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Abstract The resolution of measurement devices can be insufficient for certain pur-
poses. We propose to stochastically simulate spatial features at scales smaller than
the measurement resolution. This is accomplished using multiple-point geostatisti-
cal simulation (direct sampling in the present case) to interpolate values at the target
scale. These structures are inferred using hypothesis of scale invariance and station-
arity on the spatial patterns found at the coarse scale. The proposed multiple-point
super-resolution mapping method is able to deal with “both continuous and categor-
ical variables,” and can be extended to multivariate problems. The advantages and
limitations of the approach are illustrated with examples from satellite imaging.

Keywords Geostatistics · Multiple-point · Zooming · Resolution · Scale invariance ·
Fractal

1 Introduction

High-resolution models are needed to describe and predict large- and small-scale
physical phenomena. Such fine models are much needed in various fields of Earth
Science, such as for example hydrology, hydrogeology and meteorology (Von Storch
et al. 1993; Wilby and Wigley 1997; Ferraris et al. 2003; McCabe and Wood 2006;
Liu et al. 2008).
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Most models require input parameters coming from various kinds of measurement
device whose sampling resolution is limited (Bertero and Boccacci 2003). Hence,
the measurement scale is often larger than the scale at which physical processes
occur, making the understanding of small-scale phenomena a challenging issue,
even when important datasets are available (Schulze-Makuch and Cherkauer 1998;
Zlotnik et al. 2000). This situation is not likely to change because no matter the res-
olution of the data, some limitation on the measurement scale will always remain.
Characterizing small-scale structures is critical for a number of applications. For ex-
ample, small-scale heterogeneity has a major impact on the permeability of heteroge-
neous subsurface media (Sánchez-Vila et al. 1996; Wen and Gomez-Hernandez 1998;
Harter 2005). The same problem occurs when one needs to estimate rainfall when
radar measurements only provide a coarse representation of the phenomenon (Love-
joy and Mandelbrot 1985; Lovejoy and Schertzer 1990; Marsan et al. 1996).

The problem treated in the present paper, often known as image zooming or super-
resolution mapping, is the case where the variable of interest is exhaustively known,
but the resolution of this information is too low. There is a missing scale where no
information is available. Since information at a scale smaller than the measurement
scale is not available in the data, it has to be inferred using assumptions on the target
scale (Baker and Kanade 2002). Super-resolution mapping has been addressed in
the image processing literature and successfully applied to digital photography. In
this paper, we present an alternative technique based on multiple-point geostatistics
and apply it to remote sensing images. In image processing, a number of methods
and algorithms are devoted to super-resolution mapping (see a review in Farsiu et
al. 2004). Excellent results are given by example-based techniques using training
images (TI) (Atkins et al. 1999; Freeman et al. 2002) that derive the relationship
between small-scale features and their coarse counterparts from a database of high-
resolution TIs and their coarsened/blurred versions. Other methods (Tsai and Huang
1984; Sroubek et al. 2007) fuse a sequence of low-resolution images (for example
successive frames of a movie scene) to produce a higher-resolution image.

Image processing techniques also offer several tools for edge detection and en-
hancement to achieve visually appealing results (Fattal 2007; Wang and Gong 2008;
Dai et al. 2009). In Earth Sciences, however, it is often difficult to use such visual
assumptions that cannot be validated in the absence of data at small scale. More-
over, edges are characteristics determining the interpretation of an image by a human
eye, whereas for Earth Science models, it is rather concepts of heterogeneity and
connectivity that are the most influential on the model outcomes. For hydrogeolog-
ical models where the variable of interest is hydraulic conductivity, efficient super-
resolution mapping can be performed through an inverse procedure (Wen et al. 1997;
Grimstad et al. 2003) relying on indirect data such as for example production his-
tory from wells or pumping tests data. Such problems, often known as downscal-
ing, include physical relationships to constrain the small-scale spatial structure. For
example, when downscaling hydraulic conductivity, the local equivalent (upscaled)
conductivity of a downscaled area must be equal to the respective coarse-scale val-
ues (Renard and de Marsily 1997). In the context of geostatistics, techniques such as
block simulation (Liu and Journel 2008) are available to account for these constraints
when the relation between the variables can be expressed as rather simple analytical
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expressions. Such methods are efficient for specific hydrogeological problems where
data are available as a base for the inverse procedure. Sometimes the spatial structure
at the small scale can be deduced from analogous sites (or proxys) whose small-scale
spatial structure is known. Corresponding spatial statistics can be represented us-
ing geostatistical tools such as variograms. For example, in problems involving land
cover estimation based on coarse remote sensing images, Nguyen et al. (2006) and
Tatem et al. (2002) use super-resolution mapping to estimate the class composition of
the coarse pixels as well as the spatial distribution of these classes within the pixels.
Super-resolution mapping is formulated as an optimization problem that is solved us-
ing a Hopfield neural network. Constraints given by variograms derived from proxys
are imposed on the spatial structures at sub-pixel scale.

