27,152 research outputs found

    A symmetry-adapted numerical scheme for SDEs

    Get PDF
    We propose a geometric numerical analysis of SDEs admitting Lie symmetries which allows us to individuate a symmetry adapted coordinates system where the given SDE has notable invariant properties. An approximation scheme preserving the symmetry properties of the equation is introduced. Our algorithmic procedure is applied to the family of general linear SDEs for which two theoretical estimates of the numerical forward error are established.Comment: A numerical example adde

    The Magnus expansion and some of its applications

    Get PDF
    Approximate resolution of linear systems of differential equations with varying coefficients is a recurrent problem shared by a number of scientific and engineering areas, ranging from Quantum Mechanics to Control Theory. When formulated in operator or matrix form, the Magnus expansion furnishes an elegant setting to built up approximate exponential representations of the solution of the system. It provides a power series expansion for the corresponding exponent and is sometimes referred to as Time-Dependent Exponential Perturbation Theory. Every Magnus approximant corresponds in Perturbation Theory to a partial re-summation of infinite terms with the important additional property of preserving at any order certain symmetries of the exact solution. The goal of this review is threefold. First, to collect a number of developments scattered through half a century of scientific literature on Magnus expansion. They concern the methods for the generation of terms in the expansion, estimates of the radius of convergence of the series, generalizations and related non-perturbative expansions. Second, to provide a bridge with its implementation as generator of especial purpose numerical integration methods, a field of intense activity during the last decade. Third, to illustrate with examples the kind of results one can expect from Magnus expansion in comparison with those from both perturbative schemes and standard numerical integrators. We buttress this issue with a revision of the wide range of physical applications found by Magnus expansion in the literature.Comment: Report on the Magnus expansion for differential equations and its applications to several physical problem

    Structure-Preserving Discretization of Incompressible Fluids

    Get PDF
    The geometric nature of Euler fluids has been clearly identified and extensively studied over the years, culminating with Lagrangian and Hamiltonian descriptions of fluid dynamics where the configuration space is defined as the volume-preserving diffeomorphisms, and Kelvin's circulation theorem is viewed as a consequence of Noether's theorem associated with the particle relabeling symmetry of fluid mechanics. However computational approaches to fluid mechanics have been largely derived from a numerical-analytic point of view, and are rarely designed with structure preservation in mind, and often suffer from spurious numerical artifacts such as energy and circulation drift. In contrast, this paper geometrically derives discrete equations of motion for fluid dynamics from first principles in a purely Eulerian form. Our approach approximates the group of volume-preserving diffeomorphisms using a finite dimensional Lie group, and associated discrete Euler equations are derived from a variational principle with non-holonomic constraints. The resulting discrete equations of motion yield a structure-preserving time integrator with good long-term energy behavior and for which an exact discrete Kelvin's circulation theorem holds

    Stochastic Variational Integrators

    Full text link
    This paper presents a continuous and discrete Lagrangian theory for stochastic Hamiltonian systems on manifolds. The main result is to derive stochastic governing equations for such systems from a critical point of a stochastic action. Using this result the paper derives Langevin-type equations for constrained mechanical systems and implements a stochastic analog of Lagrangian reduction. These are easy consequences of the fact that the stochastic action is intrinsically defined. Stochastic variational integrators (SVIs) are developed using a discretized stochastic variational principle. The paper shows that the discrete flow of an SVI is a.s. symplectic and in the presence of symmetry a.s. momentum-map preserving. A first-order mean-square convergent SVI for mechanical systems on Lie groups is introduced. As an application of the theory, SVIs are exhibited for multiple, randomly forced and torqued rigid-bodies interacting via a potential.Comment: 21 pages, 8 figure

    Low dimensional manifolds for exact representation of open quantum systems

    Full text link
    Weakly nonlinear degrees of freedom in dissipative quantum systems tend to localize near manifolds of quasi-classical states. We present a family of analytical and computational methods for deriving optimal unitary model transformations based on representations of finite dimensional Lie groups. The transformations are optimal in that they minimize the quantum relative entropy distance between a given state and the quasi-classical manifold. This naturally splits the description of quantum states into quasi-classical coordinates that specify the nearest quasi-classical state and a transformed quantum state that can be represented in fewer basis levels. We derive coupled equations of motion for the coordinates and the transformed state and demonstrate how this can be exploited for efficient numerical simulation. Our optimization objective naturally quantifies the non-classicality of states occurring in some given open system dynamics. This allows us to compare the intrinsic complexity of different open quantum systems.Comment: Added section on semi-classical SR-latch, added summary of method, revised structure of manuscrip

    Study of the risk-adjusted pricing methodology model with methods of Geometrical Analysis

    Full text link
    Families of exact solutions are found to a nonlinear modification of the Black-Scholes equation. This risk-adjusted pricing methodology model (RAPM) incorporates both transaction costs and the risk from a volatile portfolio. Using the Lie group analysis we obtain the Lie algebra admitted by the RAPM equation. It gives us the possibility to describe an optimal system of subalgebras and correspondingly the set of invariant solutions to the model. In this way we can describe the complete set of possible reductions of the nonlinear RAPM model. Reductions are given in the form of different second order ordinary differential equations. In all cases we provide solutions to these equations in an exact or parametric form. We discuss the properties of these reductions and the corresponding invariant solutions.Comment: larger version with exact solutions, corrected typos, 13 pages, Symposium on Optimal Stopping in Abo/Turku 200

    Algebraic Structures and Stochastic Differential Equations driven by Levy processes

    Full text link
    We construct an efficient integrator for stochastic differential systems driven by Levy processes. An efficient integrator is a strong approximation that is more accurate than the corresponding stochastic Taylor approximation, to all orders and independent of the governing vector fields. This holds provided the driving processes possess moments of all orders and the vector fields are sufficiently smooth. Moreover the efficient integrator in question is optimal within a broad class of perturbations for half-integer global root mean-square orders of convergence. We obtain these results using the quasi-shuffle algebra of multiple iterated integrals of independent Levy processes.Comment: 41 pages, 11 figure
    corecore