541 research outputs found

    The effect of the point spread function on downscaling continua

    Get PDF
    The point spread function (PSF) is ubiquitous in remote sensing. This paper investigated the effect of the PSF on the downscaling of continua. Geostatistical approaches were adopted to incorporate explicitly, and reduce the influence of, the PSF effect in downscaling. Two general cases were considered: univariate and multivariate. In the univariate case, the input coarse spatial resolution image is the only image available for downscaling. Area-to-point kriging was demonstrated to be a suitable solution in this case. For the multivariate case, a finer spatial resolution image (or images) observed under different conditions (e.g., at a different wavelength) is available as auxiliary data for downscaling. Area-to-point regression kriging was shown to be a suitable solution for this case. Moreover, a new solution was developed for estimating the PSF in image scale transformation. The experiments show that the PSF effect influences downscaling greatly and that downscaling can be enhanced obviously by considering the PSF effect through the geostatistical approaches and the PSF estimation solution proposed

    Information Loss-Guided Multi-Resolution Image Fusion

    Get PDF
    Spatial downscaling is an ill-posed, inverse problem, and information loss (IL) inevitably exists in the predictions produced by any downscaling technique. The recently popularized area-to-point kriging (ATPK)-based downscaling approach can account for the size of support and the point spread function (PSF) of the sensor, and moreover, it has the appealing advantage of the perfect coherence property. In this article, based on the advantages of ATPK and the conceptualization of IL, an IL-guided image fusion (ILGIF) approach is proposed. ILGIF uses the fine spatial resolution images acquired in other wavelengths to predict the IL in ATPK predictions based on the geographically weighted regression (GWR) model, which accounts for the spatial variation in land cover. ILGIF inherits all the advantages of ATPK, and its prediction has perfect coherence with the original coarse spatial resolution data which can be demonstrated mathematically. ILGIF was validated using two data sets and was shown in each case to predict downscaled images more accurately than the compared benchmark methods

    A Geostatistical Filter for Remote Sensing Image Enhancement

    Get PDF
    In this paper, a new method was investigated to enhance remote sensing images by alleviating the point spread function (PSF) effect. The PSF effect exists ubiquitously in remotely sensed imagery. As a result, image quality is greatly affected, and this imposes a fundamental limit on the amount of information captured in remotely sensed images. A geostatistical filter was proposed to enhance image quality based on a downscaling-then-upscaling scheme. The difference between this method and previous methods is that the PSF is represented by breaking the pixel down into a series of sub-pixels, facilitating downscaling using the PSF and then upscaling using a square-wave response. Thus, the sub-pixels allow disaggregation as an attempt to remove the PSF effect. Experimental results on simulated and real data sets both suggest that the proposed filter can enhance the original images by reducing the PSF effect and quantify the extent to which this is possible. The predictions using the new method outperform the original coarse PSF-contaminated imagery as well as a benchmark method. The proposed method represents a new solution to compensate for the limitations introduced by remote sensors (i.e., hardware) using computer techniques (i.e., software). The method has widespread application value, particularly for applications based on remote sensing image analysis

    Extrapolating the Fractal Characteristics of an Image Using Scale-Invariant Multiple-Point Statistics

    Get PDF
    The resolution of measurement devices can be insufficient for certain purposes. We propose to stochastically simulate spatial features at scales smaller than the measurement resolution. This is accomplished using multiple-point geostatistical simulation (direct sampling in the present case) to interpolate values at the target scale. These structures are inferred using hypothesis of scale invariance and stationarity on the spatial patterns found at the coarse scale. The proposed multiple-point super-resolution mapping method is able to deal with "both continuous and categorical variables,” and can be extended to multivariate problems. The advantages and limitations of the approach are illustrated with examples from satellite imagin

    A review of spatial downscaling of satellite remotely sensed soil moisture

    Get PDF
    Satellite remote sensing technology has been widely used to estimate surface soil moisture. Numerous efforts have been devoted to develop global soil moisture products. However, these global soil moisture products, normally retrieved from microwave remote sensing data, are typically not suitable for regional hydrological and agricultural applications such as irrigation management and flood predictions, due to their coarse spatial resolution. Therefore, various downscaling methods have been proposed to improve the coarse resolution soil moisture products. The purpose of this paper is to review existing methods for downscaling satellite remotely sensed soil moisture. These methods are assessed and compared in terms of their advantages and limitations. This review also provides the accuracy level of these methods based on published validation studies. In the final part, problems and future trends associated with these methods are analyzed

