016 LSTM + RL Average profit,
Sharpe ratio

Given the optimization nature of portfolio management, there are a lot of evolution-
ary algorithm models that were developed for this task [OGS20]. Evolutionary algo-
rithms are beyond the scope of this thesis, Metaxiotis et al. [ML12] provide a compre-
hensive literature review on the use of Multiobjective Evolutionary algorithms research
for the portfolio management research field.

In the case of machine learning approaches, Takeuchi and Lee [Tak13] use an autoen-
coder composed of stacked restricted Boltzmann machines to build an enhanced ver-
sion of a momentum trading strategy using stocks from the NYSE, AMEX and Nasdaq
markets, covering the period 1965 to 2009. Also related to momentum strategies, Lim
et al. [LZR19] introduce deep momentum networks, which are a hybrid class of deep
learning models which retain the volatility scaling framework of time series momen-
tum strategies while using deep neural networks to output position targeting trading
signals. They test two approaches for the position generation, firstly, trend estimation is
framed as a standard supervised learning problem, where the expected asset return or
probability is forecasted at the next time step and a simple long/short trading rule based
on the direction of the next return is applied; secondly, the trading rules are directly gen-
erated as outputs from the model, which is calibrated to maximise either Sharpe ratio
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or average strategy return. They examine a variety of architectures for the Deep Mo-
mentum Networks (Lasso regression, MLP, WaveNet and LSTMs) and the models are
evaluated on continuous futures contracts and exhibit improvements in risk-adjusted
performance by calibrating the model with Sharpe ratio. Fu et al. [FDG+18] build a
machine learning framework for stock selection by evaluating different learning meth-
ods such as logistic regression, random forests, deep neural networks and ensemble of
neural networks through stacking to solve the classification problem of distinguishing
between ”good” and ”bad” stocks. Additionally, they use a genetic algorithm to im-
plement feature selection on the constructed 244 technical and fundamental features of
each stock.

Heaton et al. introduces deep learning hierarchical decision models to build portfo-
lios and propose the use of stacked autoencoders for index tracking by selecting compo-
nent stocks of the IBB index and learn the component weights to track the index. They
then modify the index by replacing drawdown periods with higher returns and use this
amended target to beat the IBB index [HPW17]. Lin et al. [LHGT06] use recurrent neu-
ral networks for dynamic portfolio selection using the Elman network to simulate the
dynamic behaviour of a security to predict the expected return rate, and then estimat-
ing the covariance matrix among securities using the cross-covariance matrices; finally,
the optimal dynamic portfolio selection model is formulated. Maknickien [Mak13] uses
an Evolino RNN to forecast currency markets and build three types of portfolios based
on portfolio orthogonality to reduce risk. Zhou [Zho19] uses a LSTM network and a
combination of LSTM and MLP to predict next day’s returns and next month returns,
and found that when taking into account transaction costs, only the combined model
keeps significant positive returns after costs in the monthly rebalanced portfolios, while
the daily portfolios turn negative. Similarly, Grace [Gra17] uses an neural network to
evaluate stocks against their benchmark index to classify if they would outperform or
underperform the index, and based on the predictions, adjusted the portfolio alloca-
tion weights. Liang et al. [LCZ+18] implement three continuous reinforcement learning
algorithms, namely deep deterministic policy gradient (DDPG), proximal policy op-
timization (PPO) and policy gradient (PG) for portfolio management. They conduct
experiments using data from the Chinese Stock market and show that policy gradient
outperforms the other algorithms. Additionally they propose an adversarial training
method and show that it significantly improves average daily returns and Sharpe ra-
tio. Also focusing on reinforcement learning, Benhamou et al. [BSO+21] study reward



CHAPTER 4. MACHINE LEARNING AND STOCK CLASSIFICATION 89

Table 4.9: Summary of literature on portfolio management.

Reference Dataset Period Method Performance

[Tak13] Stocks from NYSE, AMEX and
Nasdaq

1965 - 2009 AE (stacked RBM) Accuracy, confusion
matrix

[LZR19] 88 futures contracts 1990 - 2015 Lasso regression,
MLP, WaveNet,
LSTM

Profitability, risk,
performance ratios

[FDG+18] Chinese stock data 2012-2013 Logistic regression,
RF, DNN + GA

AUC, accuracy,
precision, recall,
F1-score

[HPW17] IBB index, stocks 2012-2016 Stacked
autoencoders

Return

[LHGT06] Taiwan stock market - Elman RNN MSE, return

[Mak13] FOREX 2013 Evolino RNN Return

[Zho19] Stocks from NYSE, AMEX and
NASDAQ

1968 - 2017 LSTM, LSTM + MLP Return

[Gra17] Stocks from S&P500 2012-2015 DNN Accuracy

[LCZ+18] China stock data - DDPG, PPO, PG Return, Sharpe ratio,
DD

[BSO+21] 2010-2019 RL + CNN/LSTM Return, Sharpe ratio

[NPTT21] EUR/GBP, AUD/NZD PPO PnL

functions, network architectures and other aspects of training a reinforcement learn-
ing algorithm for portfolio management. Nalmpantis et al. [NPTT21] proposes a deep
adaptive group-based normalization to address the noisy and non-stationary nature of
financial data to improve a reinforcement learning algorithm and evaluate it in two
forex currency pairs.

4.1.4 Risk assessment

Another area of interest of machine learning in finance is the study of risk assessment
than can range from identifying the level of risk of an asset, a firm, a person, bank, etc.
Applications of this problem can be found on bankruptcy prediction, credit evaluation
or scoring, loan application, bond rating and more whit the majority of the studies on
risk assessment focusing on credit scoring and bank distress [OGS20]. Table 4.10 sum-
marizes risk assessment cases and the relevant machine learning methods.

For credit scoring Tran et al. [TDH16] propose a hybrid combining neural networks
and genetic programming called boosted deep network model to build a robust credit
model and test their model on Australian/German customer credit data sets. The boosted
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deep network, which consists of stacked autoencoders, shows the best accuracy when
compared to a variety of machine learning and neural network based models. Luo et
al. [LWW17] investigate the performances of credit scoring models applied to credit de-
fault swap (CDS) datasets, evaluating deep belief networks with restricted Boltzmann
machines, logistic regression, MLP and support vector machine. Yu et al. [YZTC18]
address the issue of class imbalance in credit risk assessment by using a deep belief
network based resampling support vector machine ensemble learning paradigm. The
model uses bagging to generate training subsets, then the support vector machine is
used as individual base classifier and finally the deep belief network is applied as an
ensemble method to aggregate the classification results. Similarly, Li et al. [LLW+17]
propose a credit risk assessment algorithm using neural networks with clustering and
merging, to achieve a balanced dataset for loans.

In the case of financial distress prediction, Lanbouri et al. [LA15] use financial ratios
from french firms as inputs of a hybrid model with deep belief networks and SVM to
identify whether a firm was in distress or not, while Ribeiro et al. [RL11] uses 30 finan-
cial ratios from financial statements from french companies with deep belief networks
for bankruptcy prediction. Yeh et al. use stacked autoencoders comprised of deep be-
lief networks in combination with stock returns from solvent and default companies
to predict corporate defaults [YWT15] and Hosaka [Hos19] converts financial ratios to
images and uses a CNN for bankruptcy prediction. Rawte et al. [RGZ18] analyze 10-
k filings through textual analysis by using word embeddings and CNNs and compare
it to using word counts and SVM or random forests to classify companies as failed or
not-failed and show that word embeddings in combination with CNNs show a higher
accuracy. Ronnqvist and Sarlin [RS15] build a predictive model that links news with
bank distress events by using unsupervised learning to learn semantic vector represen-
tations of news articles that are used as predictors to build a stress index for individual
banks. Closely related, Ronnqvist et al. [RS17] use sentence vectors instead of word vec-
tors to build a predictive model linking news with bank distress. Malik et al. [MSK18]
use an generative adversarial networks to generate hypothetical economic scenarios to
test bank stress that are more likely to happen and more risky than the tests performed
by the Federal Reserve.

Beyond bank and corporate default, there are studies of risk assessment for mort-
gage data, Sirignano et al. [SSG18] analyses the behavior of mortgage borrowers using
a neural network and founds that state unemployment has the greatest explanatory
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Table 4.10: Summary of literature on risk assessment.

Reference Dataset Period Method Performance
[TDH16] Australian. German credit data - Genetic

programming +
Stacked AE

Accuracy

[LWW17] XR 14 CDS contracts 2016 DBN+RBM, logistic
regression, MLP,
SVM

Accuracy, AUC

[YZTC18] German credit and Japanese
credit

- Bagging +
SVM+DBN

Accuracy

[LLW+17] Credit dataset from Kaggle - MLP, SVM, DNN Accuracy, G-mean
[LA15] Financial ratios from

companies
DBN + SVM Precision, Recall

[RL11] 30 Financial ratios 2002-2007 DBN Recall, Precision,
Accuracy and F1

[YWT15] Stock returns 2001- 2011 Stacked DBN Accuracy
[Hos19] Financial ratios from

companies
2002-2016 CNN F1-score

[RGZ18] 10-K filings 2006-2017 Word Embedding +
CNN/LSTM, SVM,
RF

Accuracy, Precision,
Recall, F1

[RS15] News articles, event data for
European banks

2007-2014 NLP + DNN Relative usefulness,
F1-score

[RS17] News articles, event data for
European banks

2007-2014 Sentence vector +
DNN

Usefulness, F1-score

[MSK18] Macro/Micro economic
variables, Bank variables

1976 - 2017 CGAN RMSE,
Log-likelihood,
Loan loss rate

[SSG18] Mortgage dataset with local
and national economic features

1995-2014 DNN AUCROC

[KSAS18] Norwegian mortgage and
consumer transaction data

2012-2016 CNN, RF Accuracy,
Sensitivity,
Specificity

power among the variables. Kvamme et al. [KSAS18] predicts mortgage default us-
ing consumer transaction data (checking account balances, savings accounts, and credit
card) in combination with a CNN and with a hybrid model combining CNNs with a
random forest classifier.

4.1.5 Fraud detection

Fraud detection is another area of great interest both from governments and companies
and is one of the most extensively studied areas of finance for machine learning research
and it covers cases such as credit card fraud, money laundering, tax evasion, bank fraud
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and insurance claim fraud [OGS20]. There are several survey papers published in this
area, for example, Kirkos et al. [KSM07], Wang et al. [Wan10], Phua et al. [PLSG10],
Sharma et al. [SP13] and West et al. [WB16] all focused on accounting and financial fraud
detection based on soft computing and data mining techniques, that can be generally
considered as an anomaly detection problem.

Due to the ever-growing volume of electronic payments from businesses that con-
tinue to change and migrate to the internet, the monetary impact of credit-card fraud
is becoming a substantial challenge for financial institutions and service providers. The
problem with fraud detection is not only to limit direct losses from the fraudulent trans-
actions on financial institutions, but also to limit the negative impact of automated or
manual reviews that can have on legitimate costumers, leading to a worst transaction or
purchasing experience. Besides the very real economic implications of credit card fraud
detection, fraud detection also poses an interesting research topic for data mining re-
searchers as it’s a problem that covers several interacting properties such as imbalanced
classes, temporal dependence between samples, concept drift, dynamic misclassifica-
tion cost and real-time detection among others [JGZ+18]. In the area of identifying credit
card fraud, Heryadi et al. [HW17] explores several neural network based models, CNNs,
Stacked LSTMs and a combined CNN-LSTM and uses debit card transactions from In-
donesian banks to identify fraud with the CNN achieving the highest AUC-ROC. Simi-
larly, Roy et al. [RSM+18] uses credit card transactions from retail banking and evaluates
four different network topologies, ANNs, RNNS, LSTMs and GRUs in a binary classifi-
cation setting where transactions are labeled as fraudulent or legitimate while Gomez et
al. [GAPN18] build an end-to-end neural network architecture that includes a cascade
of classifiers to reduce data unbalancedness and includes a cost metric evaluation, given
that the cost produced by a false positive is different than the cost of a false negative.
Jurgovsky et al. [JGZ+18] frame the fraud detection problem as a sequence classification
task and use a LSTM network to incorporate transaction sequences, and compare it to
a baseline using a random forest classifier. Sohony et al. [SPN18] present an ensemble
learning approach to account for the highly skewed nature of the dataset, and find that
random forest is more accurate in detecting normal instances while neural networks is
better for detecting fraud instances, therefore, the combine both models in an ensemble
method to improve accuracy and confidence on the prediction.

Beyond credit-card fraud detection, Wang et al. [WX18] uses Latent Dirichlet Allocation-
based text mining in combination with neural networks to detect automobile insurance
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fraud while Goumagias et al. uses reinforcement learning to predict the tax evasion be-
haviors of risk-averse companies [GHVA18]. Paula et al. [PLCM16] uses autoencoders
in an anomaly detection setting to identify financial fraud and money laundering for
Brazilian companies. Similarly, Gomes et al. also proposes using anomaly detection
through an autoencoder to identify anomalies in parliamentary expenditure in Brazilian
elections [GCC17]. Withing money laundering, Alhassan et al. [AY20] proposes a cas-
cade model of K-medoids and neural networks for detection of money laundering and
compare it with support vector machines and neural networks. Chen et al. [CSNS21]
propose a series of unsupervised learning techniques that can be better suited to deal
with highly imbalance nature of fraud datasets than supervised approaches. They
evaluate autoencoders, variational autoencoders and generative adversarial networks
by using a Wasserstein generative adversarial network to generate fraud transactions,
which are then added to the base dataset in order to make it more balanced; then a
variational autoencoder and an autoencoder are trained using single-loss and multi-
loss and conclude that the multi-loss autoencoder model achieves the lowest false posi-
tive rate. Semenov et al. survey the technical aspects of anti-money laundering systems
and Kute et al. [KPSA21] review the current state-of-the-art literature on deep learn-
ing together with explainable artificial intelligence techniques for identifying suspicious
money laundering transactions. Desrousseaux et al. [DBM21] uses neural networks for
identification and analysis of suspicious transactions focusing on environmental crime
detection from a money laundering perspective 2. Using French commercial and trading
companies involved in trade of raw materials as the unlabeled dataset, they combine
self organizing maps which clusters the data with fuzzy Adaptive Resonance Theory
networks (fzART) [CGR91] that identify the clusters containing abnormal transactions
in real time. Table 4.11 summarizes the literature of machine learning used for fraud
detection given the relevant method used and the dataset, as well as the performance
metrics used.

4.1.6 Financial sentiment analysis and text mining

With the recent advancements in text mining techniques, one of the areas that has seen
a lot of growth is financial sentiment analysis and financial text mining. Within finan-
cial sentiment analysis, trend forecasting and algorithmic-trading development are one

2Environmental trafficking can range from illicit trade in hazardous waste to illegal exploitation of
natural resources such as timber, which is currently one of the most profitable forms of organized crime.
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Table 4.11: Summary of literature on fraud detection.

Reference Dataset Period Method Performance
[HW17] Debit card transactions from

Indonesia bank
2016-2017 CNN,

Stacked-LSTM,
CNN-LSTM

AUCROC

[RSM+18] Credit card transactions 2017 ANN, RNN, LSTM,
GRU

Accuracy

[GAPN18] Credit card purchases 2014-2015 DNN TFPR, AUCROC,
Value Detection Rate

[JGZ+18] Credit card transactions 2015 LSTM AUCROC, Jaccard
index

[SPN18] Credit card transactions by
European cardholders

2013 DNN, RF Precision, recall,
accuracy

[WX18] Data from automobile
insurance company

- LDA + DNN TP, FP, Accuracy,
Precision, F1-score

[GHVA18] Empirical tax data from Greek
firms

Q-learning

[PLCM16] Exports of goods and products,
from the Secretariat of Federal
Revenue of Brazil

2014 AE MSE

[GCC17] Chamber of Deputies open
data, companies data from
Secretariat of Federal Revenue
of Brazil

2009-2017 AE MSE, RMSE

[AY20] Transaction data - K-mediod + ANN,
ANN, SVM

Accuracy, precision,
specificity,
sensitivity/recall

[CSNS21] Transactions from Malaysian
bank

2012-2013 AE, VAE, wGAN FPR, F1-score,
accuracy, precision,
recall, AUC

[DBM21] French commercial and
trading companies

2016-2019 SOM+fzART -



CHAPTER 4. MACHINE LEARNING AND STOCK CLASSIFICATION 95

of the most studied areas. Kearny et al. [KL14] present a survey of machine learning
based financial sentiment analysis on text data. Table 4.12 summarizes the literature on
financial sentiment analysis and text mining, with their relevant methods.

In the area of sentiment analysis, one of the earliest works on social media senti-
ment analysis is by Bollen et al. [BMZ11] that investigate whether collective mood states
derived from Twitter feeds are correlated to the Dow Jones Industrial Average by an-
alyzing text content of daily Twitter feeds using two mood tracking tools, Opinion-
Finder that measures positive vs. negative mood and Google-Profile of Mood States
(GPOMS) that measures mood in terms of 6 dimensions (Calm, Alert, Sure, Vital, Kind,
and Happy). They uses a Self-organizing Fuzzy Neural Network (SOFNN) model and
find that the calm dimension is predictive of the DJIA rather than general levels of pos-
itive sentiment as measured by OpinionFinder. Similarly, Huang et al. [HHW+16] use
six-dimensional society moods from Twitter posts and combine this with a neural net-
works to explore temporal patters of financial data and Twitter moods to predict the
changing trend of the next-day close S&P500 Index and NYSE Composite Index. They
use a deep neural network to evaluate and select predictive Twitter moods, and a CNN
to explore the temporal patterns among financial data and Twitter moods and compare
it with HMMs and support vector machines as baselines and find that the CNN-based
method achieves the best performance.

Wang et al. [WXZ18] design a novel framework that combines the wisdom of crowds
and technical analysis for financial market prediction using a machine learning tech-
nique called deep random subspace ensembles (DRSE), integrating deep learning algo-
rithms and ensemble learning methods. The data used is stock market records and Sina
Weibo, one of the most popular social media platforms in China, similar to Facebook
and Twitter, where all messages with the keyword ”stock market” are included in the
sentiment calculation. Peng et al. [PJ16] use word embedding methods and deep neu-
ral networks applied to financial news to predict stock price movement. Zhuge et al.
[ZXZ17] proposes a model that combines an emotion classifier based on naive Bayes
and a LSTM for time series learning to predict the Shanghai Composite index. Das et
al. [DBkR18] uses Twitter data to score sentiment about individual firms in combina-
tion with RNNs, focusing on the architecture for streaming data analysis, i.e. to analyse
streaming data and perform sentiment analysis in real time.

Besides sentiment analysis, there is much interest in the content retrieval of news, fi-
nancial statements and related documents by analyzing the text context [OGS20]. Loughran
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et al. [LM16] and Kumar et al. [KR16] surveyed studies of textual analysis of financial
documents, news and corporate communications.

Shi et al. [STW+19] propose a novel system, DeepClue, based on a CNN to extract
textual factors (keywords, bigrams3, titles) relevant to daily stock price prediction. They
test their model on financial news and in social media collections on US stock markets.
Huynh et al. [HDD17] introduce a bidirectional gated recurrent unit (BGRU) to predict
individual stock movements and S&P500 index using online financial news and his-
torical stock prices. Han et al. [HHH18] propose a business event-extraction approach
applied to extract events from online Chineses news, using word embedding and a
semantic lexicon to extend an event trigger dictionary and then use a combination of
machine learning algorithms (support vector machines, random forest and AdaBoost).
Kraus et al. [KF17] perform a large scale study of the use of neural networks for fi-
nancial decision support by analysing company disclosures and compares it with tra-
ditional machine learning methods. Verma et al. [VDM17] propose a paragraph-vector
based classification mechanism using LSTM to detect and quantify the impact of news
events on Indian stock indices. Vargas et al. [VdLE17] study the use of different neu-
ral networks for intraday directional movements of the S&P500 index using as inputs
financial news titles and a set of technical indicators.

4.2 Neural networks

In section 4.1 we summarized a series of machine learning applications in finance with
a focus on financial time series forecasting and we showed that neural networks are
gaining a lot of interest within these tasks, in particular for stock prediction where they
are showing stronger performance than classical machine learning algorithms [GKX20,
KDH17, FK18, FHP18, SGO20]. Therefore, in this section we present a brief overview of
neural networks, focusing in the types of networks that will be used in this thesis.

Neural networks are not a new concept; they were original proposed in the 1940s
by McCullock and Pitts and are loosely based on a model of how neurons in the brain
work, where connections between neurons, like synapses in the brain, can propagate
information to other neurons [MP43]. In its simplest way, it can be described as a linear
model that takes a set of inputs (x1, · · · , xn) and associates them with an output y, by
learning a set of weights and computing their output f(x,w) = x1w1 + · · · + xnwn. But

3Bigram is the sequence of two adjacent words in a sentence, e.g. hit record.
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Table 4.12: Summary of literature on financial sentiment analysis and text mining.

Reference Dataset Period Method Performance
[BMZ11] DJIA, Twitter 2008 SOFNN MAPE, Accuracy
[HHW+16] S&P500 Index, NYSE Index,

DJIA Index, NASDAQ Index,
Twitter data

2009-2011 CNN Error rate

[WXZ18] Sina Weibo and stock market
records

2010-2015 DRSE F1, precision, recall,
accuracy, AUC

[PJ16] Reuters and Bloomberg
articles, stock data (CRSP)

2006-2013 DNN Accuracy

[ZXZ17] Stock posts on Eastmoney,
transaction data

2008-2015 Naive Bayes +
LSTM

MSE

[DBkR18] Twitter data, individual US
stocks

2005-2017 RNN Correlation

[STW+19] S&P500 stocks, news from
Reuters and Bloomberg,
Twitter data

2006-2015 CNN Accuracy, user study

[HDD17] News from Reuters and
Bloomberg, S&P500 stocks and
index

2006-2013 BRGU Accuracy

[HHH18] Busieness news from Sina.com,
ACE 2005 Chinese corpus

2012-2016 Word2Vec + SVM,
RF, AdaBoost

Precision, recall,
F1-score

[KF17] 11000 regulated German ad
hoc announcements in English

- RNN, LSTM Accuracy, AUC,
RMSE, MSE, MAE

[VDM17] News data, Stock indices from
National Stock Exchange India

2013-2017 LSTM MCC

[VdLE17] News from Reuters, S&P500
index

2006-2013 RCNN, CNN, RNN Accuracy
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linear models tend to have limitations, so it was incorporated to the output of each neu-
ron an activation function that is a non-linear function of the sum of its inputs [GBC16].

With the advancement in computing power and more availability of data over the
last few years, it became possible to build more complex neural networks with more
layers of neurons (called hidden layers) or more complex neurons. This development
resulted in what is called deep learning, i.e. deep networks that consist of multiple
layers of neurons stacked on top of each other, with the output of one layer being used
as input to the next. This stacking of layers allows complex concepts to be built from
simpler representations [GBC16].

