558 research outputs found

    Cell polarity in cerebral cortex development - cellular architecture shaped by biochemical networks

    Get PDF
    The human cerebral cortex is the seat of our cognitive abilities and composed of an extraordinary number of neurons, organized in six distinct layers. The establishment of specific morphological and physiological features in individual neurons needs to be regulated with high precision. Impairments in the sequential developmental programs instructing corticogenesis lead to alterations in the cortical cytoarchitecture which is thought to represent the major underlying cause for several neurological disorders including neurodevelopmental and psychiatric diseases. In this review we discuss the role of cell polarity at sequential stages during cortex development. We first provide an overview of morphological cell polarity features in cortical neural stem cells and newly-born postmitotic neurons. We then synthesize a conceptual molecular and biochemical framework how cell polarity is established at the cellular level through a break in symmetry in nascent cortical projection neurons. Lastly we provide a perspective how the molecular mechanisms applying to single cells could be probed and integrated in an in vivo and tissue-wide context

    The molecular and cellular origin of human prostate cancer

    Get PDF
    Prostate cancer is the most commonly diagnosed male malignancy. Despite compelling epidemiology, there are no definitive aetiological clues linking development to frequency. Pre-malignancies such as proliferative inflammatory atrophy (PIA) and prostatic intraepithelial neoplasia (PIN) yield insights into the initiating events of prostate cancer, as they supply a background "field" for further transformation. An inflammatory aetiology, linked to recurrent prostatitis, and heterologous signalling from reactive stroma and infiltrating immune cells may result in cytokine addiction of cancer cells, including a tumour-initiating population also known as cancer stem cells (CSCs). In prostate tumours, the background mutational rate is rarely exceeded, but genetic change via profound sporadic chromosomal rearrangements results in copy number variations and aberrant gene expression. In cancer, dysfunctional differentiation is imposed upon the normal epithelial lineage, with disruption/disappearance of the basement membrane, loss of the contiguous basal cell layer and expansion of the luminal population. An initiating role for androgen receptor (AR) is attractive, due to the luminal phenotype of the tumours, but alternatively a pool of CSCs, which express little or no AR, has also been demonstrated. Indolent and aggressive tumours may also arise from different stem or progenitor cells. Castrate resistant prostate cancer (CRPC) remains the inevitable final stage of disease following treatment. Time-limited effectiveness of second-generation anti-androgens, and the appearance of an AR-neuroendocrine phenotype imply that metastatic disease is reliant upon the plasticity of the CSC population, and indeed CSC gene expression profiles are most closely related to those identified in CRPCs

    Gene Regulation by the transcription factor ZEB1 in Glioblastoma Multiforme

    Get PDF
    Glioblastoma Multiforme (GBM) is the most prevalent type of glioma, bearing the highest incidence rate of brain and Central Nervous System (CNS) malignant tumors and the lowest survival rate. GBMs distinguish themselves from lower grade glial tumors by the presence of certain hallmark histological features such as the presence of central necrosis in the tumor mass, marginal proliferation of endothelial cells and the presence of palisading cells around the area of necrosis. Several hallmark features contribute to the poor responsiveness that GBM tumors have to treatment including their high inter- and intratumoral heterogeneity at a phenotypic, cellular, genetic and epigenetic level. Most importantly, the existence of cancer stem cell (CSC) populations within GBM tumors is crucial for driving invasive tumor growth due to their potential to proliferate in vascular conditions, while becoming highly invasive in hypoxic conditions. Moreover, the ability of GBM CSCs to infiltrate surrounding brain parenchyma means that even the smallest number of such cells left after surgery will cause tumor recurrence.(...