Another representation of spatial statistics is given by multiple-point (MP) geo-
statistical methods (Guardiano and Srivastava 1993). Similarly to image processing
techniques, they use the concept of a training image as a prior model representing
the spatial structure of a given variable (Journel and Zhang 2006). These methods
are able to reproduce high-order spatial statistics, thus exploiting complex heteroge-
neous structures present in the TI. Several variants of multiple-point simulation are
found in the literature, with certain methods adapted for categorical and/or continu-
ous variables (Guardiano and Srivastava 1993; Strebelle 2002; Arpat and Caers 2007;
El Ouassini et al. 2008; Wu et al. 2008; Remy et al. 2009; Mariethoz et al. 2010;
Straubhaar et al. 2011), and some that are parallelizable (Straubhaar et al. 2008; Ma-
riethoz 2010). A stochastic formulation of super-resolution mapping using multiple-
point geostatistical methods was investigated by Boucher et al. (2008). It allows in-
ferring the small-scale heterogeneity using a proxy, but finding an adequate proxy
is often difficult, making the method sometimes impractical. Although our approach
also uses multiple-point statistics, we circumvent the problem of finding a TI by us-
ing the multiple-point statistics of the coarse image, under the assumption of scale
invariance.

Despite numerous existing techniques, there is still a need for generic super-
resolution algorithms capable of producing satisfactory high-resolution images using
one coarse image only (as opposed to methods using additional information to inform
the fine scale, such as TIs, series of coarse images or statistics derived from a proxy).
We address the super-resolution problem for cases where edges delineation is not the
critical validation criterion, where no indirect data are available that can constrain the
inference of small-scale spatial variability using physical relationships, and where
no proxy cases are available. We propose to use multiple-point stochastic simulation
tools not to reproduce the patterns found in a TI, but to propagate the high-order spa-
tial statistics from the coarse scale to the fine scale. Hence the only input needed for
modeling patterns at the small scale is the fully informed pattern at a coarse scale, and
an assumption of scale invariance allowing for transferring coarse scale features to
a finer scale. The key idea is to perform super-resolution using multifractal cascades
(Mandelbrot 1974) combined with MP simulations for reconstructing the fine-scale
structures. The specificity of our approach is that the algorithm does not need a TI
or a proxy, because we directly infer MP statistics from the coarse image and we use
them at the finer target scale. This algorithm is straightforward in terms of imple-
mentation and parameterization, and is robust as long as scale-invariant features are
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concerned. Moreover, implemented in a stochastic framework, it allows for a proba-
bilistic solution for image zooming problems.

The first part of the paper presents the direct sampling (DS) algorithm, which is
the main tool for solving the super-resolution mapping problems. The second section
describes the super-resolution algorithm and presents illustrative examples.

2 The Direct Sampling Simulation Method

Direct sampling is a geostatistical method based on multiple-point statistics (Ma-
riethoz and Renard 2010; Mariethoz et al. 2010). It aims at producing realizations
of a spatially dependant variable Z at all N locations xi of a regular grid, with
i = [1, . . . ,N]. These locations can be assimilated to the pixels of an image. Since Z

is spatially structured, its value at each location Z(x) depends on the values of its spa-
tial neighbors. The principle of all multiple-point methods is to infer this dependency
from a TI. Z(x) can be either a continuous or categorical variable. Note that although
we adopt the notation for continuous variables, all concepts presented in this paper
are also valid for the categorical case.