So far what we described is usually called a Multilayer Perceptron (MLP), but there
are many different deep learning models besides the MLP, such as Convolutional Neu-
ral Networks (CNN), Recurrent Neural Networks (RNN) and Generative Adversarial
Networks (GAN) [GPAM+14]. All these approaches have been used successfully in
many areas of machine learning, for example CNNs have been extensively used in
image recognition achieving results comparable or in some cases, superior to human
experts[KSH12]; RNNs have been used in natural language processing [SVL14], auto-
matic speech recognition [HDY+12] and time series classification; and GANs have been
used for image-to-image translation [IZZE17], image super-resolution [LTH+17] and
more. Below we describe the basics of three of the topologies that will be used on this
thesis.

4.2.1 Multilayer Perceptron

An MLP consists of an input layer, and output and hidden layers. Figure 4.1 shows an
MLP with its layers of neurons and the edges representing the weights between each
connection. Each neuron has an input x, a weight w and a bias b term, and the output
of the neuron is calculated by the following equation:

yi = σ(Σiwixi + bi) (4.1)

where σ is a nonlinear activation function which produces the output of the neuron
by a weighted sum of the inputs from the previous layers.

There are several popular activation functions, for example Sigmoid, Softmax, hy-
perbolic tangent, Rectified Linear Unit (ReLU).
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Figure 4.1: Example of multilayer perceptron (MLP) with an example of a weight wij
between neurons i and j, drawn as the edge between the neurons. Therefore, each edge
corresponds to a weight.

In a supervised setting, we have a set of inputs and their corresponding labels and
we want the neural network to evaluate the input and output a vector of scores (one
for each class of label) with a high score on the desired label. For example, if we have
images of cats, dogs and bears and we show the network an image of a cat (input), we
want the output to have a high score for the label cat and low scores for the other two
categories. In order to achieve this, we need to train the network (adjust the weights
between neurons); hence, we need to define an objective function that measures the
error between the output of the network and the true label. To adjust the weights, the
learning algorithm will compute a gradient vector that, for each weight, indicates by
what amount the error would change if the weight were increased by a tiny amount.
The weights are then adjusted in the opposite direction to the gradient vector [LBH15].

There are several algorithms that optimise this gradient descent, the most common
is stochastic gradient descent (SGD) that takes small samples, evaluates them on the
network and calculates the errors, then computing the average gradient for those sam-
ples and adjusting the weights. This algorithm is repeated until the loss (the average of
the objective function in the small sets of samples) stops decreasing. The term stochastic
is used because the small set of samples is just a noisy estimate of the average gradient
over all samples. While SGD usually converges to a good set of weights fairly quickly,
there are other training optimizers that are variations of SGD that have shown strong
performance, for example Root Mean Square Propagation (RMSProp), Adaptive Gradi-
ent Algorithm (AdaGrad) or Adam.
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4.2.2 Convolutional Neural Networks

Convolutional neural networks (CNN) are designed to process data in the form of multi-
dimensional arrays. There have been many applications of convolutional networks
since the early 1990s, starting with speech recognition [WHH+89] and document read-
ing [LBBH98]. The recent success on image classification and recognition problems has
extended their use to learning a wide variety of data signals of different dimensionality:
1D for sequences such as time-series or language, 2D for images, and 3D for video.

Similarly to multilayer perceptrons, the architecture of a convolutional neural net-
work is commonly composed of successive layers that detect features from the output
of the previous layer, in a hierarchical manner. However, the fully-connected layers
utilised in MLPs are replaced by convolutional and pooling layers, designed to take ad-
vantage of the locality of the connections in naturally occurring signals [LBH15]. Con-
volutional layers are kernel-based filters with learnable weights, designed to detect local
conjunctions of features from the previous layer, while the role of pooling layers is to se-
mantically merge similar features by sub-sampling the data. Together, these operations
produce a more efficient extraction of features from the input, that is also translation-
invariant.

4.2.3 Recurrent Neural Networks

Recurrent neural networks (RNN) have been mostly used on sequential data such as
language, audio and time series data. Unlike MLPs, RNNs use an internal memory to
process the inputs by parsing the input sequence one element at a time while maintain-
ing in their hidden units a state vector that contains information about the history of all
the previous elements of the sequence [LBH15]. One of the most popular variations of
RNNs are Long short-term memory neural networks (LSTM). We focus on these types
of networks as they will be used in Chapters 5, 6 and 7.

The main idea behind LSTM networks is that they are capable of learning long-term
dependencies. Figure 4.2 shows a diagram of an LSTM cell. The core idea behind
LSTMs, and why they can learn long-term dependencies, is the cell state (represented
by Ct in the diagram) that runs through the entire sequence with only minor interac-
tions, allowing information to flow along it unchanged. The ability to remove or add
information to the cell state is regulated by gates, composed of a sigmoid neural net
layer, where a value of zero means “nothing gets through” and a value of one means
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Figure 4.2: LSTM module where rectangular pink boxes correspond to neural network
layers, and orange circular objects represent pointwise operations. The diagram is based
on the figure presented in [Ola15].

“everything gets through”. The equations that regulate the LSTM cell at time step t are
the following:

ft = σ(Wf · [ht−1, xt] + bf ) (4.2)

it = σ(Wi · [ht−1, xt] + bi) (4.3)

C̃t = tanh(WC · [ht−1, xt] + bC) (4.4)

Ct = ft ∗ Ct−1 + it ∗ C̃t (4.5)

ot = σ(Wo · [ht−1, xt] + bo) (4.6)

ht = ot ∗ tanh(Ct) (4.7)

ft is called the forget gate layer (it regulates what to keep and what to throw), it is
the input gate layer, that decides which values will be updated. C̃ is created by a tanh
layer and is a candidate to be added to the state. Then the new state Ct is updated by
multiplying the old state by the forget gate and then adding the multiplication of the
input gate with the new candidate C̃. Finally, in order to decide the output of the cell
ht, we multiply the output gate ot that determines what part of the previous output will
be retained with the cell state (that has been put through a tanh to push the values to be
between −1 and 1). Wf , Wi and Wo are the weights of the forget, input and output gate
layers, respectively and σ is the sigmoid function.
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Figure 4.3: Example of underfitting (left), overfitting (right) and good fit (centre). The
mean square error (MSE) on the validation set is 4.1e-01 for the left plot, 4.3e-02 for
centre plot and 1.8e-08 for right plot.

4.3 Regularizing neural networks

A central problem on machine learning, an this is also the case in neural networks,
is how to make a model perform well on unseen data, and not only on training data
[Mar18a]. This ability to perform well on previously unseen data is called generalization.
The key factors to determine how well a machine learning model will perform are 1)
its ability to make the training error small, and 2) its ability to make the gap between
train and test error small [GBC16]. When the model is unable to achieve a sufficiently
low training error, we term this problem underfitting (the model struggles to fit the
training set). If the model has a low training error but the gap between train and test
error is too large, we call this problem overfitting (most likely, the model is memorizing
features of the training set that are not useful on the test set). Figure 4.3 illustrates this
with an example, where data is sampled from a noisy cosine function and adjusted with
polynomial functions with different degrees. We can see that a polynomial with degree
1 does not fit the training samples and therefore it is underfitting, and a polynomial with
degree 15 fits almost perfectly all the training samples but we can see that it is learning
the noise of the data, while a polynomial with degree 4 fits the true function accurately.
Having a robust model that generalizes well to unseen data is particularly important
in financial tasks where the data is usually both highly noisy and non-stationary. In
this section we explain several strategies that can be used to mitigate generalization
problems in financial time series classification.
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4.3.1 Data augmentation

One of the best ways to improve model generalization is training with more data. In
practice, this is not always possible and unlike in the case of image or text datasets,
(annotated) time series datasets tend to be smaller in comparison, which often leads to
poor performance on the classification task [IU20b]. This is a particular difficulty that
may arise with economic or financial data, given that often data is daily or monthly and
might not go back many years into the past to have sufficient data to train a model. One
way to get around this obstacle is to generate new data and add it to the training set.
This can be done by applying transformations to the data, as long as those transforma-
tions are label-invariant.

Data augmentation has proven to be an effective approach to reduce over-fitting
and improve generalization in neural networks [CGK15]. While there are several meth-
ods to improve generalization in neural networks, data augmentation tackles the is-
sue from the root, i.e., by enriching the information related to the class distributions in
the training dataset. Therefore, by assuming that more information can be extracted
from the dataset through augmentations, it further has the advantage that it is a model-
independent solution [SK19].

In tasks such as image recognition, data augmentation is a common practice, and
may be seen as a way of pre-processing the training set only [GBC16]. For instance
Krizhevsky et al. [KSH12] used random cropping, flipping and changing image intensity
in AlexNet, Simonyan et al. used scale jittering and flipping [SZ15] on the VGG network.

However, such augmentation strategies are not automatically extensible to time-
series data in general, due to the non independent and identically distributed (i.i.d.)
property of the measurements forming each time-series. Although most data augmen-
tation methods for time series are based on random transformations, given the variety
of time series and their different properties, not all transformations make sense on all
time series. For example, adding noise to a position sensor might work well because one
expects the data to be noisy, but this might not necessary work well for shape-based time
series. Another reason could be that for images, we can apply a transformation such as
rotation or random cropping and visually inspect that the transformation maintains the
same label (an image of a cat will be labeled cat whether it is rotated or not). In time
series data, one cannot easily corroborate that an arbitrary transformation will have the
desired effect of being label independent.
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Data augmentation for time series
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Figure 4.4: Taxonomy of time series data augmentation

A taxonomy of data augmentation methods is shown in Figure 4.4, separating the
methods into four main categories:

• Random transformation

• Decomposition

• Pattern mixing

• Generative model

Random transformations may occur in the time domain (such as slicing or time
warping), in the frequency domain (e.g. through Fourier transform or frequency mask-
ing) or the amplitude domain (such as jittering, magnitude warping or scaling). De-
composition methods as its name indicates, decompose the time series in different com-
ponents, or underlying patterns and then they are recombined or perturbed to generate
new data. Slicing, sometimes referred to window slicing cuts a window of time steps
off the time series and utilizes this for training (which is the equivalent to cropping an
image for data augmentation [GMT16]. Time warping consists of perturbing the time in-
tervals at random positions between the samples and using a random smooth warping
curve [UPP+17]. Time masking and frequency masking are often used in spectrograms and
they mask random parts of the spectrogram in their respective domains [IU20a]. Fre-
quency warping is the same as time warping and uses a using a random linear warping
along the frequency dimension [JH]. Fourier perturbation consists of manipulating data
under a Fourier transform, e.g. using amplitude and phase perturbations by adding
Gaussian noise to the and phase obtained by a discrete Fourier transform [GSW+20].
Jittering consists of adding Gaussian noise to the time series element-wise [UPP+17] and
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similarly Scaling multiplies the time series with a random scalar drawn from a Gaussian
distribution. Finally, magnitude warping multiplies the time series by a warping magni-
tude controlled by a smooth curve with knots at random locations and magnitudes.

Decomposition methods include STL that separates the series in trend, seasonality
and residuals [HSL+98] such as RobustTrend [WGS+19a], RobustSTL [WGS+19b]; Em-
pirical Mode Decomposition (EMD), suitable for non-linear, non-stationary time series, de-
composes the time series into intrinsic mode functions without leaving the time domain
[HSL+98].

Pattern mixing methods combine one or more patterns to generate new ones, for ex-
ample through averaging and interpolation, such as SMOTE (Synthetic Minority Over-
sampling Technique) [CBHK02]. SMOTE is frequently used to deal with imbalanced
classes; a sample s1 is selected from the minority class, then another sample sk is se-
lected based on nearest neighbors of s1, and the new synthetic sample is the original
sample s1 added by the absolute difference between s1 and sk multiplied by a random
value in a range {0, 1}. Another method, DTW Barycentric Averaging (DBA) [PKG11],
uses Dynamic time warping (DTW), an algorithm that measures similarity between two
time series; DBA is an averaging method, that iteratively adds sample patterns that are
time aligned by DTW to a cumulative centroid pattern. Instead of just adding the pat-
terns, Forestier et al. propose different weighting schemes that lead to different augmen-
tation methods, commonly named weighted DTW Barycentric Averaging - wDBA. Guiding
warping combines time series by using the DTW function to warp elements of a refer-
ence patter to the elements of a teacher pattern [IU20a]. In a similar fashion to SMOTE,
DeVries et al. propose data augmentation on the learned space of an autoencoder, where
a reference vector in the feature space is sampled, then another sample is selected based
on nearest neighbor to the original sample (always belonging to the same label) and
then the augmented sample can be produced by interpolation or extrapolation, which
corresponds to interpolation/extrapolation in feature space [DT17].

Lastly, generative methods largely consist of learning a model of the data distribu-
tion and then sampling from that model, for example through hidden Markov models
where one can fit a model to the data and then sample from the HMM to generate
new samples [HHU18] or through neural network-based generative models such as
variational autoencoders [TLM+18] or generative adversarial networks - GANs which use
adversarial training to simultaneously optimize two neural networks, a generator and
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discriminator [EHR17]. Wavenet, used for speech generation, consists of a neural net-
work that uses dilated causal convolutions for data augmentation [vDZ+16].

For a thorough description of time series augmentation methods and its applica-
tions, we recommend the survey on time series data augmentation for deep learning by
Wen et al. [WSS+20] and the empirical survey of data augmentation for time series by
Iwana et al. [IU20a] where the authors evaluate several augmentation methods on the
UCR time series archive across several neural network topologies [BLB+17].

Data augmentation has been applied to domain-specific time series data encoding
information of natural phenomena with great success. Cui et al. [CGK15] use stochastic
feature mapping as a label preserving transformation for automatic speech recognition.
Most recently, SpecAugment was proposed for end-to-end speech recognition, with an
augmentation policy that consists of time warp, frequency masking and time masking
that act on the log mel spectrogram directly [PCZ+19]. Um et al. [UPP+17] test a series of
transformation-based methods (many inspired directly by computer vision) on sensor
data for Parkinson’s disease and show that rotations, permutations and time warping
of the data, as well as combinations of those methods, improve test accuracy. Le Guen-
nec et al. propose two augmentation methods, window slicing and window warping to
use in combination with a convolutional neural network and test it on the UCR dataset
archive, improving the overall classification performance. Fawaz et al. use the wDBA
augmentation technique, and test it on very small datasets from the UCR archive using
a Resnet for classification [IFFW+18].

To date, it appears that little work has been done on studying the effect of data aug-
mentation methods for financial data or developing methods specialized on financial
time-series. For regression tasks, Teng et al. [TWZ+20] use a time-sensitive data aug-
mentation method for stock trend prediction, where data is augmented by corrupting
high-frequency patterns of original stock price data as well as preserving low-frequency
ones in the frame of wavelet transformation. For stock market index forecasting, Yujin et
al. [BK18] propose ModAugNet, a framework consisting of two modules: an over-fitting
prevention module and a prediction LSTM module. Takahashi et al. develop FIN-GAN
a GAN for financial time series modelling that is capable of generating financial time
series data that retains the major stylized facts of the original series such as fat-tailed
return distribution, volatility clustering, coarse-fine volatility correlation and gain/loss
asymmetric [TCTI19]. While they show that FIN-GAN generated data retains several of
the statistical properties of the original data, they don’t propose to use their method for
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data augmentation. Similarly, Wiese et al. develop QuantGANs where they proposed
as generator a stochastic volatility neural network (SVNN) that is based on stochas-
tic volatility models [WKKK20]. The SVNN consists of a volatility and drift temporal
convolutional network that are able to capture long-range dependencies in sequences.
While they show good agreement in distributional metrics and autocorrelational scores
between the original and the generated data, the aim of their model is not data augmen-
tation. In chapters 5 and 6 we describe in detail which methods we have investigated
for stock movement classification.

4.3.2 Transfer learning

Transfer learning is mostly used in deep neural network models when a target dataset
does not contain enough labeled data, so a task that has been learned in one setting (e.g.
distribution P1) is exploited to improve generalization in another setting (e.g. distribu-
tion P2) [GBC16, YCBL14]. For example, it is widely used in computer vision, where we
may have as primary task an image classification problem, with labels such as cats and
dogs, where we have significantly more data, than for a secondary task where we want
lo learn a different set of visual categories such as ants and wasps. In the first setting,
given that we have vast amounts of data (drawn from P1), we may learn useful repre-
sentations that can help us to quickly generalize from only a small number of samples
(sampled from P2) from the secondary task.

In neural networks, the way that transfer learning is usually done is by firstly train-
ing a network in a source dataset (Ds), and then removing the last layer (or few last
layers depending on the depth) and replacing it with another layer with the number of
neurons equal to the number of classes in the target dataset (Dt). Then, the transferred
weights can either be fixed, so only the new added layer is trained (therefore, there is no
gradient back-propagation through all the network, only to the added layer) or the new
network can be retrained (fine-tuned). Fine-tuning the new network means that we just
use the weights from the source network as initial weights for the target network, and
then we allow the gradient to back-propagate through all the network when retraining
on the target dataset. Figure 4.5 shows these two transfer learning methods.

Transfer learning is widely used in computer vision when the target dataset contains
insufficient labeled data [SP18, YCBL14]; to the best of our knowledge, it has been rarely
used in neural network models for time series data [IFW+18]. Spiegel proposes the use
of transfer learning for time series classification in dissimilarity spaces which allows



CHAPTER 4. MACHINE LEARNING AND STOCK CLASSIFICATION 108

Source
dataset

Target
dataset

Fixed transferred weights

Target
dataset

Trainable transferred weights

New trainable weights

Transferred weights and new weights are trained (fine-tuned) 

Transfer learning
without fine-tuning 

Transfer learning with
fine-tuning 

Original task

Figure 4.5: Transfer learning scheme showing the original task with source dataset and
transfer learning with and without fine-tuning of the weights for the target task.
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to generate enriched dissimilarity representations by adding time series that are com-
pletely unrelated to he original task, leading to an improvement in classification accu-
racy depending on the additional time series used for the embedding [Spi16]. Similarly,
Vercruyssen et al. use transfer learning for time series anomaly detection by transferring
labeled examples from a source domain to a target domain where there are no available
labels. Once the transfer is complete, they use a 1NN-DTW classifier [VMD17].

Fawaz et al. [IFW+18] study how to transfer deep CNNs for the time series classi-
fication task on the UCR archive datasets. They firstly study a naive transfer learning
approach where for each pair of datasets D1 and D2 from the pool of 85 datasets in the
UCR archive they use D1 as the source dataset and D2 as the target dataset and vice
versa and showed that blindly and naively using transfer learning could drastically de-
crease the model’s performance. Next, they propose a smart transfer learning by using
a DTW distance to first compute similarities between datasets and thus selecting an op-
timal source dataset to use for the transfer. Similarly, in [SPK18] the authors design an
autoencoder using CNNs, where a model is pre-trained on several source datasets that
belong to a certain type (e.g. ECG or sensor readings data) and then is fine-tuned on a
target dataset that belongs to a different type (e.g. spectrographs).

In financial applications, transfer learning has been used for credit risk scoring, a
problem that usually suffers from highly imbalanced data, so multiple sources of credit
domains can be used, for example credit card lending and debt consolidation to address
this issue [SGVB19, LDCY19, XWTH14, LDC+18]. In several cases, transfer learning is
used in sentiment analysis tasks where information from news-rich stocks (source) are
used for training and then transferring sentimental information to news-poor stocks
(target) [LXL+18], or contextual pretrained language models such as BERT are fine-
tuned in financial text data [HHM+19, LHH+20]. Hiew et al. build a Bert-based financial
sentiment index for three stocks, where they show that BERT is superior to classify sen-
timent of stocks news than other state of the art method and the use the Bert-based sen-
timent index to predict stocks returns and show that the MSE is lower for their method
[HHM+19].

In trading strategies, current approaches treat each market or asset in isolation,
with few use cases of transfer learning in the financial literature. Zhang et al. develop
DeepLOB, a deep CNN for limit order book data of cash equities and test it in instru-
ments that were not part of the training set, achieving high accuracy and thus indicating
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the model’s ability to extract universal features and perform a sensitivity analysis to un-
derstand which components are most relevant [ZZR19].

Koshiyama et al. introduce QuantNet, an architecture that learns market-agnostic
trends in a sequential multi-task transfer learning approach, which learns one model
per market but partitions the parameters into a set of market-specific parameters (free
to specialize) and market-agnostic parameters that capture signals from all markets.
They show improvements in Sharpe ratio 2 to 10 times in large regional markets such
as S&P500 and FTSE100 [KFB+20].

4.3.3 Ensemble learning

Ensemble learning, as indicated by its name, consists of combining the outputs of multi-
ple models and this leads to a reduction in the generalization error [GBC16]. The reason
that ensemble learning works is that different models will not usually make the same
mistakes on the test set. For example, bootstrap aggregating (bagging) trains k different
models separately by constructing k different datasets from the original dataset [Bre96].
Each of these k datasets has the same number of training samples as the original dataset,
but each one is sampled with replacement from the original dataset. This means that
there is a high probability that each dataset will be different, and will be missing some
samples of the original dataset and will contain several duplicates. The difference be-
tween each sampled dataset will lead to differences in the trained models. When all the
models are trained, then all the models vote on the output for the test set and we can do
model averaging (average the predictions).

A diagram of ensemble learning with bagging is shown in Figure 4.6. Following
the notation in [GBC16], assuming we have k models and each model makes an error
εi on each example, with errors drawn from a multivariate normal distribution with
variances E[ε2i ] = v and covariances E[εiεj] = c, then the error made by the average
prediction of all the ensembles models is 1

k

∑
i εi. The expected squared error of the
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If the errors are perfectly correlated and c = v, the mean square error is equal to v, so
the model averaging does not help. If the errors are perfectly uncorrelated and c = 0,
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Figure 4.6: Example of ensemble of neural networks with bagging and model averaging.

then the expected squared error is 1
k
v, so the squared error is inversely proportional to

the ensemble size. Therefore, on average, the ensemble will perform at least as well as
any of its members and if the members have uncorrelated errors, then the ensemble will
perform significantly better that its members.

Besides bagging, one could create an ensemble with the exact same data for each
model but where each model is initialized differently [IFFW+19b], or we could build an
ensemble using different classifiers. The latter is widely used in time series classifica-
tion, and some of the current state of the art methods in terms of classification accuracy
in the UCR archive dataset uses the latter. For example, HIVE-COTE (Hierarchical Vote
Collective of Transformation-based Ensembles) combines multiple types of classifiers
(each extracting information about specific characteristics of a time series such as time
domain, frequency domain, etc) and is currently the best performing model [LTB16].
The downside of HIVE-COTE is that often it is infeasible to run on even medium size
datasets, with a training complexity in O(N2 · T 4) where N is the number of samples
and T the length of the time series.
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Figure 4.7: Critical difference diagram for 14 classifiers evaluated on 112 datasets on the
UCR archive. Solid bars indicate cliques, within which there is no significant difference
in rank. Tests are performed with the sign rank test using the Holm correction. Top
clique of four classifiers represent the state of the art. Diagram taken from [BLVK21].

