607 research outputs found

    Integrators on homogeneous spaces: Isotropy choice and connections

    Full text link
    We consider numerical integrators of ODEs on homogeneous spaces (spheres, affine spaces, hyperbolic spaces). Homogeneous spaces are equipped with a built-in symmetry. A numerical integrator respects this symmetry if it is equivariant. One obtains homogeneous space integrators by combining a Lie group integrator with an isotropy choice. We show that equivariant isotropy choices combined with equivariant Lie group integrators produce equivariant homogeneous space integrators. Moreover, we show that the RKMK, Crouch--Grossman or commutator-free methods are equivariant. To show this, we give a novel description of Lie group integrators in terms of stage trees and motion maps, which unifies the known Lie group integrators. We then proceed to study the equivariant isotropy maps of order zero, which we call connections, and show that they can be identified with reductive structures and invariant principal connections. We give concrete formulas for connections in standard homogeneous spaces of interest, such as Stiefel, Grassmannian, isospectral, and polar decomposition manifolds. Finally, we show that the space of matrices of fixed rank possesses no connection

    On the Lie enveloping algebra of a post-Lie algebra

    Full text link
    We consider pairs of Lie algebras gg and gˉ\bar{g}, defined over a common vector space, where the Lie brackets of gg and gˉ\bar{g} are related via a post-Lie algebra structure. The latter can be extended to the Lie enveloping algebra U(g)U(g). This permits us to define another associative product on U(g)U(g), which gives rise to a Hopf algebra isomorphism between U(gˉ)U(\bar{g}) and a new Hopf algebra assembled from U(g)U(g) with the new product. For the free post-Lie algebra these constructions provide a refined understanding of a fundamental Hopf algebra appearing in the theory of numerical integration methods for differential equations on manifolds. In the pre-Lie setting, the algebraic point of view developed here also provides a concise way to develop Butcher's order theory for Runge--Kutta methods.Comment: 25 page

    On algebraic structures of numerical integration on vector spaces and manifolds

    Full text link
    Numerical analysis of time-integration algorithms has been applying advanced algebraic techniques for more than fourty years. An explicit description of the group of characters in the Butcher-Connes-Kreimer Hopf algebra first appeared in Butcher's work on composition of integration methods in 1972. In more recent years, the analysis of structure preserving algorithms, geometric integration techniques and integration algorithms on manifolds have motivated the incorporation of other algebraic structures in numerical analysis. In this paper we will survey structures that have found applications within these areas. This includes pre-Lie structures for the geometry of flat and torsion free connections appearing in the analysis of numerical flows on vector spaces. The much more recent post-Lie and D-algebras appear in the analysis of flows on manifolds with flat connections with constant torsion. Dynkin and Eulerian idempotents appear in the analysis of non-autonomous flows and in backward error analysis. Non-commutative Bell polynomials and a non-commutative Fa\`a di Bruno Hopf algebra are other examples of structures appearing naturally in the numerical analysis of integration on manifolds.Comment: 42 pages, final versio

    On post-Lie algebras, Lie--Butcher series and moving frames

    Full text link
    Pre-Lie (or Vinberg) algebras arise from flat and torsion-free connections on differential manifolds. They have been studied extensively in recent years, both from algebraic operadic points of view and through numerous applications in numerical analysis, control theory, stochastic differential equations and renormalization. Butcher series are formal power series founded on pre-Lie algebras, used in numerical analysis to study geometric properties of flows on euclidean spaces. Motivated by the analysis of flows on manifolds and homogeneous spaces, we investigate algebras arising from flat connections with constant torsion, leading to the definition of post-Lie algebras, a generalization of pre-Lie algebras. Whereas pre-Lie algebras are intimately associated with euclidean geometry, post-Lie algebras occur naturally in the differential geometry of homogeneous spaces, and are also closely related to Cartan's method of moving frames. Lie--Butcher series combine Butcher series with Lie series and are used to analyze flows on manifolds. In this paper we show that Lie--Butcher series are founded on post-Lie algebras. The functorial relations between post-Lie algebras and their enveloping algebras, called D-algebras, are explored. Furthermore, we develop new formulas for computations in free post-Lie algebras and D-algebras, based on recursions in a magma, and we show that Lie--Butcher series are related to invariants of curves described by moving frames.Comment: added discussion of post-Lie algebroid

    Invariant connections, Lie algebra actions, and foundations of numerical integration on manifolds

    Get PDF
    Motivated by numerical integration on manifolds, we relate the algebraic properties of invariant connections to their geometric properties. Using this perspective, we generalize some classical results of Cartan and Nomizu to invariant connections on algebroids. This has fundamental consequences for the theory of numerical integrators, giving a characterization of the spaces on which Butcher and Lie-Butcher series methods, which generalize Runge-Kutta methods, may be applied.Comment: 18 page

    Symmetric spaces and Lie triple systems in numerical analysis of differential equations

    Get PDF
    A remarkable number of different numerical algorithms can be understood and analyzed using the concepts of symmetric spaces and Lie triple systems, which are well known in differential geometry from the study of spaces of constant curvature and their tangents. This theory can be used to unify a range of different topics, such as polar-type matrix decompositions, splitting methods for computation of the matrix exponential, composition of selfadjoint numerical integrators and dynamical systems with symmetries and reversing symmetries. The thread of this paper is the following: involutive automorphisms on groups induce a factorization at a group level, and a splitting at the algebra level. In this paper we will give an introduction to the mathematical theory behind these constructions, and review recent results. Furthermore, we present a new Yoshida-like technique, for self-adjoint numerical schemes, that allows to increase the order of preservation of symmetries by two units. Since all the time-steps are positive, the technique is particularly suited to stiff problems, where a negative time-step can cause instabilities
    • …
    corecore