    Object-Based Area-to-Point Regression Kriging for Pansharpening

    Get PDF
    Optical earth observation satellite sensors often provide a coarse spatial resolution (CR) multispectral (MS) image together with a fine spatial resolution (FR) panchromatic (PAN) image. Pansharpening is a technique applied to such satellite sensor images to generate an FR MS image by injecting spatial detail taken from the FR PAN image while simultaneously preserving the spectral information of MS image. Pansharpening methods are mostly applied on a per-pixel basis and use the PAN image to extract spatial detail. However, many land cover objects in FR satellite sensor images are not illustrated as independent pixels, but as many spatially aggregated pixels that contain important semantic information. In this article, an object-based pansharpening approach, termed object-based area-to-point regression kriging (OATPRK), is proposed. OATPRK aims to fuse the MS and PAN images at the object-based scale and, thus, takes advantage of both the unified spectral information within the CR MS images and the spatial detail of the FR PAN image. OATPRK is composed of three stages: image segmentation, object-based regression, and residual downscaling. Three data sets acquired from IKONOS and Worldview-2 and 11 benchmark pansharpening algorithms were used to provide a comprehensive assessment of the proposed OATPRK approach. In both the synthetic and real experiments, OATPRK produced the most superior pan-sharpened results in terms of visual and quantitative assessment. OATPRK is a new conceptual method that advances the pixel-level geostatistical pansharpening approach to the object level and provides more accurate pan-sharpened MS images. IEE

    Sharpening land use maps and predicting the trends of land use change using high resolution airborne image: A geostatistical approach

    Get PDF
    High quality land use/land cover (LULC) data with fine spatial resolution and frequent temporal coverage are indispensable for revealing detail information of the Earth’s surface, characterizing LULC of the area, predicting the plausible land use changes, and assessing the viability and impacts of any development plans. While airborne imagery has high spatial resolution, it only provides limited temporal coverage over time. The LULC data from historical remote sensing images, such as those from Landsat, have frequent coverages over a long temporal period, but their spatial resolutions are low. This paper presents a spatio-temporal Cokriging method to sharpen LULC data and predict the trends of land use change. A set of time-series coarse resolution LULC maps and one frame of high spatial resolution airborne imagery of the Upper Mill Creek Watershed were used to illustrate the utility of our method. By explicitly describing the spatio-temporal dependence within and between different datasets, modelling the Anderson classification codes using spatial, temporal, and cross-covariance structures, and transforming the Anderson integer classification code to class probability, our method was able to resolve the differences between multi-source spatio-temporal LULC data, generate maps with sharpened and detailed land features, characterize the spatial and temporal LULC changes, reveal the trend of LULC change, and create a quality dataset invaluable for monitoring, assessing, and modelling LULC changes

    Fusion of Landsat 8 OLI and Sentinel-2 MSI data

    Get PDF
    Sentinel-2 is a wide-swath and fine spatial resolution satellite imaging mission designed for data continuity and enhancement of the Landsat and other missions. The Sentinel-2 data are freely available at the global scale, and have similar wavelengths and the same geographic coordinate system as the Landsat data, which provides an excellent opportunity to fuse these two types of satellite sensor data together. In this paper, a new approach is presented for the fusion of Landsat 8 Operational Land Imager and Sentinel-2 Multispectral Imager data to coordinate their spatial resolutions for continuous global monitoring. The 30 m spatial resolution Landsat 8 bands are downscaled to 10 m using available 10 m Sentinel-2 bands. To account for the land-cover/land-use (LCLU) changes that may have occurred between the Landsat 8 and Sentinel-2 images, the Landsat 8 panchromatic (PAN) band was also incorporated in the fusion process. The experimental results showed that the proposed approach is effective for fusing Landsat 8 with Sentinel-2 data, and the use of the PAN band can decrease the errors introduced by LCLU changes. By fusion of Landsat 8 and Sentinel-2 data, more frequent observations can be produced for continuous monitoring (this is particularly valuable for areas that can be covered easily by clouds, thereby, contaminating some Landsat or Sentinel-2 observations), and the observations are at a consistent fine spatial resolution of 10 m. The products have great potential for timely monitoring of rapid changes
    corecore