Another state of the art ensemble model for the time series classification task is TS-
CHIEF (Time Series Combination of Heterogeneous and Integrated Embedding Forest)
constructs an ensemble classifier that integrates the most effective embeddings of time
series that have been developed in the last decade and uses tree-structured classifiers to
do so efficiently, achieving similar accuracy to HIVE-COTE but in a fraction of runtime
[SPPW20]. For example, a time series with N = 1500 and T = 46 would take 8 days
to train with HIVE-COTE but TS-CHIEF can learn it in 13 minutes. ROCKET (RandOm
Convolutional KErnel Transform) uses simple linear classifiers with random convolu-
tional kernels and achieves state of the art accuracy on the UCR archive, also with a fast
runtime - it is 1000 times faster than TS-CHIEF on a time series with T = 2048 [DPW20].
All state of the art methods mentioned use classic machine learning approaches but
none makes use of neural networks. The exception to this is InceptionTime, that uses an
ensemble of convolutional neural networks, achieving similar performance to the other
methods [IFLF+20]. Figure 4.7 shows a critical difference diagram for current time se-
ries classifiers evaluated in the UCR dataset [BLB+17]. We can see that the four methods
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discussed here represent the state of the art at the moment of the writing of this thesis
and show no significant difference in rank.

Since InceptionTime is the only neural network-based method to achieve state of the
art performance on the UCR dataset and shows running times between Rocket and TS-
CHIEF [DPW20], we will use it in chapter 7 to evaluate a proposed method of automatic
data augmentation on the UCR dataset.

4.4 Automatic data augmentation mechanisms

One of the biggest challenges with data augmentation is how to search over the space of
transformations, which can be prohibitive given the large number of possible transfor-
mations and their associated parameters. For example, (i.e. in jitter, what scale of noise
should be used? and how many knots should be used in time warping?), not to men-
tion the possible combinations of two or more successive transformations. Therefore,
a learnable data augmentation method is one of the open questions in data augmenta-
tion. Ideally, such a method would allow us to select optimal transformations, select an
optimal range of transformation parameters and maybe determine which methods are
better used in isolation or combined successively.

Heuristic data augmentation apply a deterministic series of transformations tuned
by humans and this augmented data is then used to train a model. In recent years there
have been various attempts from computer vision to move from heuristic methods to
automatic augmentation methods, there appears to be no comparable work done for
time series data.

One of the earliest attempts is TANDA (Transformation Adversarial Networks for
Data Augmentations) that makes use of a generative adversarial approach. In the first
stage, a generative sequence model over user-specific transformations is learned (Gen-
erator), and then fed to a discriminator [REH+17]. Finally, the trained sequence genera-
tor is used to augment the training set for an end discriminative model. They test their
model on three benchmark datasets for image (CIFAR-10 and MNIST), text (Automatic
Content Extraction, ACE) and Digital Database for Screening Mammography and show
improvements in up to 4 points in accuracy on CIFAR-10, 1.4 F1 points on the ACE
relation extraction task, and 3.4 accuracy points on the medical imaging dataset.

In a similar fashion, AutoAugment automatically searches for improved data aug-
mentation policies in a reinforcement learning framework by using a controller that
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predicts an augmentation policy from the search space, then a secondary network (end
model) is trained and its validation accuracy is used as reward using a policy gradient
method to update the controller [CZM+19]. Using an adversarial approach, Adversarial
AutoAugment jointly optimizes the end model and augmentation policy search, with
the controller attempting to increase the training loss of the end model thus, expecting
the model to be robust against difficult examples [CZM+19]. The model is tested on
image benchmark datasets (CIFAR-10, CIFAR-100, SVHN and ImageNet and show an
improvement in accuracy on all benchmarks.

A much simpler approach is RandAugment, that for each mini-batch during train-
ing, randomly samples with equal probability 1

K
a set of transformations from a group of

K available data augmentation methods and applies them to the mini-batch [CZSL20].
It has two parameters to consider, the number of successive transformations applied on
the mini-batch N (normally one to three) and the magnitude of each augmentation dis-
tortion M (how much an image is transformed), therefore, it has a significantly reduced
search space which allows to use a simple grid search to optimize the parameters. It
matches or surpasses all previous augmentation approaches on CIFAR, SVHN and Im-
ageNet benchmarks. Similar to RandAugment, Wu et al. propose an uncertainty-based
random sampling scheme where a transformation is randomly sampled from a set of
augmentations, then applied to the data; however, instead of using all the augmented
data to train, they select among the transformed data with highest loss. Further, similar
to Adversarial AutoAugment, the aim is to select the transformations that can improve
accuracy on the end model training [WZVR20]. Their method outperforms RandAug-
ment on CIFAR-100 and achieve comparable accuracy to Adversarial AutoAugment on
all four benchmarks.

The presented works show that classification tasks can greatly benefit from combin-
ing augmentation methods in a smart way, e.g. by either learning a policy that selects
optimal transformations or optimazing the optimal transformation magnitudes. There
hasn’t been any work done on automatic data agumentation on time series data, much
less on financial data. In chapter 7 we will propose two novel automatic augmentation
policies to apply on time series data and will test RandAugment on time series data for
the first time.
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4.5 Chapter summary

In this chapter we have summarized the increasing role that machine learning is gaining
in different applications in finance (Section 4.1) and we’ve seen in the last few years an
increase in interest in leveraging the potential of neural networks in many areas. Within
price forecasting and algorithmic trading, large scale studies have shown the potential
of using neural networks, in many cases surpassing traditional machine learning mod-
els given their non-linear nature [GKX20, FK18, KDH17]. Nonetheless, there are many
challenges ahead until neural networks can be used confidently and extensively in fi-
nance. Contrary to their applications in other areas such as computer vision and natural
language processing, where neural networks tend to be deep (i.e. have several hidden
layers), in financial forecasting this is not necessarily the case, given that the majority of
financial datastes tend to be small and can be non-stationary, which may lead to over-
fitting or poor generalization. In section 4.2 we have given and introduction to neural
networks and in section 4.3 we have presented several techniques to improve model
generalization: data augmentation, transfer learning and ensemble learning. In partic-
ular, data augmentation tackles the issue from the root by increasing the dataset with
new samples that enrich information related to the class distributions. Nevertheless, the
study of data augmentation for financial time series data has been limited, therefore in
chapters 5 and 6 we present methodologies to use neural networks and regularization
methods, with a special focus on data augmentation, and combine these with trading
strategies.

Additionally, the majority of work done on machine learning in finance focuses on
classification and regression metrics to evaluate performance, with a minority of works
using profit metrics such as return and Sharpe ratio [Jia21]. This means that there is a
risk of observing a good performance on purely machine learning metrics without this
translating to an improvement in performance when evaluated on a trading strategy.
There are several reasons why this problem may arise, one is that even if the machine
learning metrics show strong performance, this might not translate into a strategy that
actually improves upon a benchmark such as the market itself. Secondly, and more
important, in a realistic setting, one has to take into account transaction costs that arise
from the active strategy, and these transaction costs might erode any gains obtain by the
machine learning algorithm. This is why, in this thesis we measure performance both in
terms of machine learning metrics as well as financial metrics obtained from building a
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strategy using the prediction from the machine learning models, and always taking into
account transaction costs.

Finally, in this chapter we presented the current state of the art on automated data
augmentation methods, all of them applied on vision datasets, this motivates the work
in Chapter 7 where we will propose an adaptive automated augmentation method ap-
plied to time series classification.



Chapter 5

Data augmentation for financial time
series

5.1 Introduction

This chapter considers the use of data augmentation methods to tackle the problem of
data sparsity and to improve training regularization when using neural networks with
financial data. It reviews and evaluates existing data augmentation methods for time
series on the problem of stock classification and provides a comprehensive analysis that
considers both standard machine learning metrics and financial metrics by building
simple, systematic portfolios for the case of no augmentation compared with a selection
of augmentation methods.

In chapter 4 we elaborated how machine learning, and in particular neural networks
are becoming increasingly more studied for financial applications [SGO20, OGS20]. This
is not only the case in finance, for example, neural networks have been increasingly used
with success for time series classification tasks in general. However, in comparison to
(annotated) image or text datasets, time series datasets tend to be small and introduce
challenges related to the non i.i.d. property of the measurements combined to form
time-series samples [FHP18] but, in the general case, increasing the amount of data can
lead to improvement of predictive performance [CQW+18].

Data augmentation techniques can be used to generate new sequences that cover
unexplored regions of input space while maintaining correct labels, thus preventing

117
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over-fitting and improving model generalization [SK19]. This has proven very effec-
tive in many areas, but it is not an established procedure for time series classifica-
tion [WSS+20] [IU20a]. Further, most methods used are just adaptations of image-based
augmentation methods that rely on simple transformations, such as scaling, rotation,
adding noise, etc. While a few data augmentation methods have been specifically de-
veloped for time series [IU20b, GMT16], their effectiveness in classification of financial
time series has not been systematically studied [BK18].

In the context of stock classification, neural networks have been shown to work well
even though stock prediction is challenging due to the high volatility and noise that
arises from external factors [FK18]. However, although neural networks have been
shown to work well for stock classification, an additional challenge is that financial
datasets tend to be small; ten years of daily stock prices would include around 2500

samples, which would be insufficient to train even a small neural network (e.g. a single-
layer LSTM network with 25 neurons has approximately 2700 parameters) [IU20b]. Fur-
thermore, Gu et al., in their extensive work of comparing machine learning algorithms
to measure assets risk premia found that more shallow networks outperform deeper
networks with more hidden layers [GKX20]. They attribute this to the relatively small
signal-to-noise ratio, and to the fact that datasets in finance are smaller.

Following the above, in this work we evaluate different data augmentation transfor-
mations proposed for time series to study if data augmentation is a way to circumvent
smaller datasets in finance and to improve performance. We use two neural network
architectures and as the usual purpose of stock classification tasks is to build portfo-
lios, we compare the results of each method and each architecture by building simple
rule-based portfolios and calculating the main financial metrics to assess portfolio per-
formance. We show that in a large stock dataset, performance of certain augmentation
methods show improvements by up to 40% in risk-adjusted excess returns with respect
to not using augmentation; further, in smaller datasets we show performance improve-
ments of between two-times and four-times depending on the neural network architec-
ture used.

The contribution of this chapter can be summarized as follows:

• We provide the first, to the best of our knowledge, thorough evaluation of popular
data augmentation methods for time series on the stock classification problem;
we perform an in-depth analysis of a number of methods on two state-of-the-art
neural network architectures using daily stock returns datasets.
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• We evaluate performance using traditional classification metrics. In addition, we
build portfolios using a simple rule-based strategy and evaluate performance based
on financial metrics.

• We find that Magnify and Time warp consistently improve both the Information
ratio and present better average rankings for accuracy.

The remainder of the chapter is organized as follows. Section 5.2 describes the aug-
mentation methods used in the study and their hyperparameters. Section 5.3 presents
different steps of the methodology used introducing the datasets, how the augmenta-
tion is implemented, the network architectures used in this study and the rules-based
portfolio proposed to evaluate performance using financial metrics. Section 5.4 presents
the analysis of the performance of augmentation methods, both single methods and
combination of methods, showing that while data augmentation is useful, not all data
augmentation approaches are equally important. Finally, Section 5.5 summarises the
chapter.

5.2 Time Series Augmentation

Most cases of time series data augmentation correspond to random transformations in
the magnitude and time domain, such as jittering (adding noise), slicing, permutation
(rearranging slices) and magnitude warping (smooth element-wise magnitude change).

In our analysis, the following methods have been used for evaluation, and examples
of these transformations are shown in Figure 5.1:

• Magnify: a variation of window slicing proposed by Le Guennec et al [GMT16]. In
window slicing, a window of 90% of the original time series is selected at random.
Instead, we randomly slice windows between 40% and 80% of the original time
series, but always from the fixed end of the time series (i.e. we slice the beginning
of the time series by a random factor). Randomly selecting the starting point of the
slicing would make sense in an anomaly detection framework, but not on a trend
prediction as is our case. We interpolate the resulting time series to the original
size in order to make it comparable to the other augmentation methods.

• Reverse: the time series is reversed; hence a time-series of the form {t1, t2, . . . , tn−1, tn}
is transformed to {tn, tn−1, . . . , t2, t1}. This method is inspired by the flipping data
augmentation process followed in computer vision.
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Figure 5.1: Examples of time-series data augmentation methods on a sine wave. The
blue line corresponds to the original time-series and the dotted orange lines correspond
to the generated time-series patterns.
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• Jittering: Gaussian noise with a mean µ = 0 and standard deviation σ = 0.01 is
added to the time series [UPP+17].

• Pool: Reduces the temporal resolution without changing the length of the time
series by averaging a pooling window. We use a window of size 3. This method is
inspired by the resizing data augmentation process followed in computer vision.

• Quantise: the time series is quantised to a level set n, therefore the difference
between the maximum and minimum values of the time series is divided into
levels, and the values in the time series are rounded to the nearest level [TSD00].
We used n = 25.

• Convolve: the time series is convolved with a kernel window. The size of the
kernel is 7 and the type of window is Hann.

• Time Warping: the time intervals between samples are distorted based on a ran-
dom smooth warping curve by cubic spline with four knots at random magnitudes
[UPP+17].

• Sub-optimal warped time series generator (SPAWNER): SPAWNER [KKO19] cre-
ates a time series by averaging two random sub-optimally aligned patterns that
belong to the same class. Following Iwana et al. [IU20b], noise is added to the
average with σ = 0.5 in order to avoid cases where there is little change.

For the Pool, Quantise, Convolve and Time warping methods we used the code from
Arundo [Aru20]1.

5.3 Methodology

5.3.1 Datasets

Full S&P500 dataset

The data used in this study consists of the daily returns of all constituent stocks of the
S&P500 index, from 1990 to 2018. It comprises 7000 trading days, and approximately
500 stocks per day. We use the data pre-processing scheme from Krauss et al. [KDH17],

1https://arundo-tsaug.readthedocs-hosted.com/en/stable/
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Stock s1
Date

Figure 5.2: Construction of input sequences, segmented in 240 time steps, with a moving
window of one day.

where the data is divided into splits of 1000 days, with a sliding window of 250 days.
Each split overlaps with the previous one by 750 points, and a model is trained in each
one, resulting in 25 splits in total. Inside each of the 25 splits, the data is segmented into
sequences consisting on 240 time steps {R̃s

t−239, . . . , R̃
s
t} for each stock s, with a sliding

window of one day, as shown in Figure 5.2. The first 750 days make up the training set,
with the test set consisting of the last 250 days. The training set has approximately 255K
samples ((750-240)*500) and the test set has approximately 125K samples.

The data is standardised by subtracting the mean of the training set (µtrain) and di-
viding by the standard deviation (σtrain), i.e., R̃s

t =
Rs

t−µtrain
σtrain

, withRs
t the return of stock s

at time t. We define the problem as a binary classification task, where the target variable
Y s
t+1 for stock s and date t can take to values, 1 if the returns are above the daily median

(trend up) and 0 if returns are below the daily median. This leads to a balanced dataset.

50 stocks dataset

In order to have a smaller dataset, we use the same pre-processing scheme but only for
the largest 50 stocks on the S&P500 measured by market capitalization, on each data
split. This leads to 25500 samples for training and 12500 for testing.

5.3.2 Augmentation

The training data (750 days) is divided into training and validation with a proportion
of 80/20. Before splitting the data, all samples are shuffled in order to make sure that
all stocks and time steps are randomly assigned to train or validation. Each train set is
augmented with 1X the original size.
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LSTM

LSTM

LSTM

n=25

0.655 0.143 1.476 0.622 -0.024
1 2 3 239 240

Figure 5.3: LSTM network used for trend classification of S&P500 stocks consists of 1
LSTM layer of 25 neurons fully connected to a 2-neuron output.

5.3.3 Network architectures and training

We used two neural network architectures proposed in previous financial studies, to
optimize the cross entropy loss.

LSTM

Following Krauss et al. [KDH17], we train a single layer LSTM network with 25 neurons,
and a fully connected two-neuron output. We use a learning rate of 0.001, batch size 128

and early stopping with patience 10 with RMSProp as optimizer.

Temporal Logistic Neural Bag-of-Features (TLo-NBoF)

We adapt the network architecture proposed by Passalis et al. [PTK+20] to forecast limit
order book data. The original network was used on data samples of 15 time steps and
144 features so we adapt it for our univariate data of 240 time steps. It comprises an
1D-convolution (25 filters, kernel size 81), a TLo-NBoF layer (NK = 12, NT = 3), a fully-
connected layer (50 neurons) and a fully-connected output layer of 2 neurons. The initial
learning rate is set to 0.0005, the learning rate is decreased on plateau of the validation
loss, batch size is 256 and the optimizer is Adam.

5.3.4 Rule-based portfolio strategy and evaluation

In order to evaluate if data augmentation provides an improvement in asset allocation,
we propose a simple trading strategy, following the conclusions of Krauss et al [KDH17].



CHAPTER 5. DATA AUGMENTATION FOR FINANCIAL TIME SERIES 124

Table 5.1: Performance of the k = 10 long-short portfolios after transaction costs for the
LSTM model and large dataset.

Ann ret Ann vol IR D. Risk IDR Acc F1

None 34.64 28.43 1.22 18.78 1.84 51.0± 1.0 48.5± 2.1
Convolve 32.60 25.99 1.25 17.49 1.86 51.1± 0.9 49.2± 2.0

Jitter 34.35 25.3 1.36 16.69 2.06 51.0± 1.0 50.0± 1.0
Magnify 46.56 29.41 1.58 19.56 2.38 51.2± 0.9 48.8± 2.7

Pool 36.18 26.16 1.38 17.15 2.11 51.1± 0.9 49.4± 2.2
Quantize 29.42 25.48 1.15 16.62 1.77 51.0± 1.0 48.8± 2.1

Reverse 33.03 26.34 1.25 16.9 1.95 51.0± 1.0 47.3± 4.1
Time warp 47.01 29.26 1.61 19.17 2.45 51.2± 0.9 49.8± 1.6

Spawner 38.08 27.85 1.37 18.05 2.11 51.1± 1.0 49.1± 2.2
Mag-Jit 30.03 27.59 1.09 18.62 1.61 51.1± 1.0 49.4± 2.0

Mag-TW 44.03 27.41 1.61 17.66 2.49 51.1± 1.0 49.6± 1.4
TW-Pool 44.98 26.21 1.72 16.82 2.67 51.1± 0.9 49.3± 2.0
TW-Jitter 22.47 25.94 0.87 17.71 1.27 51.1± 1.0 49.3± 1.8

The trading rule on the full S&P500 dataset is as follows: stocks in both classes are
ranked daily by their predicted probability of belonging to that class, we then take the
top 10 and bottom 10 stocks and build a long-short portfolio by equally weighting the
stocks. Portfolios are analysed after transaction costs of 5 bps per trade.

On the 50-stocks dataset, building a long-short portfolio would not be profitable
as it consists of the 50 largest US market cap stocks. So we only build a portfolio by
going long on the top 10 stocks [BGH+15]. In order to compare our methods with the
performance of their stocks universe, we build a benchmark that consists of all 50 stocks
weighted by their market cap. All portfolios are built including transaction costs.

We evaluate portfolio performance by calculating the Information ratio (IR), the ra-
tio between excess return (portfolio returns minus benchmark returns) and tracking
error (standard deviation of excess returns) [Bac12]. We also calculate the downside
information ratio, the ratio between excess return and the downside risk (variability
of underperformance below the benchmark), that differentiates harmful volatility from
total overall volatility.
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5.4 Results

Table 5.1 presents the results obtained for each individual augmentation method and
the combination of the most successful methods for the large S&P500 dataset trained on
the LSTM network. As the portfolios are long-short, they are market-neutral (therefore,
the performance of the portfolio is independent of the performance of the market and
no benchmark has to be subtracted). We can see that Magnify and Time warp show
strong performance in IR and DIR. We perform significance tests by applying paired
t-tests on the portfolio returns. This is shown in table 5.2 and we can see that Magnify
and Time warp show a significant difference with respect to using no augmentation.
Additionally, table 5.3 shows the paired t-test on each individual data split.

To compare the multiple augmentations methods over all data splits, we follow the
procedure in [Dem06] and perform the Friedman test to reject the null hypothesis that
all augmentation methods are equivalent, evaluating the accuracy and F1-score. For the
post-hoc test, we follow the recommendations in [BCM16] and perform a pairwise sta-
tistical comparison, using the Wilcoxon signed-rank test with Holm’s correction. Figure
5.4 shows the critical difference diagram [IFFW+19a], where the thick line shows the
methods that are not significantly different.

Finally, to analyse the portfolios we evaluate the exposure of the different portfolios
to common sources of systematic risk. We use the Fama-French 5-factor model and
show the results in table 5.4. We observe that all models exhibit a low coefficient of
determination of less than 1% so only a fraction of daily returns can be explained by
those sources of systematic risk.

Tables 5.5 and 5.6 present the results obtained for each individual augmentation
method and the combination of the most successful individual methods for the small
50 stock dataset using the LSTM and the TLo-NBoF networks. For comparison, we also
show the results without augmentation. We also show classification metrics (accuracy
and F1) over the 25 data splits expressed by the mean and standard deviation. In both
models, the classification accuracy improvement is very small with respect to no aug-
mentation, and for F1 as well. However, we see that both the IR and DIR improve using
several augmentation methods. Magnify and time warp methods are consistently good
performers, as well as spawner. For the TLo-NBoF, IR increases four times with respect
of no method, and time warp on the LSTM model doubles the IR. We anticipated that
the Reverse method would not be effective - and in both cases it decreases overall per-
formance. Further, we note that he combination of two augmentation methods does not
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Table 5.2: Comparison of average portfolio returns with different augmentation meth-
ods and paired t-tests between each augmentation and the baseline (no augmentation)
for the LSTM model and large dataset. Methods are colored if p-values are significant
(< 0.1).

Avg ret tstat pval

baseline 0.134 nan nan
Convolve 0.125 0.370 0.644
Jitter 0.130 0.177 0.570
Magnify 0.169 -1.391 0.082
Pool 0.136 -0.083 0.467
Quantize 0.115 0.800 0.788
Reverse 0.127 0.279 0.610
Time-warp 0.170 -1.478 0.070
Spawner 0.143 -0.395 0.346

Figure 5.4: Critical difference diagram showing the pairwise statistical comparison of
different augmentation methods for the LSTM model and large dataset.
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Table 5.3: P-values corresponding to the paired t-tests between each augmentation
method and the baseline (no augmentation) for the returns of each data split for the
LSTM model and large dataset case.

