6,864 research outputs found

    N<i>e</i>XOS – the design, development and evaluation of a rehabilitation system for the lower limbs

    Get PDF
    Recent years have seen the development of a number of automated and semi-automated systems to support for physiotherapy and rehabilitation. These deploy a range of technologies from highly complex purpose built systems to approaches based around the use of industrial robots operating either individually or in combination for applications ranging from stroke to mobility enhancement. The NeXOS project set out to investigate an approach to the rehabilitation of the lower limbs in a way which brought together expertise in engineering design and mechatronics with specilists in rehabilitation and physiotherapy. The resulting system has resulted in a prototype of a system which is capable in operating in a number of modes from fully independent to providing direct support to a physiotherapist during manipulation of the limb. Designed around a low cost approach for an implementation ultimately capable of use in a patients home using web-baased strategies for communication with their support team, the prototype NeXOS system has validated the adoption of an integrated approach to its development. The paper considers this design and development process and provides the results from the initial tests with physiotherapists to establish the operational basis for clinical implementation

    Bilateral Assessment of Functional Tasks for Robot-assisted Therapy Applications

    Get PDF
    This article presents a novel evaluation system along with methods to evaluate bilateral coordination of arm function on activities of daily living tasks before and after robot-assisted therapy. An affordable bilateral assessment system (BiAS) consisting of two mini-passive measuring units modeled as three degree of freedom robots is described. The process for evaluating functional tasks using the BiAS is presented and we demonstrate its ability to measure wrist kinematic trajectories. Three metrics, phase difference, movement overlap, and task completion time, are used to evaluate the BiAS system on a bilateral symmetric (bi-drink) and a bilateral asymmetric (bi-pour) functional task. Wrist position and velocity trajectories are evaluated using these metrics to provide insight into temporal and spatial bilateral deficits after stroke. The BiAS system quantified movements of the wrists during functional tasks and detected differences in impaired and unimpaired arm movements. Case studies showed that stroke patients compared to healthy subjects move slower and are less likely to use their arm simultaneously even when the functional task requires simultaneous movement. After robot-assisted therapy, interlimb coordination spatial deficits moved toward normal coordination on functional tasks

    An investigation of effects of the partial active assistance in a virtual environment based rehabilitation system

    Get PDF
    This thesis describes a study on a new active assistance in robotic rehabilitation in a haptic virtual environment for post-stroke patients. The novelty of this active assistance system lies in that the assistance is directly rendered on the result of a task performing. Active assistance will generally raise the confidence level of patients in performing a rehabilitation exercise. However, an overly high assistance level may induce cognitive fatigue with patients and thus decreases their motivation of performing a rehabilitation exercise. This thesis hypothesizes that a proper active assistance can improve the performance of a rehabilitation exercise, but will not reduce the motivation of patients in doing rehabilitation exercise. However, due to the difficulty in obtaining a proper number of patients for the experiment, the study turned to healthy people. Accordingly, a revised hypothesis is that active assistance on healthy people does not improve the task performance and not reduces the motivation of healthy people. In this thesis, first, a test-bed with the haptic virtual environment was designed and constructed. The test-bed included a simple task – i.e., following a predefined circle trajectory. Then, a statistical experiment was designed and an experiment was conducted on the test-bed. The experimental results test the hypothesis successfully. The main contributions of this thesis are: (1) the development of a new active assistance system for rehabilitation in a virtual environment and (2) the experimental study on the motivation of healthy people with the developed active assistance system. A care must, however, be taken that the experiment was conducted on healthy people and the conclusion drawn from the study may not be valid on patients

    Fall prevention intervention technologies: A conceptual framework and survey of the state of the art

    Get PDF
    In recent years, an ever increasing range of technology-based applications have been developed with the goal of assisting in the delivery of more effective and efficient fall prevention interventions. Whilst there have been a number of studies that have surveyed technologies for a particular sub-domain of fall prevention, there is no existing research which surveys the full spectrum of falls prevention interventions and characterises the range of technologies that have augmented this landscape. This study presents a conceptual framework and survey of the state of the art of technology-based fall prevention systems which is derived from a systematic template analysis of studies presented in contemporary research literature. The framework proposes four broad categories of fall prevention intervention system: Pre-fall prevention; Post-fall prevention; Fall injury prevention; Cross-fall prevention. Other categories include, Application type, Technology deployment platform, Information sources, Deployment environment, User interface type, and Collaborative function. After presenting the conceptual framework, a detailed survey of the state of the art is presented as a function of the proposed framework. A number of research challenges emerge as a result of surveying the research literature, which include a need for: new systems that focus on overcoming extrinsic falls risk factors; systems that support the environmental risk assessment process; systems that enable patients and practitioners to develop more collaborative relationships and engage in shared decision making during falls risk assessment and prevention activities. In response to these challenges, recommendations and future research directions are proposed to overcome each respective challenge.The Royal Society, grant Ref: RG13082

    Intelligent sensing technologies for the diagnosis, monitoring and therapy of alzheimer’s disease:A systematic review

