1,576 research outputs found

    Resurrection of Traditional Luminosity Evolution Models to Explain Faint Field Galaxies

    Full text link
    We explore the nature of the evolution of faint field galaxies by assuming that the local luminosity function is not well defined. We use a non-negative least squares technique to derive a near optimal set of local luminosity functions for different spectral types of galaxies by fitting to the observed optical and near-infrared counts, B-R colors, and redshift distributions for galaxies with 15 < B < 27. We report here the results of using only traditional luminosity evolution (ie. the photometric evolution of stars in a galaxy over time given reasonable assumptions of the form of the star formation history for various galaxy types), and simple galaxy reddening and find excellent fits to the observed data to B = 27. We conclude that models more exotic than traditional luminosity evolution are not yet required to explain existing faint field galaxy data and thus the need for contributions by mergers or new populations of galaxies is at least 5x less than previously estimated.Comment: 9 pages + 1 table + 4 figures; uuencoded tar compressed postscript; to be published in The Astrohysical Journal Letter

    Evidence for Spatially Compact Lyman Alpha Emission in z=3.1 Lyman-Alpha-Emitting Galaxies

    Full text link
    We present the results of a high-spatial-resolution study of the line emission in a sample of z=3.1 Lyman-Alpha-Emitting Galaxies (LAEs) in the Extended Chandra Deep Field-South. Of the eight objects with coverage in our HST/WFPC2 narrow-band imaging, two have clear detections and an additional two are barely detected (~2-sigma). The clear detections are within ~0.5 kpc of the centroid of the corresponding rest-UV continuum source, suggesting that the line-emitting gas and young stars in LAEs are spatially coincident. The brightest object exhibits extended emission with a half-light radius of ~1.5 kpc, but a stack of the remaining LAE surface brightness profiles is consistent with the WFPC2 point spread function. This suggests that the Lyman Alpha emission in these objects originates from a compact (<~2 kpc) region and cannot be significantly more extended than the far-UV continuum emission (<~1 kpc). Comparing our WFPC2 photometry to previous ground-based measurements of their monochromatic fluxes, we find at 95% (99.7%) confidence that we cannot be missing more than 22% (32%) of the Lyman Alpha emission.Comment: 4 pages, 3 figures, accepted to ApJ letter

    A Population of Metal-Poor Galaxies with ~L* Luminosities at Intermediate Redshifts

    Full text link
    We present new spectroscopy and metallicity estimates for a sample of 15 star-forming galaxies with redshifts in the range 0.29 - 0.42. These objects were selected in the KPNO International Spectroscopic Survey via their strong emission lines seen in red objective-prism spectra. Originally thought to be intermediate-redshift Seyfert 2 galaxies, our new spectroscopy in the far red has revealed these objects to be metal-poor star-forming galaxies. These galaxies follow a luminosity-metallicity (L-Z) relation that parallels the one defined by low-redshift galaxies, but is offset by a factor of more than ten to lower abundances. The amount of chemical and/or luminosity evolution required to place these galaxies on the local L-Z relation is extreme, suggesting that these galaxies are in a very special stage of their evolution. They may be late-forming massive systems, which would challenge the current paradigm of galaxy formation. Alternatively, they may represent intense starbursts in dwarf-dwarf mergers or a major infall episode of pristine gas into a pre-existing galaxy. In any case, these objects represent an extreme stage of galaxy evolution taking place at relatively low redshift.Comment: 6 pages, 3 figures; to appear in 10 April 2009 ApJ

    Comparing Infrared Star-Formation Rate Indicators with Optically-Derived Quantities

    Full text link
    We examine the UV reprocessing efficiencies of warm dust and polycyclic aromatic hydrocarbons (PAHs) through an analysis of the mid- and far-infrared surface luminosity densities of 85 nearby Hα\alpha-selected star-forming galaxies detected by the volume-limited KPNO International Spectroscopic Survey (KISS). Because Hα\alpha selection is not biased toward continuum-bright objects, the KISS sample spans a wide range in stellar masses (10810^8-1012M⊙10^{12}\rm{M}_\odot), as well as Hα\alpha luminosity (103910^{39}-1043ergs/s10^{43}\rm{ergs/s}), mid-infrared 8.0μ\mum luminosity (104110^{41}-1044ergs/s10^{44}\rm{ergs/s}), and [Bw-R] color (-.1-2.2). We find that mid-infrared polycyclic aromatic hydrocarbon (PAH) emission in the Spitzer IRAC 8.0μ\mum band correlates with star formation, and that the efficiency with which galaxies reprocess UV energy into PAH emission depends on metallicity. We also find that the relationship between far-infrared luminosity in the Spitzer MIPS 24μ\mum band pass and Hα\alpha-measured star-formation rate varies from galaxy to galaxy within our sample; we do not observe a metallicity dependence in this relationship. We use optical colors and established mass-to-light relationships to determine stellar masses for the KISS galaxies; we compare these masses to those of nearby galaxies as a confirmation that the volume-limited nature of KISS avoids strong biases. We also examine the relationship between IRAC 3.6μ\mum luminosity and galaxy stellar mass, and find a color-dependent correlation between the two.Comment: 15 pages, 10 figure
    • …
    corecore