Convolve Jitter Magnify Pool Quantize Reverse Time-warp Spawner

0 0.797 0.975 0.863 0.965 0.973 0.986 0.921 0.621
1 0.618 0.867 0.149 0.579 0.582 1.000 0.768 0.172
2 0.060 0.130 0.547 0.076 0.687 0.779 0.628 0.358
3 0.730 0.230 0.009 0.401 0.105 0.184 0.196 0.262
4 0.147 0.673 0.410 0.864 0.646 0.333 0.085 0.114
5 0.983 0.999 0.525 0.841 0.998 0.856 0.807 0.534
6 0.128 0.025 0.007 0.000 0.242 0.026 0.002 0.007
7 0.953 0.612 0.849 0.914 0.980 0.923 0.987 1.000
8 0.958 0.918 0.910 0.926 0.998 0.368 0.666 0.797
9 0.839 0.472 0.411 0.524 0.693 0.775 0.685 0.762
10 0.303 0.496 0.218 0.702 0.609 0.901 0.328 0.178
11 0.417 0.404 0.583 0.189 0.222 0.656 0.107 0.536
12 0.018 0.017 0.054 0.121 0.007 0.211 0.120 0.035
13 0.344 0.630 0.829 0.843 0.197 0.336 0.548 0.285
14 0.987 0.929 0.793 0.851 0.698 0.241 0.336 0.877
15 0.488 0.346 0.595 0.383 0.284 0.473 0.074 0.091
16 0.304 0.386 0.236 0.219 0.316 0.067 0.634 0.516
17 0.829 0.565 0.071 0.833 0.042 0.790 0.562 0.471
18 0.029 0.014 0.062 0.186 0.193 0.195 0.070 0.037
19 0.207 0.810 0.074 0.405 0.495 0.812 0.088 0.483
20 0.689 0.711 0.569 0.626 0.409 0.729 0.388 0.574
21 0.026 0.720 0.387 0.393 0.525 0.259 0.100 0.898
22 0.777 0.708 0.636 0.515 0.923 0.684 0.917 0.564
23 0.424 0.310 0.350 0.309 0.048 0.293 0.041 0.857
24 0.607 0.183 0.024 0.119 0.463 0.371 0.010 0.071
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Figure 5.5: Critical difference diagram showing the pairwise statistical comparison of
different augmentation methods for the TLo-NBoF model and small dataset.

always improve performance. From a Friedman test we see that we cannot reject the
null hypothesis when evaluating the accuracy, and it can only be rejected when evalu-
ating F1 at a 1% significance level in the case of the LSTM and at a 10% in the case of
the TLo-NBoF model. In both cases, Reverse has the highest average ranking and for
the LSTM network shows a significant difference with respect to other augmentation
methods. Figures 5.5 and 5.6 show the critical different diagrams for both cases.

We perform significance tests by applying paired t-tests on the portfolio returns. This
is shown in table 5.7 and 5.8 for the TLo-NBoF and LSTM architecture, respectively, and
we can see that Time warp shows a significant difference with respect to using no aug-
mentation in the LSTM architecture, while no method presents a significant difference
in the TLo-NBoF network. Additionally, table 5.9 and 5.10 shows the paired t-test on
each individual data split for the two cases.

Finally, we run a time series regression to explain the portfolios using the Fama-
French 5 factors and show the results in tables 5.11 and 5.12. In the LSTM network we
see that Magnify, Time warp and Spawner, the best performing augmentations show
greater exposure to value factor than the portfolio built without augmentation and in
all cases, exposure to size factor is significant and negative, which is expected because
the underlying assets are the 50 largest stocks by market cap from the S&P500 index. In
the case of the TLo-NBoF network, time warp and magnify show significant negative
exposure to value factor while the baseline shows positive exposure and in the case of
Magnify, it also shows significant exposure to profitability. Same as before, all portfolios
show a significant negative exposure to size factor.

Figures 5.7 and 5.8 show the cumulative profit over time (out of sample) of the mod-
els trained with different augmentation methods and the baseline (no augmentation).
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Table 5.5: Performance of the k = 10 long-only portfolios after transaction costs for the
TLo-NBoF model and small dataset.

Ann ret Ann vol IR D. Risk DIR Acc F1

None 10.28 22.62 0.07 15.53 0.10 50.49±0.46 40.06±6.44
Convolve 12.29 22.35 0.24 15.04 0.35 50.62±0.6 42.98±6.50

Jitter 9.2 22.32 -0.02 15.32 -0.02 50.43±0.59 42.5±6.71
Magnify 13.33 21.98 0.31 14.71 0.47 50.55±0.50 40.35±6.35

Pool 12.76 21.9 0.28 14.8 0.41 50.51±0.6 41.33±6.52
Quantize 12.69 20.23 0.27 13.83 0.38 50.45±0.63 40.67±6.51

Reverse 7.28 22.08 -0.18 15.03 -0.27 50.52±0.59 40.28±6.17
Time warp 12.81 22.41 0.27 14.89 0.42 50.44±0.61 41.64±5.64

Spawner 11.93 21.99 0.20 14.89 0.29 50.46± 0.53 41.63± 6.94
Mag-Pool 9.24 22.58 -0.01 15.18 -0.02 50.52±0.44 40.2±6.68

Mag-Quant 11.52 21.43 0.16 14.48 0.24 50.43±0.55 39.63±6.13
Mag-TW 10.4 21.5 0.08 14.75 0.11 50.46±0.56 40.15±6.41

Quant-Pool 11.52 20.15 0.15 13.69 0.21 50.54±0.53 41.51±6.62
Quant-TW 12.06 20.7 0.20 14.09 0.29 50.54±0.46 41.09±6.7

Table 5.6: Performance of the k = 10 long-only portfolios after transaction costs for the
LSTM model and small dataset.

Ann ret Ann vol IR D. Risk DIR Acc F1

None 12.24 24.05 0.22 15.89 0.33 50.80±0.75 47.69±4.81
Convolve 12.33 25.91 0.21 16.95 0.33 50.74±0.81 48.43±3.39

Jitter 11.75 24.35 0.18 16.49 0.27 50.89±0.73 48.86±2.87
Magnify 14.16 25.44 0.32 16.58 0.51 50.94±0.68 48.57±3.2

Pool 11.81 26.15 0.18 17.15 0.27 50.86±0.77 48.5±3.49
Quantize 12.80 24.41 0.26 16.46 0.38 50.93±0.79 48.6±2.82

Reverse 6.12 24.12 -0.22 16.27 -0.33 50.76±0.78 45.96±4.74
Time Warp 15.60 24.38 0.43 16.12 0.67 50.85±0.74 48.24±3.48

Spawner 14.58 24.49 0.38 16.02 0.60 50.95± 0.74 48.36± 3.66
Mag-Quant 13.70 25.82 0.29 16.74 0.47 50.92±0.67 48.43±3.29

Mag-TW 14.00 25.66 0.31 16.63 0.49 50.88±0.67 48.45±3.06



CHAPTER 5. DATA AUGMENTATION FOR FINANCIAL TIME SERIES 131

Table 5.7: Comparison of average portfolio returns with different augmentation meth-
ods and paired t-tests between each augmentation and the baseline (no augmentation)
for the TLo-NBoF model. Methods are colored if p-values are significant (< 0.1).

Avg ret tstat pval

baseline 0.049
Convolve 0.056 -0.635 0.263
Jitter 0.045 0.407 0.658
Magnify 0.059 -0.888 0.187
Pool 0.057 -0.806 0.210
Quantize 0.056 -0.632 0.264
Reverse 0.038 1.091 0.862
Time-warp 0.058 -0.840 0.200
Spawner 0.054 -0.517 0.303

Table 5.8: Comparison of average portfolio returns with different augmentation meth-
ods and paired t-tests between each augmentation and the baseline (no augmentation)
for the LSTM model and small dataset. Methods are colored if p-values are significant
(< 0.1).

Avg ret tstat pval

baseline 0.057
Convolve 0.059 -0.232 0.408
Jitter 0.056 0.153 0.561
Magnify 0.065 -0.885 0.188
Pool 0.058 -0.058 0.477
Quantize 0.060 -0.270 0.394
Reverse 0.035 2.398 0.992
Time-warp 0.069 -1.372 0.085
Spawner 0.066 -1.090 0.138

Figure 5.6: Critical difference diagram showing the pairwise statistical comparison of
different augmentation methods for the LSTM model and small dataset.
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Table 5.9: P-values corresponding to the paired t-tests between each augmentation
method and the baseline (no augmentation) for the returns of each data split for the
TLo-NBoF model.

Convolve Jitter Magnify Pool Quantize Reverse Time-warp Spawner

0 0.411 0.636 0.704 0.410 0.499 0.792 0.545 0.275
1 0.212 0.212 0.113 0.304 0.250 0.245 0.820 0.946
2 0.626 0.870 0.777 0.379 0.952 0.901 0.647 0.894
3 0.226 0.893 0.178 0.786 0.044 0.934 0.386 0.331
4 0.146 0.216 0.177 0.402 0.090 0.715 0.662 0.610
5 0.339 0.923 0.255 0.140 0.384 0.289 0.119 0.352
6 0.323 0.558 0.959 0.612 0.764 0.955 0.618 0.878
7 0.678 0.409 0.263 0.583 0.254 0.378 0.344 0.310
8 0.262 0.227 0.068 0.006 0.033 0.036 0.004 0.185
9 0.828 0.712 0.249 0.158 0.718 0.960 0.617 0.190
10 0.695 0.528 0.345 0.375 0.322 0.855 0.581 0.121
11 0.314 0.250 0.176 0.579 0.401 0.470 0.317 0.261
12 0.605 0.923 0.623 0.990 0.972 0.976 0.760 0.851
13 0.706 0.964 0.639 0.750 0.877 0.490 0.985 0.833
14 0.263 0.563 0.942 0.931 0.551 0.951 0.966 0.522
15 0.585 0.642 0.741 0.728 0.684 0.708 0.351 0.635
16 0.150 0.313 0.350 0.274 0.116 0.220 0.323 0.535
17 0.181 0.658 0.524 0.285 0.660 0.459 0.433 0.538
18 0.195 0.016 0.034 0.023 0.132 0.101 0.214 0.014
19 0.469 0.432 0.497 0.777 0.647 0.550 0.405 0.262
20 0.876 0.670 0.527 0.833 0.540 0.950 0.383 0.763
21 0.699 0.912 0.820 0.735 0.437 0.660 0.892 0.501
22 0.612 0.254 0.576 0.225 0.548 0.485 0.401 0.349
23 0.265 0.671 0.248 0.170 0.097 0.187 0.245 0.271
24 0.415 0.430 0.252 0.076 0.214 0.342 0.491 0.094
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Table 5.10: P-values corresponding to the paired t-tests between each augmentation
method and the baseline (no augmentation) for the returns of each data split for the
LSTM model and small dataset.

Convolve Jitter Magnify Pool Quantize Reverse Time-warp Spawner

0 0.299 0.066 0.700 0.271 0.152 0.592 0.168 0.384
1 0.679 0.984 0.809 0.955 0.820 1.000 0.854 0.995
2 0.487 0.243 0.720 0.100 0.590 0.954 0.329 0.098
3 0.782 0.462 0.747 0.534 0.850 0.990 0.495 0.883
4 0.695 0.747 0.616 0.348 0.817 0.905 0.346 0.856
5 0.165 0.141 0.527 0.310 0.025 0.675 0.280 0.414
6 0.016 0.021 0.002 0.030 0.010 0.054 0.020 0.003
7 0.642 0.383 0.765 0.558 0.387 0.636 0.120 0.362
8 0.304 0.873 0.017 0.518 0.894 0.483 0.387 0.333
9 0.896 0.952 0.751 0.900 0.914 0.967 0.861 0.844
10 0.517 0.750 0.497 0.750 0.736 0.980 0.710 0.567
11 0.443 0.251 0.151 0.534 0.072 0.279 0.139 0.195
12 0.307 0.725 0.111 0.244 0.422 0.608 0.606 0.636
13 0.816 0.678 0.791 0.117 0.678 0.361 0.276 0.166
14 0.001 0.000 0.000 0.001 0.000 0.002 0.000 0.004
15 0.557 0.818 0.709 0.731 0.808 0.914 0.828 0.843
16 0.849 0.743 0.722 0.829 0.647 0.766 0.469 0.089
17 0.428 0.512 0.755 0.334 0.720 0.360 0.841 0.966
18 0.890 0.398 0.847 0.514 0.428 0.520 0.581 0.114
19 0.762 0.716 0.511 0.696 0.372 0.266 0.641 0.408
20 0.004 0.022 0.006 0.006 0.001 0.258 0.102 0.008
21 0.748 0.682 0.590 0.677 0.707 0.979 0.023 0.781
22 0.193 0.204 0.145 0.293 0.504 0.701 0.123 0.074
23 0.862 0.724 0.589 0.806 0.772 0.698 0.843 0.646
24 0.477 0.102 0.133 0.788 0.280 0.043 0.008 0.004
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Figure 5.7: Performance of the TLo-NBoF models trained with and without augmen-
tation and the benchmark (in black) measured as cumulative profits on 1USD average
investment per day. Top corresponds to full testing history and bottom corresponds to
the last 10 years.

We focus on the most competitive techniques and for comparison, we add the bench-
mark calculated by the market weighted returns of the 50 constituent stocks. The top
plots show the full history while the bottom plots show the last 10 years. Both models
perform well over time, and cumulative profits of the models trained with augmenta-
tion are higher when compared to not using augmentation; however, only TLo-NBoF
is competitive on the most recent testing period (2007-2017), along with several of the
augmentation methods. The LSTM model fluctuates around zero and does not improve
with regards to the benchmark. Krauss et al. [KDH17] observes that the edge of the
LSTM method seems to have been arbitraged away in the latter years.
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Figure 5.8: Performance of the LSTM models trained with and without augmentation
and the benchmark (in black) measured as cumulative profits on 1USD average invest-
ment per day. Top corresponds to full testing history and bottom corresponds to the last
10 years.
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5.5 Chapter summary

Data augmentation is a ubiquitous technique to improve generalization in supervised
learning. In this work, we have studied the impact of various data augmentation meth-
ods for time series on the stock classification problem. We have shown that even with
very noisy datasets such as stocks returns, it is beneficial to use data augmentation to
improve generalization. Magnify, Time warp and Spawner consistently improve both
the Information ratio and downside information ratio on all models and datasets. On
the small datasets, augmentation achieves up to four-times (TLo-NBoF) and two-times
(LSTM) performance improvement on IR compared to no augmentation. On a larger
dataset, as expected, improvement is not that sharp, but still it achieves an increment in
IR of up to 40%.

We tested the TLo-NBoF network that has not previously been used on low-freq
stock data, and this network shows consistent positive returns over the last ten years of
data, therefore, unlike the LSTM architecture, the profit has not been leveraged away.



Chapter 6

Systematic strategies using neural
networks

6.1 Introduction

Stock market prediction is a challenging task primarily driven by a high degree of noise
and volatility influenced by external factors such as extreme macroeconomic conditions,
heightened correlations across multiple markets, and investor’s behaviour. As we dis-
cussed in chapter 4, much work has been done on stock movement prediction using
machine learning [ZZR19, TIKG19, PTK+18], however, it still remains an open research
challenge. In this chapter we show that using transfer learning can help with this task,
by pre-training a model to extract universal features on the full universe of stocks of the
S&P500 index and then transferring it to another model to directly learn a trading rule.

In general, previous work has focused on predicting either movement of an index
or of a small number of stocks [FK18]; however, performance will greatly depend on
the dataset and the required task. In order to study how to improve generalization of
a neural network beyond a simple binary classification task, we study the use of differ-
ent regularization strategies such as transfer learning, data augmentation and ensemble
learning.

Transfer learning is widely used in computer vision when the target dataset contains
insufficient labeled data [SP18, YCBL14] but it has been rarely used in neural networks
for time series data [IFW+18]. Furthermore, motivated by the success of data augmen-
tation for stock prediction from chapter 5 we propose using data augmentation to im-
prove regularization during training. Given that we are using transfer learning, we

139
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propose transforming the vector representation of data within the learned feature space
(i.e. augmenting the aggregated time series representation obtained from the output of
the pre-trained model, following DeVries et al. [DT17]) and compare this with standard
input space augmentation, done by applying transformations such as time warp, jitter-
ing, etc. [IU20b, UPP+17]. Furthermore, we saw in section 4.3.3 that most of the current
state-of-the-art models for time series prediction use some form of ensemble learning,
hence we study the use of ensemble learning in combination with transfer learning and
data augmentation.

The contributions of this chapter are as follows:

• We pre-train a model using all the constituents of the S&P500 index to extract
universal features and then we transfer this model to another to learn a trading
rule.

• We propose the use of data augmentation on the feature space defined as the out-
put of the pre-trained model and we compare this approach with the standard
augmentation in the input space.

• We test our model by building the learned trading rule and calculate profitability
taking into account transaction fees.

The rest of the chapter is organized as follows; in Section 6.2 we explain the method-
ology used, describing the dataset, the trading rule used to train and evaluate the mod-
els; we explain the architecture and training details for transfer learning as well as the
augmentation methods used both on the input space and in feature space. In Section 6.3
we discuss the results obtained for learning the trading rule with and without transfer
learning, as well as the improvement achieved by including data augmentation on the
transferred model. Finally, in Section 6.4 we present the chapter summary.

6.2 Methodology

6.2.1 Datasets

As with the previous chapter, the data used in this chapter consists of the daily returns
of all constituent stocks of the S&P500 index, from 1990 to 2018, comprising 7000 trading
days, and approximately 500 stocks per day. We use the data pre-processing scheme as
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befpre, proposed by Krauss et al. [KDH17], where the data is divided into splits of 1000

days, with a sliding window of 250 days.
Each split overlaps with the previous one by 750 points, resulting in 25 splits in total,

with a model trained on each split. Inside each of the 25 splits, the data is segmented
into sequences consisting on 240 time steps {R̃s

t−239, . . . , R̃
s
t} for each stock s, with a

sliding window of one day, as shown in Figure 5.2. The first 750 days consist of the
training set, and the test set is formed by the last 250 days. This leads to a training with
approximately 255K samples ((750-240)*500) and the test set with approximately 125K
samples. The data is standardised by subtracting the mean of the training set (µtrain)
and dividing by the standard deviation (σtrain): R̃s

t =
Rs

t−µtrain
σtrain

, with Rs
t being the return

of stock s at time t.

6.2.2 Trading rule and training targets

A goal of this work is to evaluate whether training a neural network by directly passing
the trading rule as the classification target is better than training a binary classifier and
then applying a trading rule. Therefore, to construct the target, taking the ≈ 500 daily
stocks, we ranked them by their returns and the top K are labeled as buy, the bottom
K are labeled as sell, and the rest as do nothing. Following the recommendation from
Krauss et al. [KDH17], we use K = 10. This leads to a highly imbalanced dataset, with
a label proportion of 10 : 10 : 480.

The source network is trained as a binary classification task, where the target vari-
able Y s

t+1 for stock s and date t can take to values, 1 if the returns are above the daily
median (trend up) and 0 if returns are below the daily median (trend down).

6.2.3 Architecture and training

The network architecture selected for transfer learning (source network) is a one layer
LSTM proposed by Krauss et al. [KDH17] and used in Section 5.3. We chose this ar-
chitecture because it achieved good performance on a large, liquid dataset as shown in
the previous chapter when using the full S&P500 dataset. The network is a single layer
LSTM with 25 neurons, and a fully connected two-neuron output. We use a learning
rate of 0.001, batch size 128 and early stopping with patience 10 with RMSProp as op-
timizer. We implemented the neural network architectures using pytorch [PGM+19] in
Python.
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LSTM

LSTM

LSTM

n=25

LSTM

LSTM

LSTM

n=25 n={25,100}

Figure 6.1: Diagram of source network (left) and target network (right).

After training the source network on the 25 splits of data, we have 25 neural net-
works. We then remove the output layer and replace it with a fully connected layer of
n neurons and an output layer of 3 neurons. The weights of the LSTM layer are fixed
(there is no retraining), and the fully connected layer and output are trained with the
new target data that incorporates the trading rule. Figure 6.1 shows a diagram of both
the source network and the target network. Fawaz et al. [IFW+18] proposes fine-tuning
the transferred model parameters on the new dataset, but this leads to poor perfor-
mance in our case, so the weights on the LSTM are left fixed, and just the new added
layers are trained.

The loss used for training in all cases is the cross-entropy loss. An alternative ap-
proach is to incorporate a loss term that takes into account the direct information on the
positions from the network, and optimizes the average return, as follows:

LR+CE(Θ) = LCE + αLreturns = LCE +−α 1

B

∑
R(i, t) (6.1)

where B is the size of the batch, R(i, t) is the return captured by the network prediction
for asset i at time t and α is a scaling factor so both terms are equally represented.

As the dataset is highly imbalanced, we sample the training data with higher proba-
bility in the minority classes, obtaining a balanced representation of the classes in each
batch.
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a)

b)

Figure 6.3: a) Examples of feature space augmentation methods on a sine wave. Ran-
dom noise added with γ = 0.3, interpolation and extrapolation between two sinusoids
for values of λ between 0 and 1. b) Examples of input augmentation methods on a sine
wave. Blue line corresponds to the original series and the dotted orange lines corre-
spond to the augmented pattern.

6.2.4 Augmentation

The approximately 255K samples of the training set are divided into training and vali-
dation with a proportion of 80/20. The validation set is used for early stopping of the
training. Each train set is augmented one time, i.e. we apply an augmentation method to
the training data and the final set corresponds to the original data plus the augmented
one, doubling the amount of samples.

We study two forms of data augmentation: applying random transformations on the
input data and doing data augmentation on the feature vector obtained by evaluating
the input on the fixed LSTM layer.

Figure 6.2 shows the training process with transfer learning and both forms of data
augmentation.

Data augmentation in feature space

Data augmentation in the feature space, as proposed by DeVries et al. [DT17] allows
new samples to be generated in a domain-agnostic approach. It is an intuitive and
direct approach where each sample is projected into feature space by feeding it through
the fixed LSTM layer and then applying a transformation to the transformed vector
(sometimes called context vector).
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The methods used to augment data in the feature space are described as follows and
an example is shown in Figure 6.3a:

• Interpolation: for each sample in the dataset, we find its K intra-class nearest
neighbours in feature space. For each pair of neighbouring vectors, a new vector
is generated using interpolation:

c′j = (ck − cj)λ+ cj

where c′j is the new vector, ck and cj are neighboring vectors and λ is a variable in
the range {0, 1}. We used λ = 0.2.

• Extrapolation: similarly, we apply extrapolation to the feature space vectors in the
following way:

c′j = (cj − ck)λ+ cj

In this case, λ is in the range {0,∞}. We used λ = 0.2.

• Random noise (noise): Gaussian noise is generated with zero mean and per-
element standard deviation calculated across all transformed vectors in the dataset;
the noise is scaled by a global parameter γ:

c′i = ci + γX,X ∼ N{0, σ2
i }

• Jittering (Jit-feat): Random noise with mean µ = 0 and standard deviation σ =

0.05 is added to the context vector.

Data augmentation in input space

Following the results from chapter 5 we select four augmentation methods on the input
space that showed a strong performance across most experiments, namely magnify, jit-
ter, time warp and pool. Below is a short description of each method and the parameters
used and they are shown in Figure 6.3b

• Magnify: a variation of window slicing proposed by Le Guennec et al [GMT16]. In
window slicing, a window of 90% of the original time series is selected at random.
Instead, here we randomly slice windows between 40% and 80% of the original
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time series, but always from the fixed end of the time series (i.e. we slice the begin-
ning of the time series by a random factor). Randomly selecting the starting point
of the slicing would make sense in an anomaly detection framework, but not on a
trend prediction problem as is our case. The resulting time series is interpolated
to the original size.