    Get PDF
    Alzheimer’s disease is a lifelong progressive neurological disorder. It is associated with high disease management and caregiver costs. Intelligent sensing systems have the capability to provide context-aware adaptive feedback. These can assist Alzheimer’s patients with, continuous monitoring, functional support and timely therapeutic interventions for whom these are of paramount importance. This review aims to present a summary of such systems reported in the extant literature for the management of Alzheimer’s disease. Four databases were searched, and 253 English language articles were identified published between the years 2015 to 2020. Through a series of filtering mechanisms, 20 articles were found suitable to be included in this review. This study gives an overview of the depth and breadth of the efficacy as well as the limitations of these intelligent systems proposed for Alzheimer’s. Results indicate two broad categories of intelligent technologies, distributed systems and self-contained devices. Distributed systems base their outcomes mostly on long-term monitoring activity patterns of individuals whereas handheld devices give quick assessments through touch, vision and voice. The review concludes by discussing the potential of these intelligent technologies for clinical practice while highlighting future considerations for improvements in the design of these solutions for Alzheimer’s disease

    THE EFFECT OF A NOVEL REHABILITATION PROGRAM ON WALKING PERFORMANCE IN PERSONS WITH MULTIPLE SCLEROSIS

    Get PDF
    The purpose of this study was to compare if the addition of the NewGaitℱ device to traditional therapy in comparison to traditional therapy alone would be more effective at improving walking technique and walking performance in persons with multiple sclerosis. Eighteen patients with multiple sclerosis participated in this study. Pre- and post-testing assessed kinematic gait variables (speed, step length, step width, double limb support time), toe clearance height, ankle range of motion, balance confidence, rating of perceived exertion, and hip-ankle coordination. Participants completed an 8-week physical therapy protocol aimed to improve gait and balance with the experimental group wearing the NewGaitℱ device. Repeated measures mixed ANOVA revealed significant improvements over time for both groups, with increased walking speed, improved balance confidence, increase in bilateral step length, and a decrease in the percent of time spent in anti-phase and an ankle-driven coordination phase during swing for the unaffected limb (p \u3c 0.05). The experimental group experienced larger improvements in balance confidence (p \u3c 0.05), and coordination (p \u3c 0.05) when compared to the control group. The results of the current study indicate that the use of the NewGaitℱ during rehabilitation is effective at improving balance confidence lower limb coordination

    Personal Autonomy Rehabilitation in Home Environments by a Portable Assistive Robot

    Get PDF
    Increasingly disabled and elderly people with mobility problems want to live autonomously in their home environment. They are motivated to use robotic aids to perform tasks by themselves, avoiding permanent nurse or family assistant supervision. They must find means to rehabilitate their abilities to perform daily life activities (DLAs), such as eating, shaving, or drinking. These means may be provided by robotic aids that incorporate possibilities and methods to accomplish common tasks, aiding the user in recovery of partial or complete autonomy. Results are highly conditioned by the system's usability and potential. The developed portable assistive robot ASIBOT helps users perform most of these tasks in common living environments. Minimum adaptations are needed to provide the robot with mobility throughout the environment. The robot can autonomously climb from one surface to another, fixing itself to the best place to perform each task. When the robot is attached to its wheelchair, it can move along with it as a bundle. This paper presents the work performed with the ASIBOT in the area of rehabilitation robotics. First, a brief description of the ASIBOT system is given. A description of tests that have been performed with the robot and several impaired users is given. Insight into how these experiences have influenced our research efforts, especially, in home environments, is also included. A description of the test bed that has been developed to continue research on performing DLAs by the use of robotic aids, a kitchen environment, is given. Relevant conclusions are also included.This work has been supported by the CAM Project S2009/DPI-1559/ROBOCITY2030 I

    Healthcare Robotics

    Full text link
    Robots have the potential to be a game changer in healthcare: improving health and well-being, filling care gaps, supporting care givers, and aiding health care workers. However, before robots are able to be widely deployed, it is crucial that both the research and industrial communities work together to establish a strong evidence-base for healthcare robotics, and surmount likely adoption barriers. This article presents a broad contextualization of robots in healthcare by identifying key stakeholders, care settings, and tasks; reviewing recent advances in healthcare robotics; and outlining major challenges and opportunities to their adoption.Comment: 8 pages, Communications of the ACM, 201

    User-centered design of a dynamic-autonomy remote interaction concept for manipulation-capable robots to assist elderly people in the home

    Get PDF
    In this article, we describe the development of a human-robot interaction concept for service robots to assist elderly people in the home with physical tasks. Our approach is based on the insight that robots are not yet able to handle all tasks autonomously with sufficient reliability in the complex and heterogeneous environments of private homes. We therefore employ remote human operators to assist on tasks a robot cannot handle completely autonomously. Our development methodology was user-centric and iterative, with six user studies carried out at various stages involving a total of 241 participants. The concept is under implementation on the Care-O-bot 3 robotic platform. The main contributions of this article are (1) the results of a survey in form of a ranking of the demands of elderly people and informal caregivers for a range of 25 robot services, (2) the results of an ethnography investigating the suitability of emergency teleassistance and telemedical centers for incorporating robotic teleassistance, and (3) a user-validated human-robot interaction concept with three user roles and corresponding three user interfaces designed as a solution to the problem of engineering reliable service robots for home environments
    • 

    corecore