    MODULATION AND INTERACTIONS OF CHARGED BIOMIMETIC MEMBRANES WITH BIVALENT IONS

    Get PDF
    The biological membrane of an eukaryotic cell is a two-dimensional structure of mostly phospholipids with embedded proteins. This two-dimensional structure plays many key roles in the life of a cell. Transmembrane proteins, for example, play the role of a gate for different ions (such as Ca2+). Also found are peripheral proteins that are used as enzymes for different purposes in the inner leaflet of the plasma membrane. Phospholipids, in particular play three key roles. Firstly, some members of this group are used to store energy. Secondly, the hydrophobic and hydrophilic properties inherent to phospholipids enable them to be used as building blocks of the cell membrane by forming an asymmetric bilayer. This provides a shielding protection against the outer environment while at the same time keeping the organelles and cytosol from leaking out of the cell. Finally lipids are involved in regulating the aggregation of proteins in the membrane. In addition, some subspecies such as phosphatidylinositol (PtdIns) are second messenger molecules in their own right, thus playing an important role in cellular signaling events. In my work presented in this thesis, I am focusing on the role of some phospholipids as signaling molecules and in particular the physicochemical underpinnings that could be used in their spatiotemporal organization in the cellular plasma membrane. I am specifically concerned with the important family of phosphatidylinositol lipids. PtdIns are very well known for their role as signaling molecules in numerous cell events. They are located in the inner leaflet of the plasma membrane as well as part of the membrane of other organelles. Studies of these signaling molecules in their in vivo environment present many challenges: Firstly, the complexity of interactions due to the numerous entities present in eukaryotic cell membranes makes it difficult to establish clear cause and effect relationships. Secondly, due to their size, our inability to probe these biomolecules in a dynamic environment and the lack of appropriate physical and biochemical tools. In contrast, biomimetic membrane models that rely on the amphiphilic properties of phospholipids are powerful tools that enable the study of these molecules in vitro. By having control over the different experimental parameters such as temperature and pH, reliable and repeatable experimental conditions can be created. One of the key questions I investigated in this thesis is related to the clustering mechanism of PtdIns(4, 5)P2 into pools or aggregates that enable independent cellular control of this species by geometric separation. The lateral aggregation of PtdIns(4, 5)P2 and its underlying physical causes is still a matter of debate. In the first part of this thesis I introduce the general information on lipid membranes with a special focus on the PtdIns family and their associated signaling events. In addition, I explain the Langmuir-Blodgett film balance (LB) system as tool to study lipid membranes and lipid interactions. In the second chapter, I describe my work on the lateral compressibility of PtdIns(4, 5)P2, PtdIns and DOPG monolayers and its modulation by bivalent ions using Langmuir monolayers. In addition, a theoretical framework of compressibility that depends on a surface potential induced by a planar layer of charged molecules and ions in the bulk was provided. In the third part, I present my work on the excess Gibbs free energy of the lipid systems PtdIns(4, 5)P2 -POPC, PtdIns(4, 5)P2, and POPC as they are modulated by bivalent ions. In the fourth part, I report on my foray in engineering a light-based system that relies on different dye properties to simulate calcium induced calcium release (CICR) that occurs in many cell types. In the final chapter, I provide a general conclusion and present directions for future research that would build on my findings

    IST Austria Thesis

    Get PDF
    Mosaic genetic analysis has been widely used in different model organisms such as the fruit fly to study gene-function in a cell-autonomous or tissue-specific fashion. More recently, and less easily conducted, mosaic genetic analysis in mice has also been enabled with the ambition to shed light on human gene function and disease. These genetic tools are of particular interest, but not restricted to, the study of the brain. Notably, the MADM technology offers a genetic approach in mice to visualize and concomitantly manipulate small subsets of genetically defined cells at a clonal level and single cell resolution. MADM-based analysis has already advanced the study of genetic mechanisms regulating brain development and is expected that further MADM-based analysis of genetic alterations will continue to reveal important insights on the fundamental principles of development and disease to potentially assist in the development of new therapies or treatments. In summary, this work completed and characterized the necessary genome-wide genetic tools to perform MADM-based analysis at single cell level of the vast majority of mouse genes in virtually any cell type and provided a protocol to perform lineage tracing using the novel MADM resource. Importantly, this work also explored and revealed novel aspects of biologically relevant events in an in vivo context, such as the chromosome-specific bias of chromatid sister segregation pattern, the generation of cell-type diversity in the cerebral cortex and in the cerebellum and finally, the relevance of the interplay between the cell-autonomous gene function and cell-non-autonomous (community) effects in radial glial progenitor lineage progression. This work provides a foundation and opens the door to further elucidating the molecular mechanisms underlying neuronal diversity and astrocyte generation