• Jittering (Jit-inp): Gaussian noise with a mean µ = 0 and standard deviation
σ = 0.05 is added to the time series [UPP+17]. This is analogous to the random
noise method applied to the context vectors.

• Time Warp: the time intervals between samples are distorted based on a random
smooth warping curve by cubic spline with four knots at random magnitudes
[UPP+17].

• Pool: Reduces the temporal resolution without changing the length of the time
series by averaging a pooling window. We use a window of size 3. This method is
inspired by the resizing data augmentation process followed in computer vision.

6.2.5 Ensemble learning

We use ensemble learning, in addition to transfer learning and data augmentation, in
order to study if it can further improve regularization on our task of learning a trading
rule. To build the ensemble, we train 5 models with different seeds, leading to dif-
ferent weight initializations in each network. Given that we are using resampling to
tackle data imbalancing problems, we use bagging, training each model separately in
a different dataset sampled with bootstrapping from the original dataset as explained
in subsection 4.3.3, but maintaining that we over-sample the minority class and under-
sample the majority class so the classes are balanced during training. The predictions of
the five models is then averaged to obtained the final label.

6.3 Results

6.3.1 Transfer learning

We test transfer learning on two networks, one with a fully connected layer of 25 neu-
rons and one with 100 neurons, and compare the proposed networks trained using
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Table 6.1: Naming convention of experiments using the fully connected layer of 25
neurons. First column (Name) indicates the abbreviated name, the column Network
corresponds to the used architecture. The third column (Loss) corresponds to the loss
used for training, either only cross-entropy or the combined loss. The final column
(Method) corresponds to the regularization method used. TL means transfer learning,
so the weights of the LSTM layer are fixed; DA means data augmentation, which can
either be on the input space or the feature space.

Name Network Loss Method

Baseline[KDH17] LSTM(25)+FC(2) Cross-entropy
NoTL(25)-CE LSTM(25)+FC(25)+FC(3) Cross-entropy No transfer learning
NoTL(25)-R+CE LSTM(25)+FC(25)+FC(3) Avg return + Cross-entropy No transfer learning
TL(25)-CE LSTM(25)+FC(25)+FC(3) Cross-entropy Transfer learning
TL(25)-R+CE LSTM(25)+FC(25)+FC(3) Avg return + Cross-entropy Transfer learning
TL(25)Ext LSTM(25)+FC(25)+FC(3) Avg return + Cross-entropy Transfer learning + DA feature space
TL(25)Int LSTM(25)+FC(25)+FC(3) Avg return + Cross-entropy Transfer learning + DA feature space
TL(25)Noise LSTM(25)+FC(25)+FC(3) Avg return + Cross-entropy Transfer learning + DA feature space
TL(25)Jit-feat LSTM(25)+FC(25)+FC(3) Avg return + Cross-entropy Transfer learning + DA feature space
TL(25)Jit-inp LSTM(25)+FC(25)+FC(3) Avg return + Cross-entropy Transfer learning + DA input space
TL(25)Mag LSTM(25)+FC(25)+FC(3) Avg return + Cross-entropy Transfer learning + DA input space
TL(25)Pool LSTM(25)+FC(25)+FC(3) Avg return + Cross-entropy Transfer learning + DA input space
TL(25)TW LSTM(25)+FC(25)+FC(3) Avg return + Cross-entropy Transfer learning + DA input space
TL(25)Ext-Ens LSTM(25)+FC(25)+FC(3) Avg return + Cross-entropy Transfer learning + DA feature space + Ensemble learning
TL(25)Int-Ens LSTM(25)+FC(25)+FC(3) Avg return + Cross-entropy Transfer learning + DA feature space + Ensemble learning
TL(25)Jit-Ens LSTM(25)+FC(25)+FC(3) Avg return + Cross-entropy Transfer learning + DA feature space + Ensemble learning

transfer learning with the same topology trained from scratch. For clarity, tables 6.1
and 6.2 show the naming convention for the experiments in this chapter for the archi-
tecture of 25 neurons and 100 neurons, respectively.

The initialisation of machine learning methods, and in particular of neural networks
can be critical in the resulting model performance. For example, in a very simple two
neuron network if all the weights are initialised as a constant number, the hidden units
will have identical influence on the cost function, leading to identical gradients. There-
fore, in order to break this symmetry we initialised the weights randomly. Nevertheless,
one has to be careful as a too-large initialisation can lead to exploding gradients and a
too small initialisation can lead to vanishing gradients. There’s been several studies
on appropriate ways of weight initialisation [GB10, ZDM19] and mainstream libraries
have the options incorporated. In this work, we follow the suggested default initialisa-
tion of PyTorch [PGM+19]. Nevertheless, given the randomness of the weight initiali-
sation, this means that two neural networks with identical characteristics and trained
in the same way can lead to different results given this randomness in the initialisation.
Therefore, in order to avoid random initialization conflicts on the non-transferred net-
works, we train ten separate instances with different initial weight values (i.e. we use
three different seeds on the random initialisation) and average their performance.
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Table 6.2: Naming convention of experiments using the fully connected layer of 100
neurons. First column (Name) indicates the abbreviated name, the column Network
corresponds to the used architecture. The third column (Loss) corresponds to the loss
used for training, either only cross-entropy or the combined loss. The final column
(Method) corresponds to the regularization method used. TL means transfer learning,
so the weights of the LSTM layer are fixed; DA means data augmentation, which can
either be on the input space or the feature space.

Name Network Loss Method

Baseline[KDH17] LSTM(25)+FC(2) Cross-entropy
NoTL(100)-CE LSTM(25)+FC(100)+FC(3) Cross-entropy No transfer learning
NoTL(100)-R+CE LSTM(25)+FC(100)+FC(3) Avg return + Cross-entropy No transfer learning
TL(100)-CE LSTM(25)+FC(100)+FC(3) Cross-entropy Transfer learning
TL(100)-R+CE LSTM(25)+FC(100)+FC(3) Avg return + Cross-entropy Transfer learning
TL(100)Ext LSTM(25)+FC(100)+FC(3) Avg return + Cross-entropy Transfer learning + DA feature space
TL(100)Int LSTM(25)+FC(100)+FC(3) Avg return + Cross-entropy Transfer learning + DA feature space
TL(100)Noise LSTM(25)+FC(100)+FC(3) Avg return + Cross-entropy Transfer learning + DA feature space
TL(100)Jit-feat LSTM(25)+FC(100)+FC(3) Avg return + Cross-entropy Transfer learning + DA feature space
TL(100)Jit-inp LSTM(25)+FC(100)+FC(3) Avg return + Cross-entropy Transfer learning + DA input space
TL(100)Mag LSTM(25)+FC(100)+FC(3) Avg return + Cross-entropy Transfer learning + DA input space
TL(100)Pool LSTM(25)+FC(100)+FC(3) Avg return + Cross-entropy Transfer learning + DA input space
TL(100)TW LSTM(25)+FC(100)+FC(3) Avg return + Cross-entropy Transfer learning + DA input space
TL(100)Ext-Ens LSTM(25)+FC(100)+FC(3) Avg return + Cross-entropy Transfer learning + DA feature space + Ensemble learning
TL(100)Int-Ens LSTM(25)+FC(100)+FC(3) Avg return + Cross-entropy Transfer learning + DA feature space + Ensemble learning
TL(100)Jit-Ens LSTM(25)+FC(100)+FC(3) Avg return + Cross-entropy Transfer learning + DA feature space + Ensemble learning

Given that we want to evaluate financial performance, we build a portfolio by rank-
ing the output of the networks labeled class 1 (buy) and 2 (sell); we then take the 10
with highest probability for each class and build a long-short portfolio. Portfolios are
analysed after transaction costs of 5bps per trade. The portfolio performance metric we
use is Information ratio (IR) - the ratio between excess return (portfolio returns minus
benchmark returns) and tracking error (standard deviation of excess returns) [Bac12].
As the portfolios are long-short, they are market-neutral, therefore, performance of the
portfolio in independent of performance of the market and no benchmark has to be
subtracted.

We also calculate the downside information ratio - the ratio between excess return
and the downside risk (variability of under-performance below the benchmark), that
differentiates harmful volatility from total overall volatility. We compare our results
with Krauss et al. [KDH17], in which a binary classifier is trained and then the trading
rule is applied. Further, we calculate two classification metrics, accuracy and macro-F1
expressed by the mean and standard deviation over the 25 data splits.

Table 6.3 shows the performance of the models trained using only the cross-entropy
loss with and without transfer learning, as well as training with the combined loss of
cross-entropy and return maximization from equation 6.1.
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Table 6.3: Performance of the k = 10 long-short portfolios after transaction costs, built
from models trained from zero and models whose weights where transferred from a
pre-trained model.

Ann ret Ann vol IR D. risk DIR Acc Macro-F1

LSTM [KDH17] 28.98 28.66 1.01 19.10 1.52
NoTL(25)-CE -5.23 36.98 -0.14 25.25 -0.20 73.49±0.41 33.45±0.13
NoTL(25)-R+CE 17.58 37.52 0.47 25.73 0.69 59.85±1.34 29.08±0.57
TL(25)-CE 32.31 30.07 1.07 19.61 1.65 68.34±16.5 31.79±5.12
TL(25)-R+CE 34.69 30.04 1.15 19.61 1.77 64.79±16.86 30.72±5.28
NoTL(100)-CE -7.56 39.31 -0.20 27.09 -0.29 73.43±0.94 33.37±0.29
NoTL(100)-R+CE 18.57 38.50 0.49 25.77 0.73 58.24±3.03 28.47±1.2
TL(100)-CE 30.89 30.15 1.02 19.81 1.56 68.88±15.93 31.95±4.76
TL(100)-R+CE 32.20 29.88 1.08 19.89 1.62 64.72±17.25 30.7±5.41

We see that, in all cases, the models trained from scratch show a poor average fi-
nancial performance as shown by the information ratio. All transferred learned models
show an equal or higher performance than the baseline LSTM method, with the models
trained with the combined loss having a slightly higher performance. The classifica-
tion metrics are higher for models without transfer learning and trained only on the
cross-entropy loss. Using the combined loss hurts classification metrics in all cases,
but as expected, it improves portfolio performance. The individual performance of the
ten neural networks trained with different seeds using only the cross entropy loss and
the combined loss of cross-entropy and predicted average return can be found on ta-
ble C.1 for the networks with the fully connected layer of 25 neurons and on table C.2
for the networks with the fully connected layer of 100 neurons on the Appendix C.
The networks trained without transfer learning and with only a cross entropy tend to
have negative returns and information ratios, and the networks trained without trans-
fer learning but with the combined loss that optimizes returns and cross-entropy, show
positive returns and information ratios but in all cases, performance is below the per-
formance achieved with transfer learning.

6.3.2 Data augmentation

Table 6.4 shows the performance of augmentation methods for the architectures with a
fully connected layer of 25 neurons; whlst Table 6.5 shows models with a fully connected
layer of 100 neurons. All models were trained using the combined loss of equation 6.1,
unless stated otherwise.



CHAPTER 6. SYSTEMATIC STRATEGIES USING NEURAL NETWORKS 150

Table 6.4: Performance of the k = 10 long-short portfolios after transaction costs, for the
TL+FC(25) model trained with different augmentation methods and the combined loss
LR+CE .

Method Ann ret Ann vol IR D. risk DIR Acc Macro-F1

LSTM[KDH17] 28.98 28.66 1.01 19.10 1.52
NoTL(25)-R+CE 17.58 37.52 0.47 25.73 0.69 59.85±1.34 29.08±0.57
TL(25)-CE 32.31 30.07 1.07 19.61 1.65 68.34±16.5 31.79±5.12
TL(25)-R+CE 34.69 30.04 1.15 19.61 1.77 64.79±16.86 30.72±5.28

TL(25) Ext 39.77 29.36 1.35 18.98 2.10 62.9±17.87 30.1±5.81
TL(25) Int 36.93 29.62 1.25 18.95 1.95 62.46±17.8 29.95±5.74
TL(25) Noise 31.02 29.07 1.07 19.15 1.62 62.71±17.84 30.04±5.71
TL(25) Jit-feat 39.18 29.83 1.31 19.24 2.04 62.43±18.12 29.95±5.81

TL(25) Jit-inp 29.80 30.72 0.97 20.14 1.48 68.23±16.62 31.75±5.06
TL(25) Mag 20.43 29.39 0.70 19.87 1.03 63.78±16.78 30.42±5.47
TL(25) Pool 27.23 29.89 0.91 19.66 1.38 57.71±17.43 28.38±5.72
TL(25) TW 32.82 29.42 1.12 19.22 1.71 61.81±16.96 29.8±5.48

In both topologies, augmentation on the input space is ineffective, and in most cases
it decreases performance with respect to the model trained with transfer learning but
without augmentation. In contrast, models trained with augmentation on the feature
space tend to improve on IR, in the case of jittering.

6.3.3 Ensemble learning

We test ensemble learning on the best performing cases from the previous Section, i.e.
on a network trained using transfer learning and with data augmentation applied to
the feature vector and with the combined loss LR+CE . Table 6.6 shows the performance
of ensemble learning for both models TL+FC(25) and TL+FC(100) and the compari-
son with the same models trained without ensemble learning. We can see that ensem-
ble learning outperforms the original models on the TL+FC(100) network but on the
TL+FC(25) network, only the method jitter on the feature vector outperforms the non-
ensemble case. In both ensembles, applying jitter on the feature vector yields the best
performance in IR.

We perform significance tests by applying paired t-tests on the portfolio returns. This
is shown in table 6.7 for the architecture with 25 neurons in the fully connected layer,
were we can see applying jittering and extrapolation on the feature space both with
transfer learning and with transfer learning and ensemble learning show a significant
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Table 6.5: Performance of the k = 10 long-short portfolios after transaction costs, for
the TL+FC(100) model trained with different augmentation methods and the combined
loss LR+CE .

Method Ann ret Ann vol IR D. Risk DIR Acc Macro-F1

LSTM[KDH17] 28.98 28.66 1.01 19.10 1.52
NoTL(100)-R+CE 18.57 38.50 0.49 25.77 0.73 58.24±3.03 28.47±1.2
TL(100)-CE 30.89 30.15 1.02 19.81 1.56 68.88±15.93 31.95±4.76
TL(100)-R+CE 32.20 29.88 1.08 19.89 1.62 64.72±17.25 30.7±5.41

TL(100) Ext 27.43 29.29 0.94 19.43 1.41 62.74±17.73 30.05±5.81
TL(100) Int 30.90 29.65 1.04 19.40 1.59 62.49±17.35 30.01±5.63
TL(100) Noise 29.07 29.35 0.99 19.22 1.51 61.84±17.89 29.75±5.75
TL(100) Jit-feat 37.21 29.20 1.27 18.94 1.96 62.2±17.82 29.87±5.73

TL(100) Jit-inp 29.54 30.16 0.98 19.75 1.50 67.8±17.18 31.64±5.46
TL(100) Mag 22.14 30.22 0.73 20.23 1.09 63.45±16.47 30.34±5.27
TL(100) Pool 27.69 29.42 0.94 19.00 1.46 57.64±17.89 28.37±5.89
TL(100) TW 26.69 29.54 0.90 19.51 1.37 61.55±18.03 29.65±5.91

difference with respect to no augmentation. Table 6.8 shows the results for the architec-
ture with 100 neurons in the fully connected layer, and we can see that only jittering and
extrapolation in the feature space used in combination with ensemble learning show a
significant difference. Tables C.3 and C.4 in Appendix C show the comparisons between
all approaches.

Finally, we run a time series regression to explain the portfolios using the Fama-
French 5 factors and show the results in tables 6.9 and 6.10 for the network with 25
neurons and 100 neurons, respectively. We can see that all models exhibit a low coeffi-
cient of determination of less than 1% so only a fraction of daily returns can be explained
by those sources of systematic risk. The best performing models for the network with
25 neurons show that Size and profitability factors are significant and negative with
respect to the baseline. This behavior also repeats for the network with 100 neurons.

6.4 Chapter summary

In this chapter, we have shown that using transfer learning on a stock classification task
where a trading rule is included in the training dataset improves financial performance
when compared to training a neural network from scratch.

To evidence this we built long-short portfolios following the proposed trading rule.
Models trained with transfer learning improve information ratio by more than double
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Table 6.6: Performance of the k = 10 long-short portfolios after transaction costs, for the
TL+FC(25) model and TL+FC(100) model trained with different augmentation methods
on the feature space and with ensemble of 5 models.

Method Ann ret Ann vol IR D. Risk DIR Acc Macro-F1

LSTM[KDH17] 28.98 28.66 1.01 19.10 1.52

TL(25) Ext 39.77 29.36 1.35 18.98 2.10 62.9±17.87 30.1±5.81
TL(25) Int 36.93 29.62 1.25 18.95 1.95 62.46±17.8 29.95±5.74
TL(25) Jit-feat 39.18 29.83 1.31 19.24 2.04 62.43±18.12 29.95±5.81
TL(25) Ext-Ens 39.70 28.05 1.42 18.19 2.18 63.05±17.44 30.18±5.63
TL(25) Int-Ens 35.76 27.86 1.28 18.18 1.97 62.45±17.48 29.98±5.63
TL(25) Jit-Ens 39.41 27.96 1.41 18.14 2.17 63.04±17.37 30.18±5.61

TL(100) Ext 27.43 29.29 0.94 19.43 1.41 62.74±17.73 30.05±5.81
TL(100) Int 30.90 29.65 1.04 19.40 1.59 62.49±17.35 30.01±5.63
TL(100) Jit-feat 37.21 29.20 1.27 18.94 1.96 62.2±17.82 29.87±5.73
TL(100) Ext-Ens 39.46 28.06 1.41 18.21 2.17 62.93±17.31 30.14±5.6
TL(100) Int-Ens 37.21 27.95 1.33 18.18 2.05 62.45±17.6 29.98±5.72
TL(100) Jit-Ens 40.54 27.78 1.46 18.09 2.24 62.84±17.37 30.14±5.62

Table 6.7: Comparison of average portfolio returns with different training configura-
tions for the TL(25) network and paired t-tests between each method and the baseline.
Methods are colored if p-values are significant (< 0.1).

Avg ret tstat pval

baseline 0.117
TL(25)-CE 0.129 -0.477 0.317
TL(25)-R+CE 0.136 -0.773 0.220
TL(25) Ext 0.150 -1.377 0.084
TL(25) Int 0.142 -1.027 0.152
TL(25) Noise 0.124 -0.272 0.393
TL(25) Jit-feat 0.149 -1.308 0.095
TL(25) Jit-inp 0.122 -0.194 0.423
TL(25) Mag 0.091 1.060 0.855
TL(25) Pool 0.113 0.169 0.567
TL(25) TW 0.130 -0.515 0.303
TL(25) Ext-Ens 0.148 -1.335 0.091
TL(25) Int-Ens 0.137 -0.830 0.203
TL(25) Jit-Ens 0.147 -1.286 0.099
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Table 6.8: Comparison of average portfolio returns with different training configura-
tions for the TL(100) network and paired t-tests between each method and the baseline.
Methods are colored if p-values are significant (< 0.1).

Avg ret tstat pval

baseline 0.117
TL(100)-CE 0.125 -0.302 0.381
TL(100)-R+CE 0.129 -0.455 0.325
TL(100) Ext 0.113 0.169 0.567
TL(100) Int 0.124 -0.287 0.387
TL(100) Noise 0.118 -0.042 0.483
TL(100) Jit-feat 0.142 -1.027 0.152
TL(100) Jit-inp 0.121 -0.137 0.446
TL(100) Mag 0.097 0.794 0.786
TL(100) Pool 0.114 0.133 0.553
TL(100) TW 0.111 0.252 0.599
TL(100) Ext-Ens 0.148 -1.288 0.099
TL(100) Int-Ens 0.141 -1.007 0.157
TL(100) Jit-Ens 0.150 -1.411 0.079

with respect to models trained without a source model. We also showed that using a
training loss that combines a classification objective with maximization of returns im-
proves risk adjusted returns when compared with the single cross-entropy loss.

Additionally, we investigated the use of data augmentation on the feature space (de-
fined as the output of the pre-trained model) and compared it with traditional data aug-
mentation methods on the input space. Augmentation on the input space improves up
to 20% risk adjusted returns when compared to a transferred model without augmen-
tation. Finally, we studied the use of ensemble learning used in combination with data
augmentation on the feature space and showed that it improves up to 10% risk adjusted
returns when compared to not using ensemble learning with the same augmentation
methods.
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Chapter 7

Automatic data augmentation for time
series

7.1 Introduction

This chapter studies two novel sample-adaptive augmentation policies that combine
multiple data transformation methods and which are training-dependent. This is moti-
vated partly by the study of augmentation methods applied to financial time series pre-
diction in Chapter 5, where augmentation was used as a data pre-processing step before
training and without tuning augmentation parameters. Given that the study showed
that financial time series classification benefits from data augmentation, we now pro-
pose two sample-adaptive augmentation policies that can combine multiple augmenta-
tions during training by either selecting augmented samples according to their loss or
by weighting the loss contributions of each augmented sample using a trainable weight
vector that is trained simultaneously with the parameters of the neural network. In
a second step, we propose incorporating a unique hyper-parameter that regulates the
strength of the augmentations by grouping all hyper-parameters for each augmentation.

The contributions of this chapter can be summarized by the following:

• We define two sample-adaptive augmentation policies to weight augmentation
methods, and propose the use of a single distortion parameter for optimization.

• Using these two adaptive policies we demonstrate improvements in terms of both
financial time series results and state of the art results on time series datasets from
the UCR archive [BLB+17].

156
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• We test an adapted version of RandAugment [CZSL20] on time series data for the
first time, achieving competitive results.

The remainder of this chapter is structured as follows, section 7.2 describes the pro-
posed adaptive augmentation policies and gives details of their implementation. Sec-
tion 7.3 gives details of the methodology used to evaluate the policies with a description
of the datasets used, the set of transformations and their hyper-parameters and the net-
work architectures employed as well as the training details. Section 7.4 presents the
results of our methods and an implementation of RandAugment for comparison. Fi-
nally, section 7.5 presents a summary of the main conclusions.

7.2 Augmentation policy

We propose two sample-adaptive augmentation policies that allow the use of multiple
augmentation methods simultaneously by either learning a weight that multiplies the
loss contributions of each augmentation, or selecting a subset of augmented samples
by ranking their predicted loss. Figure 7.1 shows the first method, adaptive-weight
(W-augment), acting on one sample. The method applies all N augmentation transfor-
mations, and then evaluates the original and augmented samples in the neural network,
computing the cross-entropy loss but without aggregating all the individual losses; (i.e.
normally the loss is averaged over all samples in a mini-batch and then backpropa-
gated). In this case, the losses from the sample and the augmented transformations are
multiplied using dot product by a trainable vector w̄ of dimension N + 1. In order to
ensure all elements of the vector are positive and add up to one, we apply a softmax
function σ(w̄) to its values after training and before the multiplication with the loss.
The vector is initialized with constant number 1/(N + 1). Figure 7.2 shows the method
when used in a mini-batch, with vectors w̄ already normalized by softmax, where each
weighted loss per sample is finally averaged over all elements on a mini-batch to calcu-
late the loss that will be used then for backpropagation. Algorithm 2 shows the imple-
mentation of W-Augment method.

Our second proposed adaptive-method α−trim works in two stages. Similarly to
W-augment, each sample is augmented using all N transformations, then evaluated in
the neural network and each loss is computed separately; However, in α−trim we rank
the losses and trim the α top and bottom ones, with α ∈ N; this means that we discard
the augmented samples with the highest and lowest losses. The rationale behind this
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Algorithm 2 W-Augment
1: class wLoss:
2: def init (self,n):
3: w vector = n∗[1/n]
4: forward (out, label):
5: CE loss = CrossEntropy(out, label)
6: w vector norm = Softmax(w vector)
7: return dotProduct(CE loss, w vector norm).mean()
8: Input: Optimizer, model f̂ , transformations Tk with k = 0, . . . , N and loss function wLoss with input

parameter N + 1.
9: Parameters: Transformation magnitude M .

10: tLoss = []
11: for i = 1, . . . , B do
12: for j = 0, . . . , N do
13: Compute (xi,j , yi) by applying transformation TMj to data point (xi, yi)
14: end for
15: Compute (outi,j,k) by evaluating the augmented samples {(xi,0, yi), . . . , (xi,N , yi)} in the neural

network f̂ , where k = 1, . . . , C with C the number of classes.
16: Compute loss of (outi,j,k, yi) using wLoss and accumulate weighted gradient in tLoss.
17: end for
18: Calculate average tLoss, backpropagate it through the network f̂ and update the weights using the

optimizer.

Sample

Aug0

Aug1

Aug2

AugN

Neural
Network

1) Augment sample 2) Evaluate and calculate loss 3) Multiply loss by learnable
weight

Figure 7.1: The proposed method of W-augment combines all augmentations per sam-
ple by weighting their losses with a trainable vector. In step 1, each sample is aug-
mented with N transformations, thus obtaining N + 1 samples. In step 2 the samples
are evaluated in the neural network without aggregating the losses, and finally, in step
3, the N + 1 losses are multiplied using dot product with a trainable vector composed
with softmax (σ) to ensure all values are positive and add up to one.
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sample b

sample3

sample1
sample2

...

...

...
...

...

...

Neural Network

Mini-batch

Augmented mini-batch

=

=

=

=

Figure 7.2: The proposed W-augment augments a mini-batch, and then each subgroup
of samples is multiplied by the normalized weight w̄ obtaining a scalar loss for each
group of samples. Finally, the losses are averaged and a scalar loss L for the mini-batch
is obtained and used to train the network.

is that small losses will not lead to relevant training, meaning is not a sample that will
contribute to the learning process. While one would argue that we prefer the highest
losses, as some methods propose, this might mean the model tries to learn only the
hardest to classify samples while worsening its performance on easier samples. Finally
the selected augmented samples are used to train the network. Figure 7.3 illustrates the
steps of our method and Algorithm 3 shows the implementation in pseudocode of the
α-trimmed Augment method.

Algorithm 3 α-trimmed Augment

1: Input: Batch B of data points (x1, y1), . . . , (xB , yB), model f̂ , loss function `f̂ and transformations Tk
with k = 0, . . . , N .

2: Parameters: Transformation magnitude M , number of values to trim α.
3: for i = 1, . . . , B do
4: for j = 0, . . . , N do
5: Compute (xi,j , yi) by applying transformation TMj to data point (xi, yi)
6: end for
7: Compute loss of {(xi,0, yi), . . . , (xi,N , yi)} as {`i,0, . . . , `i,N}where `i,j = `f̂ (xi,j , yi)

8: Rank losses {`i,0, . . . , `i,N} as {`i,r0 , . . . , `i,rN }
9: Select the data points from {(xi,0, yi), . . . , (xi,N , yi)} that correspond to the losses {`i,r}N−α

r=α

10: end for
11: Output: Transformed batch of data points (xi,j , yi) with i = 1, . . . , B and j = 0, . . . , N − α.
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Sample

Aug0

Aug1

Aug2

AugN

Neural
Network  

1) Augment sample 2) Evaluate and calculate loss 3) Rank and trim

AugN-1

Aug0

Aug2

AugN

Augmented
samples

Figure 7.3: The proposed α−trim method augments the sample with all available N
transformations, and evaluates the samples in the neural network, computing each in-
dividual loss. The losses are ranked and the top/bottom α samples that correspond to
the top/bottom α losses are discarded. The subset of augmented samples are then used
for training.

An effective automated augmentation strategy requires the design of a policy to ap-
ply various augmentation strategies, while also taking into account the types of data
transformations involved and their magnitude. Both our proposed methods select or
weight augmentations but we also need to determine the optimal magnitude for each
transformation. In a second step - by taking advantage of recent developments in data
augmentation policies such as RandAugment [CZSL20] and Population Based Aug-
mentation (PBA) [HLC+19] that show that it is sufficient to use a single distortion mag-
nitude for all transformations instead of searching over optimal magnitudes for each
augmentation - we also define a single distortion magnitude M and optimize this value
for all transformations. That is, for each transformation we propose a range of valid
hyper-parameters to choose from and a single value M that will be optimized for all
parameters simultaneously. This reduces the search space of the problem dramatically,
given that we only need to optimize M for W-augment and M and α for α−trim. This
allows us to apply a simple grid search to find optimal values that outperform current
state-of-the-art methods.

7.3 Methodology

The primary goal of our two augmentation policies is to learn how to combine mul-
tiple augmentation methods during training, without the need to implement a sepa-
rate search phase to determine which methods to use or the optimal individual hyper-
parameter values for each transformation. The reason for this is that we want to avoid
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an extensive parameter optimization search than can be computationally expensive
when using large datasets or large models, or having to define a separate search on
a proxy task that can lead to sub-optimal results [CZSL20].

7.3.1 Datasets and augmentation methods

We conduct experiments in two time series datasets: 1) a financial dataset used in pre-
vious chapters, and 2) the UCR archive that consists of multiple time series datasets of
different characteristics [BLB+17]. We provide below a detailed description of each of
these datasets.

S&P500 dataset

We use the daily returns of all constituents of the S&P500 index, from 1990 to 2018 and
we follow the pre-processing scheme described in section 5.3, where the data is divided
into splits of 1000 days, with a sliding window of 250 days which each split overlapping
with the previous one by 750 days. A model is trained on each of these periods, resulting
in 25 trained models, one on each split. The data is segmented into sequences consisting
on 240 time steps {R̃s

t−239, . . . , R̃
s
t} for each stock s, with a sliding window of one day,

as shown in Figure 5.2, using the first 750 days for training and the last 250 days for
testing. This results in a training set of approximately 225K samples and a test set of
approximately 125K samples. As explained in section 5.3, the data is standardised by
subtracting the mean of the training set (µtrain) and dividing by the standard deviation
(σtrain), i.e., R̃s

t =
Rs

t−µtrain
σtrain

, with Rs
t the return of stock s at time t. Again, we define the

problem as a two class classification task with value 1 if the returns of stock s at time
t are above the daily median (Y s

t+1 = 1) or 0 if the returns are below the daily median
(Y s
t+1 = 0).

The augmentation methods used in this dataset are shown in table 7.1, with the
parameters that control the augmentation and their values. In this part of the work the
parameters are fixed on values that have shown to work in previous studies (see section
5.4). We also included three additional augmentation methods, Scaling, Magnitude warp
and Window warp (described in the next section) to have a larger pool of transformations
and did not include Spawner because it is significantly slower than the other methods
(it is 500 times slower than time warping, the second slowest method [IU20a]).
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Table 7.1: Augmentation methods used in the S&P500 dataset, with each parameter and
the fixed value used.

ID Augment method Parameter Value

0 Identity
1 Magnify t0 [50,150]
2 Convolve window hahn
3 Pool size 3
4 Jitter σ 0.01
5 Quantize level 25
6 Time Warp knots, σ 4, 0.2
7 Magnitude Warp knots, σ 4, 0.2
8 Window Warp Window ratio, window scales 0.1, [0.5, 2]
9 Scaling σ 0.1

10 Reverse

UCR datasets

In order to test our proposed model in a different domain, and show that it can be
used to improve generalization in tasks beyond financial prediction, we use a subset
of datasets from the UCR archive [BLB+17], which consists of 128 univariate time series
datasets of various types and characteristics. Given the large amount of data in the UCR
archive, we select a subset of datasets based on training size, focusing on small datasets
(with training samples between 100 and 200 samples), and a medium datasets that have
training samples in the range of 500 to 1000. Details of each dataset such as train and
test size, length of each time series, number of classes, etc, can be found in table D.1 in
the Appendix D. The secondary reason to evaluate our augmentation policies in these
datasets is that this is a well established baseline for time series classification tasks, with
state of the art results being updated regularly.

The UCR archive provides two directories per dataset with a fixed separation be-
tween training and testing samples, thus we use the train samples for training and val-
idation and leave the test samples to evaluate the performance of the model once the
hyperparameters are found. For each dataset, the samples xs are normalized by sub-
tracting the mean of the sample and dividing by the standard deviation x̃s = xs−µs

σs
. In

order to fine tune the hyperparameter M and α in the case of α−trim, we separate the
training set in training and validation with a proportion of 80/20%. Because in some
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cases the datasets are quite small and have multiple classes, we do the train/validation
split in a stratified way in order to preserve the class distribution in both sets.

The augmentation methods used in this datasets are shown in table 7.2 where each
method contains one or two parameters that control the augmentation magnitude and
the range that the parameters can take. In this case, we will optimize the distortion
magnitude M the find a collective value of distortion that maximizes performance on
the cross-validation. The methods jitter and Time Warp have been introduced in Chapter
5. Below is a short description of the other methods. All methods except Dropout are
implemented following the guidelines from [IU20a].

• Window Slice: Similar to Magnify, it crops a window in the time series with a
ratio [0.95, 0.6] depending on the value of M . The time series is then interpolated
back to the original size.

• Window Warp: It selects a random window that is 10% of the original and it warps
it a scale between [0.1, 2] selected by M .

• Scaling: It multiplies the time series with a random scalar from a Gaussian distri-
bution with mean 1 and σ selected by the parameter M .

• Magnitude Warp: as proposed by Um et al. [UPP+17], it multiplies the magnitude
of the time series by a warping amount determined by a cubic spline line with k

knots. The magnitude that controls the warping is σ.

• Permutation: The permutation is done by randomly dividing the time series in
segments, between 2 and the max number from table 7.2.

• Dropout: dropout values of some random time points in the time series with
probability p and replaces them with zero.

7.3.2 Network architectures and training

S&P500 dataset

In order to be able to compare results with individual augmentations from chapter 5 we
train the same neural network that consists of a a single layer LSTM with 25 neurons,
and a fully connected two-neuron output. We use a learning rate of 0.001, batch size 128

and early stopping with patience 10 with RMSProp as optimizer.
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Table 7.2: Augmentation methods used on the UCR dataset, with their tunable param-
eters and their range. The distortion magnitude M is a linear interpolation on each
range.

ID Augment method Tunable parameters Range

0 Identity
1 Jitter σ [0.01, 0.5]
2 Time Warp knots, σ {3, 4, 5}, [0.01, 0.5]
3 Window slice ratio [0.95, 0.6]
4 Window Warp Window ratio, window scales 0.1, [0.1, 2]
5 Scaling σ [0.1,2.0]
6 Magnitude Warp knots, σ {3, 4, 5}, [0.1, 2]
7 Permutation Max segments {3, 4, 5, 6}
8 Dropout p [0.05, 0.5]

As we did before, in order to evaluate the data augmentation methods in a task spe-
cific setting, we build a simple trading rule in the following way: stocks are ranked daily
by their predicted probability of belonging to a class (up or down trend), we then take
the top 10 and bottom 10 stocks and build a long-short portfolio by equally weighting
the stocks. Portfolios are analysed after transaction costs of 5 bps per trade.

UCR datasets

The UCR archive currently reports four state of the art classifiers which show a signif-
icant improvement from previous ones, TS-CHIEF, HIVE-COTE-v1, ROCKET and In-
ception Time. These are classifiers that have been tested on most of the 128 datasets and
which show no significant difference in rank, with the sign rank test using the Holm cor-
rection between each other 1. As was mentioned in subsection 4.3.3, only InceptionTime
is a deep neural network classifier [IFLF+20], with all others based on classic machine
learning methods.

Inception time is an ensemble model that trains 5 instances of the inception network
with different initializations and averages the prediction scores of the five models before
outputting the predicted label. The original network was trained without validation,
using all the training set, with 1500 epochs and Adam optimizer with an initial learning
rate of 0.001. Learning rate was reduced on plateau of the training loss (with patience

1The full performance metrics for each classifier and on all datasets can be found on the website of the
project: www.timeseriesclassification.com [BLVK21]

www.timeseriesclassification.com
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50 and factor 0.5) and the model with best training accuracy was saved. We modified
slightly the training methodology by training over 5 stratified shuffled splits, and use
the validation loss to reduce the learning rate. In order to speed up training, we used
early stopping with a patience of 150 epochs and a maximum number of epochs of
1500. Everything else was the same as was used in inceptionTime. A description of the
topology of InceptionTime and a diagram of the network can be found on the appendix
D.

7.4 Results

In the following subsections we present the results of the two proposed methods on the
S&P500 dataset and on the UCR datasets. For comparison, we implement RandAug-
ment, another automated data augmentation method that has not been use on time se-
ries data before [CZSL20]. RandAugment was originally proposed for computer vision
classification tasks and uses a set of 14 augmentations that are standard in computer
vision such as rotate, solarize, posterize etc. Also included in the set of transformations
is the identity, which leaves the sample unchanged. As in our method, RandAugment
uses a single global distortion parameter M that regulates the strength of the trans-
formations and a second parameter N that corresponds to the number of consecutive
transformations to be applied to the data, with N a value usually between 1 and 3. The
algorithm selects on each batch a transformation with uniform probability 1

14
. Because

the algorithm only has two parameters, the search space is extremely small, and the
authors find that using a simple greed search is quite effective.

In this work we propose a simplified version of RandAugment where the N pa-
rameter is always one, therefore, we don’t apply successive transformations to the time
series. Instead of using computer vision transformations, we used the set of time series
augmentations from table 7.1 for the S&P500 dataset and the augmentations from table
7.2 for the UCR datasets.

7.4.1 S&P500 dataset

We first test our model using the original transformations from Chapter 5, correspond-
ing to methods 0 to 6 on the table 7.1. As in the previous chapters, we use Information
ratio to measure portfolio performance, as well as downside information ratio. Since
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the portfolios are long-short, they are market-neutral, thus there is no need to subtract
a benchmark. We also include the average daily return (Avg ret) in percentage. Table
7.3 presents the results for W-augment, α-trim and RandAugment, and each individ-
ual augmentation method from section 5.4 for comparison. We also include additional
transformations: e.g. W-Augment (+2) corresponds to augmentations 0 to 6 plus 7 and
8 (Magnitude Warp and Window Warp), W-Augment (+3) includes the previous transfor-
mations as well as transformation 9 and so on. We can see from the table 7.3 that all
automatic augmentation policies outperform the baseline (no transformation) and most
of the individual transformations. The average daily return is also higher in α−trim
(α = 1) and W-augment (+3) reaching 0.19% and 0.18% respectively, two decimals
higher than Time Warp and Magnify, the two best performing individual methods.

In order to evaluate if the results are significant we use a paired t-test on the port-
folio returns. The results are shown in table 7.4 where we can see that most of the
methods show a significant difference with respect to no using augmentation. The two
methods that don’t show a significant difference corresponds to the automated methods
that have the higher number of augmentations. Furthermore, to explain the portfolios
sources of return we use a Fama-French 5 factor model and show the results in table 7.5.
We can see that all models exhibit a low coefficient of determination of less than 1% so
only a fraction of daily returns can be explained by those sources of systematic risk and
most of the portfolios show similar factor exposures.

Figure 7.4 shows the learned weights assigned to each method during training, with
each column corresponding to a different split of data. We can see that in all cases, the
method tends to put more weight in the original sample over time but the weighting is
quite stable over different data splits i.e. the same augmentations have a larger weight
on both data splits. Also, we can see that even when involving new transformations,
jitter gets a higher weighting than most of the other augmentation methods in all cases.
Interestingly, in the case of e.g. W-Augment (+2) (on the bottom plot) where Reverse is
included, the transformation is very quickly assigned a zero weight. This is an augmen-
tation method that we know is not useful in financial time series data. Figures D.1 to
D.5 show the learned weights for all cases of W-Augment on all 25 splits of data.

Figure 7.5 corresponds to the α−trim policy and shows the number of times each
augmentation method was selected per batch. We can see that, same as with W-Augment,
the original sample gets selected most frequently, and along with jitter, both remain
quite constant, while other methods change over time. We can see that for both values
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Table 7.3: Performance of the k = 10 long-short portfolios after transaction costs for the
LSTM model and S&P500 dataset.

Avg ret Ann ret Ann vol IR D. Risk IDR Acc F1

None 0.13 34.64 28.43 1.22 18.78 1.84 51.03±0.97 48.51±2.05
Convolve 0.13 32.6 25.99 1.25 17.49 1.86 51.06±0.93 49.19±2.03
Jitter 0.13 34.35 25.3 1.36 16.69 2.06 51.04±1.02 49.95±0.99
Magnify 0.17 46.56 29.41 1.58 19.56 2.38 51.21±0.93 48.76±2.71
Pool 0.14 36.18 26.16 1.38 17.15 2.11 51.06±0.92 49.39±2.2
Quantize 0.12 29.42 25.48 1.15 16.62 1.77 51.0±0.95 48.8±2.09
Reverse 0.13 33.03 26.34 1.25 16.9 1.95 50.96±0.97 47.27±4.14
Time Warp 0.17 47.01 29.26 1.61 19.17 2.45 51.16±0.9 49.78±1.61
SPAWNER 0.14 38.08 27.85 1.37 18.05 2.11 51.08±0.98 49.1±2.17
Mag-Pool 0.15 39.15 26.86 1.46 17.61 2.22 51.11±0.96 48.92±2.24
Mag-TW 0.16 44.03 27.41 1.61 17.66 2.49 51.14±0.96 49.61±1.43
TW-Pool 0.16 44.98 26.21 1.72 16.82 2.67 51.13±0.93 49.27±2.04

RandAugment 0.17 48.76 29.14 1.67 18.98 2.57 51.04±0.99 48.41±2.69

α−trim (α = 1) 0.19 54.5 31.02 1.76 20.22 2.7 51.1±1.01 48.97±2.39
α−trim (α = 2) 0.16 44.69 29.22 1.53 19.17 2.33 51.12±0.96 49.18±1.99
α−trim (+3, α = 1) 0.16 42.98 26.77 1.61 17.36 2.48 51.11±0.98 49.02±2.2

W-augment 0.17 46.04 30.45 1.51 20.33 2.26 51.06±1.03 48.79±2.14
W-augment (+2) 0.17 46.34 30.44 1.52 20.51 2.26 51.1±1.0 49.13±2.14
W-augment (+3) 0.18 52.02 30.1 1.73 20.35 2.56 51.09±1.0 48.99±2.11
W-augment (+4) 0.16 43.76 28.39 1.54 18.72 2.34 51.12±1.0 49.56±1.57

Table 7.4: Comparison of average portfolio returns with different automated augmen-
tation methods and paired t-tests between each augmentation and the baseline (no aug-
mentation). Methods are colored if p-values are significant (¡ 0.1).

Avg ret tstat pval

None 0.134
RandAugment 0.175 -1.771 0.038
α-trim(+3, α = 1) 0.156 -1.003 0.158
α-trim(α = 1) 0.192 -2.491 0.006
α-trim(α = 2) 0.164 -1.290 0.099
W-Augment 0.169 -1.546 0.061
W-Augment(+2) 0.170 -1.578 0.057
W-Augment(+3) 0.185 -2.222 0.013
W-Augment(+4) 0.160 -1.150 0.125
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Figure 7.4: Weights assigned to each augmented sample per training mini-batch. Plots
on the left correspond to data split 1 and plots on the right to data split 22. From top to
bottom each row corresponds to W-augment, W-augment (+2), W-augment (+3) and
W-augment (+4).
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Figure 7.5: Number of times the augmentation method was selected per batch. Top plots
correspond to α−trim(1) and bottom plots to α−trim(2). Plots on the left correspond to
data split 1 and plots on the right to data split 22.

of alpha, the behaviour remains the same, i.e. the frequency with which each transfor-
mation gets selected is in a similar proportion w.r.t. the value of alpha. We see a change
in behaviour between splits of data. Plots on the left column correspond to data split 1
while the column on the right correspond to data split 22, therefore there are around 21
years of difference between both datasets. We can see that convolve is the fifth method
in frequency on the last epochs on split 1, while it becomes the most frequently selected
on split 22. This means that possibly not all augmentation methods are equally effective
in all time periods, especially given that financial time series are non-stationary, and
α−trim might be more sensitive to this phenomenon.

7.4.2 UCR dataset

We first implemented the three policies, W-Augment, α−trim and RandAugment using
four augmentations and the identity (transformations 0 to 4 from table 7.2). M can take
values from 1 to 20 and we selected {1, 5, 10, 15, 20}. Given that InceptionTime is an
ensemble of five models, we trained each policy with a value of M on InceptionTime
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Table 7.6: Test accuracy (%) on 15 datasets from UCR archive. Comparisons across the
default training without augmentation policy (baseline) and W-Aug, α−trim and Ran-
dAugment all using 4 transformations in addition to the identity. MW , Mα and MR are
the optimal distortion magnitude for W-Aug, α−trim and RandAugment, respectively.

Baseline W-Aug(4) MW α−trim(4) Mα RandAugment(4) MR

ECG5000 94.5 94.2 15 93.8 5 94.6 1
EthanolLevel 85.9 86.6 5 84.6 5 86.0 1
ProximalPhalanxOutlineCorrect 91.7 91.5 10 92.1 20 92.1 5
MiddlePhalanxOutlineCorrect 82.9 84.7 5 83.2 20 86.3 5
DistalPhalanxOutlineCorrect 78.0 76.9 15 77.2 5 77.5 5
Strawberry 97.5 97.2 10 97.6 1 97.0 5
MixedShapesSmallTrain 91.5 89.6 20 90.9 5 90.3 1
InlineSkate 51.6 36.1 5 41.6 1 46.0 1
ECG200 86.0 89.0 1 90.0 1 87.0 15
ACSF1 91.0 88.8 5 86.0 5 88.0 1
Ham 66.7 80.6 15 81.0 20 75.2 15
Haptics 57.5 55.5 10 54.5 1 48.4 15
Fish 98.3 99.0 15 98.3 5 98.3 1
WormsTwoClass 77.9 78.7 10 79.2 5 80.5 1
Worms 83.1 81.0 1 80.5 1 83.1 10

and averaged the performance of the validation set over the five splits of data. For each
dataset we selected the M with the highest validation accuracy. For comparison, we
trained InceptionTime with the same methodology but without using an augmentation
policy. Table 7.6 shows the accuracy of the best performing policy on validation set, and
the corresponding value of M for the dataset. We can see that W-Aug(4) wins or draws
6 times w.r.t. the baseline, α−trim 7 times and RandAugment wins or draws 10 times,
resulting in an overall better performance in accuracy. In general, the values selected
by W-Augment tend to be higher, which might account for the lagging in performance
w.r.t. RandAugment.