    The distinct distribution of two Dictyostelium Talins

    Get PDF
    Although the distinct distribution of certain molecules along the anterior or posterior edge is essential for directed cell migration, the mechanisms to maintain asymmetric protein localization have not yet been fully elucidated. Here, we studied a mechanism for the distinct localizations of two Dictyostelium talin homologues, talin A and talin B, both of which play important roles in cell migration and adhesion. Using GFP fusion, we found that talin B, as well as its C-terminal actin-binding region, which consists of an I/LWEQ domain and a villin headpiece domain, was restricted to the leading edge of migrating cells. This is in sharp contrast to talin A and its C-terminal actin-binding domain, which co-localized with myosin II along the cell posterior cortex, as reported previously. Intriguingly, even in myosin II-null cells, talin A and its actin-binding domain displayed a specific distribution, co-localizing with stretched actin filaments. In contrast, talin B was excluded from regions rich in stretched actin filaments, although a certain amount of its actin-binding region alone was present in those areas. When cells were sucked by a micro-pipette, talin B was not detected in the retracting aspirated lobe where acto-myosin, talin A, and the actin-binding regions of talin A and talin B accumulated. Based on these results, we suggest that talin A predominantly interacts with actin filaments stretched by myosin II through its C-terminal actin-binding region, while the actin-binding region of talin B does not make such distinctions. Furthermore, talin B appears to have an additional, unidentified mechanism that excludes it from the region rich in stretched actin filaments. We propose that these actin-binding properties play important roles in the anterior and posterior enrichment of talin B and talin A, respectively, during directed cell migration

    Colorectal Cancer Through Simulation and Experiment

    Get PDF
    Colorectal cancer has continued to generate a huge amount of research interest over several decades, forming a canonical example of tumourigenesis since its use in Fearon and Vogelstein’s linear model of genetic mutation. Over time, the field has witnessed a transition from solely experimental work to the inclusion of mathematical biology and computer-based modelling. The fusion of these disciplines has the potential to provide valuable insights into oncologic processes, but also presents the challenge of uniting many diverse perspectives. Furthermore, the cancer cell phenotype defined by the ‘Hallmarks of Cancer’ has been extended in recent times and provides an excellent basis for future research. We present a timely summary of the literature relating to colorectal cancer, addressing the traditional experimental findings, summarising the key mathematical and computational approaches, and emphasising the role of the Hallmarks in current and future developments. We conclude with a discussion of interdisciplinary work, outlining areas of experimental interest which would benefit from the insight that mathematical and computational modelling can provide

    The Role of Merlin and Apicobasal Polarity in Endometrial Development and Homeostasis

    Get PDF
    Apicobasal polarity and cell adhesion are necessary for the proper formation and organization of epithelial tissues. Merlin couples cell polarity and adhesion through correct localization of the polarity protein Par3 and maturation of apical junctions. Merlin and Par3 are necessary for the development and homeostasis of highly regenerative tissues like the epidermis. The continual repopulation of the endometrium after each menstrual cycle requires a constant reorganization of cell polarity and adhesion. The endometrium consists of a luminal epithelium that postnatally gives rise to the distinct glandular epithelium. Endometrial glands are necessary to secrete nutrients for the pre-implantation embryo. In addition, the endometrial gland is thought to be where endometrial cancer originates. While the endometrium is important for female fertility, relatively little is understood about how glands develop or how endometrial cancer forms. We examine the role of Merlin and apicobasal polarity in endometrial development and homeostasis. We determine that Merlin regulation of apicobasal polarity is necessary for proper endometrial gland formation. Apicobasal polarity is disrupted in low-grade endometrial cancer and mediates Notch regulated proliferation and migration in endometrial cancer cells. This dissertation reveals a critical role for Merlin and cell polarity in endometrial gland development, mammalian fertility, and endometrial cancer

    Propranolol restricts the mobility of single EGF-receptors on the cell surface before their internalization

    Get PDF
    The epidermal growth factor receptor is involved in morphogenesis, proliferation and cell migration. Its up-regulation during tumorigenesis makes this receptor an interesting therapeutic target. In the absence of the ligand, the inhibition of phosphatidic acid phosphohydrolase activity by propranolol treatment leads to internalization of empty/inactive receptors. The molecular events involved in this endocytosis remain unknown. Here, we quantified the effects of propranolol on the mobility of single quantum-dot labelled receptors before the actual internalization took place. The single receptors showed a clear stop-and-go motion; their diffusive tracks were continuously interrupted by sub-second stalling events, presumably caused by transient clustering. In the presence of propranolol we found that: i) the diffusion rate reduced by 22 %, which indicates an increase in drag of the receptor. Atomic force microscopy measurements did not show an increase of the effective membrane tension, such that clustering of the receptor remains the likely mechanism for its reduced mobility. ii) The receptor got frequently stalled for longer periods of multiple seconds, which may signal the first step of the internalization process
    • …
    corecore