Table 7.7 shows the accuracy of the best performing policies on validation set but
in this case using all eight transformations from table 7.2. We can see in this case that
W-Aug(8) and α−trim(8) win or draw 8 and 9 times respectively w.r.t. the baseline, and
RandAugment(8) only wins 5 times. This could mean that the extra augmentations
might be hurting performance, and because RandAugment selects each transforma-
tion with equal probability, it cannot mitigate sub-optimal augmentations. Table D.2
compares the accuracy of the proposed policies with the state-of-the-art models HIVE-
COTE, TS-CHIEF, ROCKET and InceptionTime.
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Table 7.7: Test accuracy (%) on 15 datasets from UCR archive. Comparisons across the
default training without augmentation policy (baseline) and W-Aug, α−trim and Ran-
dAugment all using 4 transformations in addition to the identity. MW , Mα and MR are
the optimal distortion magnitude for W-Aug, α−trim and RandAugment, respectively.

Baseline W-Aug(8) MW α−trim(8) Mα RandAugment(8) MR

ECG5000 94.5 94.2 5 94.5 1 94.4 1
EthanolLevel 85.9 84.0 10 81.4 5 83.4 1
ProximalPhalanxOutlineCorrect 91.7 92.4 5 92.8 15 91.1 20
MiddlePhalanxOutlineCorrect 82.9 82.7 1 83.2 5 84.5 5
DistalPhalanxOutlineCorrect 78.0 75.6 5 75.4 10 76.8 1
Strawberry 97.5 97.6 15 97.8 5 97.8 1
MixedShapesSmallTrain 91.5 92.2 10 91.6 15 91.3 5
InlineSkate 51.6 38.1 5 43.3 1 38.2 1
ECG200 86.0 91.0 1 89.0 1 88.0 15
ACSF1 91.0 89.0 20 90.0 10 90.0 1
Ham 66.7 77.0 20 75.2 10 76.2 10
Haptics 57.5 52.9 1 54.9 5 53.9 15
Fish 98.3 99.4 20 99.4 10 97.7 1
WormsTwoClass 77.9 79.5 10 79.2 5 79.2 10
Worms 83.1 80.0 10 79.2 1 80.5 1

Finally, figure 7.6 shows the learned weights assigned to each method during train-
ing on four datasets for the optimal value of M . Given that InceptionTime consists of 5
trained networks that are ensembled, we have 5 policies in place per model. Therefore,
the plots show the average of the weight per training iteration and the shaded part cor-
responds to plus/minus one standard deviation. We can see that there is agreement on
the weights in all models. In all cases, W-Augment assigns a higher weight to the orig-
inal sample, but it changes behaviour with different types of datasets. For example, on
the ECG200 dataset it learns a weight of zero for window slice, but this method is more
relevant on the Fish dataset.

7.5 Chapter summary

In this chapter, we have presented two sample-adaptive automatic weighting schemes
for data augmentation: W-Augment learns to weight the contribution of the augmented
samples to the loss and α−trim selects a subset of transformations based on the ranking
of the predicted training loss. We validated our proposed policies on the S&P500 dataset
and on datasets from the UCR archive. For comparison we implemented a simplified
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Figure 7.6: Weights assigned to each augmented sample on the mini-batch per training
iteration. Plots on the left correspond to W-Augment trained using 4 transformations
and plots on the right corresponds to W-augment trained with 8 augmentations.
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version of RandAugment and tested it on time series data for the first time, achieving
competitive results when using a small number of transformations.

On the financial dataset, we showed that the augmentation methods in combination
with a trading strategy lead to improvements in annualized returns of over 50%, and on
the time series data we outperform state-of-the-art models on over half of the datasets,
and achieve similar performance in accuracy on the remaining ones.



Chapter 8

Conclusions and Future work

8.1 Thesis contributions

The thesis has led to the following novel contributions, which are organized as a discus-
sion of the research objectives from section 1.3 and the research questions from section
1.2.

Motivated by questions Q1: can we use HMMs to detect relevant regimes in smart beta in-
dices? and Q2: Can we use the information provided by an HMM to build portfolios that rotate
between smart beta factors according to expected returns and covariances in a certain regime?,
our first research objective was to design, implement and evaluate a DAA system for
smart beta investing that allows multi-factor smart beta strategies to be built by rotating
allocations depending on the regime. In chapter 3 we developed a DAA system that is
trained with multiple factor indices, that each day predicts the current state of the mar-
ket; if it detects a change of regime, it re-weights the portfolio using the estimated mean
and covariance as input for the portfolio optimizer. Through model selection we deter-
mined that the optimal number of states was two. In order to evaluate the DAA system,
we calibrated 1260 instances using multiple combinations of factor indices for training
and tested an array of different portfolios with different risk profiles. For comparison
we build portfolios using the same assets by rebalancing monthly and estimating the
mean and covariance matrix using single-regime past returns. We showed that port-
folios built using the novel DAA system outperform their single-regime benchmarks,
especially in more return-oriented portfolios. This provides an answer to Q1 and Q2:
that HMMs can detect relevant regimes from smart beta indices and their information
can be used to optimize portfolio weights.
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The second research objective was to investigate the use of FSHMM to improve the
DAA system by automatically selecting relevant assets for training and thus improving
regime identification. In chapter 3 we compared the performance of the FSHMM against
training an HMM using all available features. We showed that the model trained with
relevant features is more sensitive to the distress state than the HMM model and the
average duration of the distress state is longer, leading to a more stable regime identi-
fication. This addresses question Q4: Can we further improve a trading system by selecting
optimal features for training without human intervention?. Furthermore, we evaluated the
FS-DAA system using real-life, investable assets and showed that it outperforms the
previous DAA system. This addresses question Q3: Can we build a trading system for
multi-factor smart beta investing that is agnostic and does not depend on expert knowledge?: the
FSHMM selected the optimal factors indices for training without using expert knowl-
edge and lead to an improvement in regime identification and in portfolio performance
when compared to a trained HMM with all features.

Moving away from passive investing into the realm of active investing through stock
selection, we focused on studying regularization methods in neural networks to im-
prove predictions on the stock classification problem. Given the advances on deep neu-
ral networks in many domain areas in the past decade and the hesitancy of investors
to include deep learning-based strategies because of the perceived risk of out of sample
model performance, we focused on investigating methods to improve model general-
ization. In chapter 5 we studied the use of time series data augmentation methods to
improve financial prediction of stock classification. This is related to Research Objective
3. We provide the first, to the best of our knowledge, thorough evaluation of popu-
lar data augmentation methods for time series on the stock classification problem. We
showed that methods such as Time Warp and Magnify consistently improve financial
performance when used in combination with a trading strategy for evaluation, on two
different-size datasets and two neural networks topologies. This answers question Q5:
Can we improve generalization by enriching the information related to the class distributions
in the training set? Which time series augmentation methods would work best on financial
datasets? We showed there are several augmentation methods or combination of meth-
ods that improve financial metrics and there are two methods that perform well on all
cases.

In chapter 6 we showed that using transfer learning on a stock classification task
where a trading rule is included in the training dataset improves financial performance
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compared to training a neural network without. This was a particularly challenging task
because the dataset was highly imbalanced. When we trained a model from scratch, fi-
nancial performance was one order of magnitude lower than when using transfer learn-
ing even though classification metrics were the highest. Therefore, using a pre-trained
model helped to distinguish relevant features on the imbalanced data that would not
have been possible to learn otherwise. Following Research Objective 4, we demon-
strated that adding data augmentation on the feature space, defined as the output of
the pre-trained model, benefits the training. We showed that in the case of transfer
learning, data augmentation applied to the feature space improved performance, while
standard augmentation on the input space did not. This allows us to answer ques-
tion Q6: How can we utilise transfer learning and ensemble learning on stock classification?,
where not only did we show that transfer learning helps to learn and embedded trading
rule that would be difficult to learn otherwise, but also that the learned representations
can be used to augment the dataset and further improve performance. In addition, we
showed that building ensembles of neural network classifiers also leads to higher risk
adjusted returns .

Finally, motivated by question Q7: can we build an automatic data augmentation method
that can use a general pool of transformations and does not require human intervention to se-
lect the best transformations and tune the transformation parameters?, in chapter 7 we pro-
posed two sample-adaptive automatic weighting schemes for data augmentation: the
first learns to weight the contribution of the augmented samples to the loss, and the sec-
ond method selects a subset of transformations based on the ranking of the predicted
training loss. We validated our proposed methods on a large, noisy financial dataset
and on time series datasets from the UCR archive. On the financial dataset, we showed
that the augmentation methods in combination with a trading strategy lead to improve-
ments in annualized returns of over 50%, and on the time series data we outperform
state-of-the-art models on over half of the datasets, and achieve similar performance
in accuracy on the remaining. This fulfills the final research objective of designing an
automatic data augmentation method that is able to combine multiple transformations
adaptively during training.
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8.2 Future Work

In the work presented in this thesis we aimed at furthering the development of machine
learning methods, specifically focusing on financial applications, both in a setting of
passive and active investing. This opens several new interesting research questions for
further future work.

8.2.1 Regime switching models for smart beta

In this work we have focused on smart beta for equity assets, but an interesting ex-
tension of the work could be to use it for smart beta in other types of assets such as
fixed income, currency or commodities, where risk factors have been identified in the
research literature. This could be of particular interest when we are in a market regime
of economic distress, where signals from other assets could improve regime identifica-
tion, and detect factors that are more uncorrelated, which is a desirable feature in an
economic crisis when most equity assets tend to correlate.

On a similar line, in would be interesting to include macroeconomic series in the
training of the FSHMM, where the embedded feature selection could allow for a more
precise identification of economic cycles. This could be of particular interest for fixed
income smart beta. A potential problem here would be the mix frequencies of the time
series given that macroeconomic indicators tend to be monthly or quarterly, while the
index factors used are daily.

In our work, the evaluation and verification of the proposed approach has mainly
been based on empirical performance of the smart beta investment return, as this is the
ultimate goal and verification of any smart beta investment techniques. An interesting
further research problem is to analyze and compute the standard errors, confidence
intervals, and statistical properties of estimated FSHMM parameters by the proposed
learning method, and therefore provide further reliability and robustness testing and
verification of the FSHMM approach for smart beta investing.

Finally, the feature saliency algorithm makes a strong assumption that all assets are
independent, therefore imposing a diagonal covariance matrix in the model. While this
was not particularly restrictive in our problem, it would be interesting to extend the
FSHMM algorithm relaxing this condition, therefore allowing to model each state with
a full covariance matrix.
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8.2.2 Machine learning strategies for stock portfolios

One of the research objectives of this thesis was to study generalization methods on
machine learning strategies, focusing on neural networks, to build stock portfolios. In
chapters 5 and 6 we studied different data augmentation methods based on random
transformations of the input data or in pattern mixing. With the advances in GANs over
the last few years, it would be interesting to use these generative methods for financial
data augmentation. To date there has been some work on studying GANs to generate
financial data that retains the major stylized facts from the original time series, as seen
in [TCTI19] and [WKKK20] - but this has not been tested for data augmentation. Fur-
thermore, it would be interesting to see if synthetic data generated by training a GAN
on a certain financial dataset can be used to improve training in a model with a differ-
ent dataset, effectively combining GANs for data augmentation and transfer learning.
On a similar line, GANs are notoriously difficult to train, so perhaps transfer learning
could be used to improve GANs’ training, where a GAN is trained with a source fi-
nancial dataset and the weights of the generator and discriminator networks are then
fine-tuned on a financial target dataset that might be more problematic to use for train-
ing from scratch.

Similarly to the work done with InceptionNet [IFLF+20], TLo-NBoF and DeepLob
[PTK+20, ZZR19], that are networks developed for specific tasks, with InceptionNet
formulated to be a general network for time series classification and TLo-NBoF and
DeepLob formulated for the classification task of limit order book data; therefore, it
would be interesting to develop a network for stock classification. We have shown that
ensemble learning improves model performance, so a future model could be based on
ensembling multiple trained instances as used in InceptionNet. EfficientNets could be
a good first candidate to investigate given that they are smaller and faster than existing
ConvNets [TL19].

Finally, future work could focus on using transfer learning between financial datasets
but including an inter-dataset similarity measure to select the source dataset such as
DTW. This would be very useful in a setting where one wanted to train a model with an
asset that has a short history; thus a model could be pre-trained on other datasets that
are similar in DWT space to the target dataset.
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8.2.3 Learnable data augmentation methods

Most existing data augmentation methods focus on improving the overall performance
of a model without taking into account if it performs well in critical sub-populations
of data, such as certain minority classes. Therefore, future work would be to try to
leverage data augmentations to mitigate inconsistent predictions on subgroups of data.

In this work we focused on univariate time series, and there is very little research
done on augmentation on multivariate datasets. An interesting further research prob-
lem is to first analyze individual augmentation methods on multivariate time series
and test if they can be used without having to individually set distortion magnitudes,
for example. As a second step, it would be of great interest to test the proposed adaptive
augmentation methods from chapter 7 on multivariate time series.

Finally, future work should focus on studying how the proposed augmentation meth-
ods apply to other machine learning domains, where data augmentation has been proven
to increase generalization, such as image recognition, speech recognition, audio recog-
nition. Furthermore, scaling data augmentation on larger datasets and models is often
a difficult or impossible task especially in image recognition tasks. For example, Au-
toAugment and Fast AutoAugment have been shown to work only on reduced subsets
of data and on small models. RandAugment has been shown to scale well on large
datasets achieving generalization improvements in accuracy without suffering from
large computational costs. We believe that similarly to RandAugment, our methods
could work well on large datasets without incurring costly computational costs given
that our problem, as with the RandAugment method, adds at most two hyperparame-
ters.

8.3 Limitations of machine learning in finance

While machine learning, and in particular deep learning show a lot of promise to con-
tinue developing and impacting several aspects of finance, there are still areas of con-
cern that will need to be addressed in the future or at least, understand its limitations.
When machine learning is applied to critical areas such as medicine, justice system or
finance, the black-box nature of more recent machine learning models is one of the ob-
stacles to their large scale deployment [CvdS21]. This leads to one of the primary crit-
icisms regarding some methods of machine learning and more specifically for neural
networks that we address in this section, which is their interpretability.
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While classical financial models may not be expressive enough and therefore might
have worse prediction power than some machine learning methods, their advantage is
that they are interpretable. While we care that task performance is strong, we might also
be interested in the models being safe, that they are fair (for example, don’t introduce
discrimination) or that they provide the right explanation. Following the definition for
Doshi-Velez and Kim [DVK17], in the context of machine learning we can define inter-
pretability as the ability to explain or to present in understandable terms to a human. If we
can ensure interpretability, then interpretability can be used to confirm other important
aspects that we may require of machine learning systems. Among the additional cri-
teria that one might want to optimise within machine learning systems are notions of
fairness, privacy, reliability and causality. Next we describe the main ideas behind these
requirements.

Fairness or unbiasedness looks at ensuring that groups are not discriminated against
when developing or using machine learning methods. An example of this might be a
bank or financial entity that grants loans to individuals or small business, where they
might want to use a machine learning model to predict the likeness of default of the in-
dividual or give a credit score, and this model, being trained with historical data might
incorporate biases against minority groups, therefore not granting loans to tradition-
ally underrepresented people given the data being used. These concerns have led to
a recently established area of machine learning, namely Machine Learning Fairness,
which studies how to ensure that biases in the data and model inaccuracies do not lead
to models that treat individuals in an unfavorable manner based on attributes such as
rage, gender, sexual or political orientation and disabilities [OC20]. In their work on
fairness in machine learning, Oneto et al. discuss some of the current limitations in the
reasoning about fairness and in the methods that deal with it, and introduce a unified
framework that covers a range of methods that can handle different settings and fair-
ness criteria, and that also have underlying strong theoretical guarantees. Within their
work, they demonstrate that Causal Bayesian Networks provide a valuable tool to rea-
son about and deal with fairness at a high level given that they can help to characterized
and account for unfairness in a dataset that displays complex patterns [OC20]. In addi-
tion, given that oftentimes models are not learned from scratch to solve new tasks, for
example we can perform a fine tuning over pre-trained models that keep the internal
representation fixed, then fine tuning a model which is fair on a task on novel previ-
ously unseen tasks can lead to unexpected unfairness behavior such as discriminatory
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transfer or negative legacy due to missing generalization guarantees. Therefore, they
describe describe a method to learn fair representations that can generalize to unseen
task. In a recent work in fairness in machine learning, Binns [Bin18] incorporates ex-
isting work on moral and political philosophy into the debate of fair machine learning.
He concludes that current approaches to fairness in machine learning are focused on in-
terventions at the data preparation, learning of the model or post-processing stages and
argues that a contextually appropriate approach to fairness which truly captures the essence of
the relevant philosophical points may hinge on factors which are not typically present in the data
available in situ.

Another criteria that interpretability might help with is privacy, where for example
we would want for a method to protect sensitive information in the data. Given the data
driven nature of modern machine learning algorithms, this exposes them to privacy
threats in the data collection process or when the pre-trained model is distributed. For
example, a series of studies has shown that not only are neural networks able to learn
latent patterns from training data, but also the trained model becomes a repository of
that data, which would be exposed if the pre-trained model is made publicly available.
Closely related to privacy, there are also security issues when talking about machine
learning where models can be stolen or reversed engineered, sensitive data used for
training can be inferred; additionally, recent works have found that deep learning mod-
els are vulnerable to adversarial examples, where a sample perturbed by imperceptible
noise can lead to the model to make a high confidence prediction that is wrong. Liu et
al. perform a systematic review of all aspects of privacy and security covering the full
life cycle of deep learning given that attack and privacy issues can arise both at training
phase or at testing phase [LXW+21]. This is an area of active research at the moment and
several methods can be leveraged to address privacy, such as homomorphic encryption,
secure multi-party computation and differential privacy [BJJ+18].

Reliability and robustness are other traits of interest in a machine learning model,
where we define these traits as performance stability when faced with parameter or in-
put variation, i.e. small changes on the input or parameters will not lead to large changes
in the prediction. This also relates to good generalization, where ideally, we would want
systems to generalise beyond the specific data that was used to train them. As discussed
by Gary Marcus, for neural networks to generalise well, a large amount of data is re-
quired for training and the test data must be similar to the data used for training. This
works well when there are problems that have unvarying rules but becomes a concern
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in systems such as politics and economics that are in constant change. This is particular
relevant when talking about time series data, where datasets might inherently not be
stationary. For example, in finance one might want to enrich the training dataset in or-
der to make it more robust to unseen situations that might be encountered in the future
through the use of data generation [Mar18a].

Finally, causality which at a high level requires that only causal relationships to
be learned is another desired property with which machine learning struggles. Thus
far, neural networks cannot inherently distinguish causation from correlation, therefore
they learn complex correlations between the input and output but there is no inherent
representation of causality [Mar18a].

According to Doshi-Velez and Kim [DVK17], interpretability is not a requirement
for all machine learning systems. In cases such as ad servers, postal code sorting or
air craft collision avoidance systems, explanation is not necessary given that either 1)
there are no significant adverse consequences in case of bad results (e.g. if a person gets
an ad suggestion that is not helpful it might have a negative impact on a company’s
revenue but it is not comparable to a wrong medical diagnosis) or 2) the problem is suf-
ficiently well-studied and validated in real world tasks such that we trust the system’s
decision. They do argue that the need for interpretability arises from an incompleteness
within the problem formalization that creates a limitation to optimization and evalu-
ation. They make a clear distinction between incompleteness that can produce some
kind of unquantified bias and uncertainty which can be quantified. They illustrate the
inherent incompleteness within machine learning under different scenarios. In the case
of safety, an end-to-end system designed for a complex task, can almost never be com-
pletely tested, e.g. given all possible inputs, to enumerate all possible outputs can be
computationally or logistically infeasible, so we may be unable to flag undesirable out-
puts. In ethics, we may want to guard against certain kinds of discrimination but their
notion of fairness may be too abstract to be able to completely encode it into the system.
And even if we succeed in encoding the protections for specific classes into the sys-
tem, there might be biases that were not considered a priori. Another possible scenario
corresponds to mismatched objectives, where an agent’s algorithm may be optimizing an
incomplete objective i.e. a proxy function for the desired goal. As an example, a clin-
ical system may be optimized for cholesterol control without taking into account the
likelihood of adherence. Related to this is the case of multi-objective trade-offs, where
there might be two desired properties that compete with one another in the machine
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learning system, e.g. privacy and prediction quality where we might have to resign pre-
diction quality in order to ensure privacy. Therefore, even if each of the objectives are
fully-specified, we may not fully know the exact dynamics of the trade-off.

Beyond interpretability and the subsequent desired properties of machine learning
systems, other caveats that can be found in machine learning, and specifically deep
learning, are the limitation of dealing with hierarchical structures, for example in the
case of language, and restrictions on integrating prior knowledge into the system. Mar-
cus [Mar18a] argues that deep learning learns correlations between groups of features
that are ”flat” or nonhierarchical and that given the inherent limitation of deep learning
systems to represent hierarchical structures, they are forced to use proxies that are not
necessarily adequate, e.g. the sequential position of a word presented in a sequence. In
the case of integrating prior knowledge into machine learning systems, there is not a
straightforward way of doing so, partially because the knowledge represented in these
systems corresponds to largely opaque correlations between the features, rather than to
abstractions like quantified statements [Mar18b].

As was discussed in the introduction, and in line with the discussion of limitations of
machine learning in general, there is certain resistance within the financial community
to adopt machine learning at larger scale due to a lack of explainability, concerns about
model robustness and data quality and biases in data and algorithms. When discussing
the use of neural networks for asset returns prediction, Feng et al. [FHP18] mention
as principal caveats model interpretability and that the models learn only correlation
but no causation. More specifically, they conclude that performing causal inference
from large datasets is difficult due to complex data interactions when assumptions for
economic model specification are not taken into account.

Another limitation in the use of machine learning in the financial services is that data
sharing, especially outside of the organization, for example to the research community
is very limited [ADM+20]. The limitations may come from various sources, such as
regulatory requirements or business needs, but nevertheless this may result in less re-
producibility of published papers, or that the research community is limited to datasets
that cover only a subset of financial problems because of inability to access more nu-
anced or specific datasets.

Another issue related to data in financial services and that we partially addressed
in this thesis is the lack of historical data in some cases. For some problems there is
a limited amount of historical data available, for example in the case of new assets or
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indices that might have been recently created (e.g. when studying cryptocurrencies) or
data to study specific events in the markets or economy in general such as flash crashes
or recessions). This is specifically a problem when dealing with machine learning meth-
ods that require more data for training such as the case for neural networks. This is
not a problem exclusively in finance, we see this in other areas of machine learning ap-
plications such as medical applications, where the datasets not only might be small or
difficult to annotate, but also require extreme care regarding sharing of data to ensure
patient privacy and compliance with current government regulation. This is leading to
lot of interest in research and development of synthetic data generation both in finance
and in medicine, where these requirements of privacy preservation, fairness and more
have to be ensured in the data generation process.
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Appendix A

Factor construction

Every month the universe is S&P 500 stocks with stocks’ z-scores ranked in 5 portfolios
and performance equal weighted.

1. Book Value Yield: Stocks are ranked by their 12 month trailing Book/Market ratio.
The long portfolio contains the cheapest stocks and the short portfolio contains the
most expensive stocks.

2. 1 Yr Fwd Earnings Yield: Stocks are ranked by their 12 month forward Earnings
Yield. The long portfolio contains the cheapest stocks and the short portfolio con-
tains the most expensive stocks (as well as loss makers).

3. Free Cash Flow Yield: Stocks are ranked bu their 12 month free cash flow yield.
The long portfolio contains the higher ratio while the short portfolio contains the
lower yield.

4. Sales Yield: Ranking by 1-yr historical sales yield, which is the ratio of sales over
price. Stocks with the highest sales yield are allocated to the top portfolio.

5. Dividend Yield (Non Zero dividend stocks only): Stocks are ranked by trailing 12
month dividend yield as at the month end. The long portfolio contains the highest
yielding stocks and the short portfolio contains the lowest yielding stocks.

6. Historical ROE: stocks are ranked by their 12 month trailing ROE. The long port-
folio contains the stocks with the highest ROEs and the short portfolio contains
stocks with lowest (or negative) ROEs.
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7. Operating (EBIT) Margin: Ranking by operating margin which is the ratio be-
tween operating income (EBIT: earnings before interest and tax) and net sales.
Stocks with highest operating margin are allocated to the top portfolio.

8. AltmanZ: Ranking by the Altman Z-score, a model that combines 5 different finan-
cial ratios to determine the likelihood of bankruptcy. Stocks least likely to become
bankrupt (highest scoring) are allocated to the top portfolio. It’s a composite score
based on five variables, working capital/total assets, retained earnings/ total as-
sets, earnings before interest and taxes/total assets, market value equity/book
value of total debt, sales/total assets.

9. ROA: stocks are ranked by their forecasted Return On Assets.The long portfolio
contains the stocks with the highest ROAs and the short portfolio contains stocks
with lowest (or negative) ROAs.

10. Piotroski Score: Ranking by Piotroski’s F-score, a fundamental quantification (be-
tween 0 and 9) that measures financial strength. Stocks with the best (highest)
score are allocated to the top portfolio. Factors include market cap, P/B, ROA,
leverage, net margin, net operating income, operating cash flow/liabilities, cash/li-
abilities and sales/total assets.

11. Earnings Growth FY1 to FY2: stocks are ranked by their projected earnings growth
for current fiscal year (FY1) and next year (FY2).

12. Historical Sales Growth - 1Yr: Median year-on-year sales growth are ranked, with
high sales growth corresponding to the long portfolio and low sales growth corre-
sponding to the short portfolio.

13. Historical Sales Growth - 3 Yr: Median 3-yr sales growth are ranked, with high
sales growth corresponding to the long portfolio and low sales growth corre-
sponding to the short portfolio.

14. Operating Margin Growth - 1Yr: Ranking by operating margin growth, i.e. one
year change of operating margin. Stocks with highest growth are allocated to the
long portfolio.

15. Operating Margin Growth - 3 Yr: Ranking by operating margin growth, i.e. three
year change of operating margin. Stocks with highest growth are allocated to the
long portfolio.
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16. Historical Free Cash Flow Growth - 1Yr: Ranking by 1-yr historical Free Cash Flow
Growth. Highest growing stocks are allocated to top portfolio.

17. Historical Free Cash Flow Growth - 3 Yr: Ranking by 3-yr historical Free Cash
Flow Growth. Highest growing stocks are allocated to top portfolio.

18. Historical DPS Growth - 1Yr: DPS is dividend per share, and DPS growth corre-
sponds to: DSPt/DPSt−1 − 1. Stocks with the highest historical DPS are allocated
to the top portfolio.

19. Historical DPS Growth - 3 Yr: Stocks with the highest historical DPS (over 3-years)
are allocated to the top portfolio.

20. 6 Month Price Momentum: The 6 Mth Price Momentum factor is calculated by
ranking stocks by their total return over the previous 6 months.

21. 12 Month Price Momentum: Stocks are ranked by their 12 month total return as at
the month end. The long portfolio contains the stocks that have the highest return
and the short portfolio contains the stocks that returned the least over the prior 12
months.

22. 3 Month Avg Mean EPS: Mean of EPS (earnings per share) over last 3 months.
Stocks with highest avg mean EPS are allocated to the top portfolio.

23. Size (large cap is long): Stocks are ranked by their month end market cap. The long
portfolio contains the stocks that have largest market cap and the short portfolio
contains the stocks with the lowest market cap.

24. EPSCV (EPS Coefficient of Variation): EPS is adjusted for the risk associated. Co-
efficient of variation is used as a proxy for earnings risk.

25. Beta (high beta is long): Stocks are ranked according to their 60 day historic price
volatility.



Appendix B

Feature saliency hiddden Markov model

B.1 Feature saliency HMM algorithm

The FSHMM algorithm as developed by Adams, Beiling and Cogill has the following
EM update steps (for simplicity we follow their notation):

E-Step

γt(i) = P (xt = i|y,Λ′) (B.1)

ξ(i, j) = P (xt−1 = i, xt = j|y,Λ′) (B.2)

With γt(i) and ξ(i, j) calculated with the forward-backward algorithm. The additional
updates are:

eilt = ρlr(ylt|µil, σ2
il) (B.3)

hilt = (1− ρl)q(ylt|εl, τ 2l ) (B.4)

gilt = eilt + hilt (B.5)

uilt =
γiteilt
gilt

(B.6)

vilt = γit − uilt (B.7)
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MAP M-step:

For the M-step, the following priors are used, where Dir corresponds to the Dirichlet
distribution, N is the Gaussian distribution and IG is the inverse gamma distribution:

π ∼ Dir(π|p̄) (B.8)

Ai ∼ Dir(Ai|āi) (B.9)

µil ∼ N (µil|mil, s
2
il) (B.10)

σ2
il ∼ IG(σ2

il|ζil, ηil) (B.11)

εl ∼ N (εl|bl, c2l ) (B.12)

τ 2l ∼ IG(τl|νl, ψl) (B.13)

ρl ∼ eklρl (B.14)

The parameter update equations are listed below:

πi =
γ0(i) + βi − 1∑I
i=1(γ0(i) + βi − 1)

(B.15)

aij =

∑T
t=1 ξt(i, j) + αij − 1∑I

j=1(
∑T

t=1 ξt(i, j) + αi,j−1)
(B.16)

µil =
s2il
∑T

t=0 uiltylt + σ2
ilmil

s2il
∑T

t=0 uilt + σ2
il

(B.17)

σ2
il =

∑T
t=0 uilt(ylt − µil)2 + 2ηil∑T

t=0 uilt + 2(ζil + 1)
(B.18)

εl =
c2l
∑T

t=0(
∑I

i=1 vilt)yilt + τ 2l bl

c2l
∑T

t=0(
∑I

i=1 vilt) + τ 2l
(B.19)

τ 2l =
σTt=0(

∑I
i=1 vilt)(ylt − εl)2 + sψl

σTt=0(
∑I

i=1 vilt) + 2(vl + 1)
(B.20)

ρl =
T̂ − 2

√
T̂ 2 − 4kl(

∑T
t=0

∑I
i=1 uilt)

2kl
(B.21)

where T̂ = T + 1 + kl.
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Table B.1: Feature saliency of five factor returns time series (ρ1 to ρ5) and three irrelevant
series of random noise (ρ6 to ρ8), all calculated with k = 50. All irrelevant features have
saliency below 0.25, and most of the financial series have saliency close to one, except
ρ3 that has a small saliency in most of the cases.

Case ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 ρ7 ρ8

500 points 2 states 0.99 0.97 0.31 0.98 0.97 0.14 0.04 0.05
500 points 3 states 0.99 0.99 0.26 0.98 0.99 0.17 0.04 0.07
2000 points 2 states 0.99 0.99 0.19 0.99 0.99 0.02 0.01 0.02
2000 points 3 states 1.00 1.00 0.12 1.00 1.00 0.07 0.20 0.03

Table B.2: Feature saliency of ten factor returns time series (ρ1 to ρ10) and five irrele-
vant series of random noise (ρ11 to ρ15). With a small value of k all irrelevant features
are discarded and all relevant features have high saliency. With a larger k, noise fea-
tures are discarded, but also financial features start being selected. All series have 3800
observations.

Case ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 ρ7 ρ8 ρ9 ρ10 ρ11 ρ12 ρ13 ρ14 ρ15

k = 100 2 states 0.99 0.99 0.56 0.99 0.91 1.00 0.99 0.95 0.99 0.97 0.11 0.11 0.04 0.26 0.07
k = 100 3 states 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.24 0.09 0.40 0.10 0.11
k = 380 2 states 0.75 0.03 0.13 0.98 0.44 0.99 0.99 0.17 0.98 0.14 0.05 0.02 0.02 0.01 0.04
k = 380 3 states 1.00 0.37 0.08 0.99 0.55 1.00 1.00 0.13 0.99 0.22 0.04 0.17 0.04 0.05 0.03

B.2 FSHMM with real and noise features

Table B.1 shows feature saliency of 5 relevant features and three irrelevant features gen-
erated withN (0, 1) with different number of observations and number of hidden states.
Table B.2 shows the same but with 10 relevant features and 5 added series of noise, for
different states and values of k parameter.



Appendix C

Additional results for transfer learning

Table C.1 shows the performance of the portfolios built from a network trained without
transfer learning with only the cross-entropy loss and a combined loss, for the experi-
ments with the network with 25 neurons (NoTL(25)-CE and NoTL(25)-R+CE). Table C.2
shows the same experiments but with the network with the fully connected layer of 100
neurons (NoTL(100)-CE and NoTL(100)-R+CE).

Tables C.3 and C.4 show the results of the paired t-test on the portfolio returns be-
tween all approaches for the 25 neuron and 100 neuron architectures, respectively.
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Table C.1: Performance of the k = 10 long-short portfolios after transaction costs, built
from models trained from zero with only cross-entropy loss and a combined loss for the
network with 25n.

Ann ret Ann vol IR D. risk DIR Acc Macro-F1

LSTM [KDH17] 28.98 28.66 1.01 19.10 1.52

NoTL(25)-CE 0 -14.07 37.87 -0.37 26.15 -0.54 73.98±19.54 33.55±6.52
NoTL(25)-CE 1 13.03 36.12 0.36 24.47 0.53 74.18±20.98 33.35±7.0
NoTL(25)-CE 2 2.13 38.19 0.06 26.91 0.08 72.88±20.48 33.29±6.99
NoTL(25)-CE 3 14.09 35.56 0.40 23.74 0.59 73.13±18.94 33.57±6.5
NoTL(25)-CE 4 -10.81 35.35 -0.31 24.25 -0.45 73.55±19.47 33.64±6.53
NoTL(25)-CE 5 -13.93 37.71 -0.37 26.12 -0.53 73.42±20.01 33.38±6.8
NoTL(25)-CE 6 -10.25 39.05 -0.26 26.31 -0.39 73.02±20.89 33.27±7.18
NoTL(25)-CE 7 -11.35 37.89 -0.30 25.56 -0.44 73.6±20.86 33.36±7.08
NoTL(25)-CE 8 -7.22 35.98 -0.20 24.01 -0.30 73.43±18.18 33.51±6.07
NoTL(25)-CE 9 -13.93 36.05 -0.39 24.99 -0.56 73.71±19.34 33.56±6.63

NoTL(25)-R+CE 0 17.04 37.24 0.46 25.03 0.68 57.46±25.31 27.96±9.09
NoTL(25)-R+CE 1 24.47 36.07 0.68 24.13 1.01 58.41±21.17 28.5±7.85
NoTL(25)-R+CE 2 15.61 41.90 0.37 28.74 0.54 59.64±20.48 29.21±6.98
NoTL(25)-R+CE 3 18.77 36.37 0.52 24.91 0.75 60.58±21.32 29.34±7.81
NoTL(25)-R+CE 4 26.94 36.42 0.74 24.29 1.11 60.53±23.67 28.93±8.15
NoTL(25)-R+CE 5 11.84 37.50 0.32 26.62 0.44 58.95±20.76 28.87±7.46
NoTL(25)-R+CE 6 23.56 38.61 0.61 25.43 0.93 60.64±22.3 29.45±7.93
NoTL(25)-R+CE 7 14.14 35.46 0.40 24.84 0.57 61.76±21.37 29.86±7.43
NoTL(25)-R+CE 8 17.64 37.06 0.48 25.15 0.70 61.23±21.01 29.7±7.17
NoTL(25)-R+CE 9 5.76 38.53 0.15 28.14 0.20 59.26±21.42 28.94±7.56
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Table C.2: Performance of the k = 10 long-short portfolios after transaction costs, built
from models trained from zero with only cross-entropy loss and a combined loss for the
network with 100n.

Ann ret Ann vol IR D. risk DIR Acc Macro-F1

LSTM [KDH17] 28.98 28.66 1.01 19.10 1.52

NoTL(100)-CE 0 -6.50 38.03 -0.17 24.96 -0.26 72.54±20.17 32.92±6.49
NoTL(100)-CE 1 -0.90 41.10 -0.02 30.93 -0.03 72.78±20.07 33.28±6.71
NoTL(100)-CE 2 10.43 38.51 0.27 25.27 0.41 74.69±21.14 33.37±6.94
NoTL(100)-CE 3 5.66 42.62 0.13 31.70 0.18 74.31±19.48 33.43±6.37
NoTL(100)-CE 4 -15.51 44.15 -0.35 30.06 -0.52 72.16±21.6 33.02±7.24
NoTL(100)-CE 5 -8.84 34.96 -0.25 23.06 -0.38 73.99±17.67 33.65±5.75
NoTL(100)-CE 6 -13.36 39.35 -0.34 26.56 -0.50 72.89±18.48 33.5±6.19
NoTL(100)-CE 7 -15.50 37.19 -0.42 25.59 -0.61 72.52±20.21 33.09±6.78
NoTL(100)-CE 8 -13.89 37.85 -0.37 26.04 -0.53 74.51±17.59 33.8±5.83
NoTL(100)-CE 9 -17.24 39.37 -0.44 26.72 -0.65 73.92±19.38 33.63±6.78

NoTL(100)-R+CE 0 12.71 39.42 0.32 27.22 0.47 61.98±21.33 29.84±7.3
NoTL(100)-R+CE 1 17.96 37.11 0.48 24.88 0.72 59.76±21.03 29.14±7.33
NoTL(100)-R+CE 2 15.57 44.21 0.35 28.14 0.55 53.77±24.3 26.86±9.28
NoTL(100)-R+CE 3 31.10 37.14 0.84 24.73 1.26 57.02±21.95 28.24±8.12
NoTL(100)-R+CE 4 19.29 42.31 0.46 27.29 0.71 53.21±26.21 26.25±9.94
NoTL(100)-R+CE 5 25.43 37.45 0.68 24.94 1.02 57.19±21.49 28.22±7.85
NoTL(100)-R+CE 6 19.64 35.79 0.55 24.49 0.80 57.66±23.85 28.06±8.26
NoTL(100)-R+CE 7 12.06 38.11 0.32 26.06 0.46 61.23±18.35 29.74±5.96
NoTL(100)-R+CE 8 18.06 36.73 0.49 24.78 0.73 61.02±23.47 29.41±8.46
NoTL(100)-R+CE 9 13.91 36.75 0.38 25.18 0.55 59.51±21.27 28.97±7.03
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Appendix D

Automated data augmentation

D.1 Details of UCR dataset

Table D.1 shows the characteristics of the subset of datasets used from the UCR archive
and Table D.2 shows the performance of three augmentation policies W-Augment, α−trim
and RandAugment, using 4 and 8 transformations on the policy and compares them
with four state-of-the-art methods TS-CHIEF, HIVE-COTE, ROCKET and Inception-
Time.

Table D.1: Characteristics of the datasets used from the UCR archive.

Train size Test size Length No of classes Is balanced max/min class Type

MixedShapesSmallTrain 100 2425 1024 5 True 1.0 Image
InlineSkate 100 550 1882 7 False 2.0 Motion
ECG200 100 100 96 2 False 2.2 ECG
ACSF1 100 100 1460 10 True 1.0 Device
Ham 109 105 431 2 False 1.1 Spectro
Haptics 155 308 1092 5 False 2.0 Motion
Fish 175 175 463 7 False 1.3 Image
WormsTwoClass 181 77 900 2 False 1.4 Motion
Worms 181 77 900 5 False 4.5 Motion
ECG5000 500 4500 140 5 False 146.0 ECG
EthanolLevel 504 500 1751 4 True 1.0 Spectro
ProximalPhalanxOutlineCorrect 600 291 80 2 False 2.1 Image
MiddlePhalanxOutlineCorrect 600 291 80 2 False 1.8 Image
DistalPhalanxOutlineCorrect 600 276 80 2 False 1.7 Image
Strawberry 613 370 235 2 False 1.8 Spectro

230



APPENDIX D. AUTOMATED DATA AUGMENTATION 231

Ta
bl

e
D

.2
:

Te
st

ac
cu

ra
cy

on
15

da
ta

se
ts

fr
om

th
e

U
C

R
ar

ch
iv

e.
C

om
pa

ri
so

ns
ac

ro
ss

fo
ur

st
at

e-
of

-t
he

-a
rt

m
od

el
s

T
S-

C
H

IE
F,

H
IV

E-
C

O
T

E,
R

O
C

K
ET

an
d

In
ce

pt
io

nT
im

e,
ou

rt
w

o
pr

op
os

ed
po

lic
ie

s
W

-A
ug

m
en

ta
nd

α
−

tr
im

an
d

R
an

dA
ug

-
m

en
t.

V
al

ue
s

in
pa

re
nt

he
si

s
re

fe
r

to
nu

m
be

r
of

tr
an

sf
or

m
at

io
ns

us
ed

in
th

e
po

lic
y.

TS
-C

H
IE

F
H

IV
E-

C
O

TE
v1

.0
R

O
C

K
ET

In
ce

pt
io

nT
im

e
Ba

se
lin

e
W

-A
ug

(4
)

α
−

tr
im

(4
)

R
an

dA
ug

m
en

t(
4)

W
-A

ug
(8

)
α
−

tr
im

(8
)

R
an

dA
ug

m
en

t(
8)

EC
G

50
00

94
.8

94
.6

94
.7

94
.2

94
.5

94
.2

93
.8

94
.6

94
.2

94
.5

94
.4

Et
ha

no
lL

ev
el

60
.6

84
.9

62
.5

87
.5

85
.9

86
.6

84
.6

86
.0

84
.0

81
.4

83
.4

Pr
ox

im
al

Ph
al

an
xO

ut
lin

eC
or

re
ct

87
.5

88
.5

89
.9

90
.6

91
.7

91
.5

92
.1

92
.1

92
.4

92
.8

91
.1

M
id

dl
eP

ha
la

nx
O

ut
lin

eC
or

re
ct

80
.6

81
.3

83
.4

83
.4

82
.9

84
.7

83
.2

86
.3

82
.7

83
.2

84
.5

D
is

ta
lP

ha
la

nx
O

ut
lin

eC
or

re
ct

81
.9

82
.4

82
.4

81
.5

78
.0

76
.9

77
.2

77
.5

75
.6

75
.4

76
.8

St
ra

w
be

rr
y

97
.4

97
.5

97
.9

97
.5

97
.5

97
.2

97
.6

97
.0

97
.6

97
.8

97
.8

M
ix

ed
Sh

ap
es

Sm
al

lT
ra

in
94

.7
94

.5
93

.1
91

.3
91

.5
89

.6
90

.9
90

.3
92

.2
91

.6
91

.3
In

lin
eS

ka
te

57
.2

51
.5

43
.8

53
.4

51
.6

36
.1

41
.6

46
.0

38
.1

43
.3

38
.2

EC
G

20
0

85
.5

85
.9

89
.9

89
.7

86
.0

89
.0

90
.0

87
.0

91
.0

89
.0

88
.0

A
C

SF
1

80
.7

85
.0

80
.7

82
.7

91
.0

88
.8

86
.0

88
.0

89
.0

90
.0

90
.0

H
am

80
.5

84
.0

85
.5

85
.0

66
.7

80
.6

81
.0

75
.2

77
.0

75
.2

76
.2

H
ap

ti
cs

52
.3

53
.9

53
.4

53
.7

57
.5

55
.5

54
.5

48
.4

52
.9

54
.9

53
.9

Fi
sh

98
.2

97
.9

97
.4

97
.3

98
.3

99
.0

98
.3

98
.3

99
.4

99
.4

97
.7

W
or

m
sT

w
oC

la
ss

78
.6

79
.0

79
.0

80
.3

77
.9

78
.7

79
.2

80
.5

79
.5

79
.2

79
.2

W
or

m
s

76
.8

71
.6

72
.0

78
.1

83
.1

81
.0

80
.5

83
.1

80
.0

79
.2

80
.5



APPENDIX D. AUTOMATED DATA AUGMENTATION 232

Figure D.1: Weights assigned to each augmented sample per training mini-batch. From
left to write, plots correspond to W-augment, W-augment (+2), W-augment (+3) and
W-augment (+4). Each row corresponds to a split of data.
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Figure D.2: Weights assigned to each augmented sample per training mini-batch. From
left to write, plots correspond to W-augment, W-augment (+2), W-augment (+3) and
W-augment (+4). Each row corresponds to a split of data.
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Figure D.3: Weights assigned to each augmented sample per training mini-batch. From
left to write, plots correspond to W-augment, W-augment (+2), W-augment (+3) and
W-augment (+4). Each row corresponds to a split of data.
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Figure D.4: Weights assigned to each augmented sample per training mini-batch. From
left to write, plots correspond to W-augment, W-augment (+2), W-augment (+3) and
W-augment (+4). Each row corresponds to a split of data.
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Figure D.5: Weights assigned to each augmented sample per training mini-batch. From
left to write, plots correspond to W-augment, W-augment (+2), W-augment (+3) and
W-augment (+4). Each row corresponds to a split of data.
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Figure D.6: Visualization of the InceptionTime network, an esemble of CNN models
proposed by Fawaz et al. [IFLF+20].
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