A realization of Z should have a similar spatial dependence as the TI, i.e., the
relationship between the value at any location and all other values at all other loca-
tions. In order to respect all dependencies, each realization must be a sample of the
N -dimensional joint distribution

F(x) = P
{
Z(x1),Z(x2), . . . ,Z(xN)

}
. (1)

This can be accomplished this by assigning values to all locations using the sequen-
tial simulation paradigm (Deutsch and Journel 1992) which considers the following
decomposition

F(x) = P
{
Z(x1)

} · P
{
Z(x2)|z(x1)

} · · · · · P
{
Z(xm)|z(x1), . . . , z(xm−1)

}
. (2)

The principle is that each location x in the grid is visited in a random order (usually
referred to as simulation path). The value of Z(x) is then computed accounting for
the spatial dependence between the values at all neighboring locations. The values of
those neighboring locations are already known either because they have been simu-
lated previously in the sequential simulation, or because they correspond to measure-
ments taken at these locations. Once the value of Z(x) is determined, it is considered
known and used to condition the distribution of possible attribute values at locations
that are visited thereafter. The result, according to (2), is that the outcome at each
location is conditional to all previously simulated pixels values.

A common approximation is to consider only a limited neighborhood of size
n, with n � N to limit computational burden. The lag vectors L = {h1, . . . ,hn} =
{x1 −x, . . . ,xn −x} define the locations of the neighbors of x, denoted x1,x1, . . . ,xn.
The data event centered on x is the combination of the lag vectors and the values at the
locations pointed by the lag vectors dn(x,L) = {Z(x + h1), . . . ,Z(x + hn)}. Given
this data event, the decomposition in (2) calls for obtaining a single sample of the
conditional probability distribution function (cpdf)

F(z,x,dn) = Prob
{
Z(x) ≤ z|dn(x,L)

}
. (3)
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The sample from (3) is assigned to Z(x), which is thereafter considered as condi-
tioning data when simulating the remaining nodes. At each visited node x, the direct
sampling algorithm generates a sample of (3) by the following steps (Shannon 1948;
Mariethoz et al. 2010), as follows:

Given a pattern dn(x,L) in the simulation grid:

1. Define distance threshold t ∈ [0,1].
2. Iterate until a stopping criterion is met:

(a) Select randomly a location y in the training image.
(b) Determine dn(y,L), the data event centered on y.
(c) Compute the distance d{dn(x,L),dn(y,L)}.
(d) If the distance d{dn(x,L),dn(y,L)} ≤ t , assign Z(x) = Z(y). Otherwise, try

another location y.

The term d{dn(x,L),dn(y,L)} represents the distance between two data events, one
found in the simulation grid and the other one found in the training image. Using dif-
ferent measures of distance offers a high degree of flexibility. It is therefore possible
to accommodate continuous and categorical variables, as well as multivariate cases.
For categorical variables, the distance between a data event found in the simulation
and another one found in the TI d{dn(x,L),dn(y,L)} is given by the proportion of
non-matching nodes. It is calculated using the indicator variable a, which equals 0 if
two nodes have identical value and 1 otherwise

d
{
dn(x),dn(y)

} = 1

n

n∑

i=1

ai ∈ [0,1], where ai =
{

0 if Z(xi ) = Z(yi )

1 if Z(xi ) �= Z(yi ).
(4)

A convenient measure of distance able to accommodate continuous variables is
the normalized pair wise Manhattan distance

d
{
dn(x),dn(y)

} = 1

n

n∑

i=1

|Z(xi ) − Z(yi )|
argmax(Zti) − argmin(Zti)

∈ [0,1]. (5)

In case the data event is multivariate, with m variables Zk, k = 1, . . . ,m, Z(x) needs
to be a sample of the ccdf

Fk

(
z,x,d1

n1
, . . . ,dm

nm

) = Prob
{
Zk(x) ≤ z|d1

n1

(
x,L1), . . . ,dm

nm

(
x,Lm

)}
. (6)

Note that each variable Zk can have a specific data event dk
nk

(x,Lk) =
{Zk(x + hk

1), . . . ,Zk(x + hk
nk

)}. The distance between a joint data event found in
the simulation and one found in the TI is then defined as a weighted average of the
individual distances defined previously,

d
{
dn(x),dn(y)

} =
m∑

k=1

wkd
{
dk

nk

(
x,Lk

)
,dk

nk

(
y,Lk

)} ∈ [0,1],

with
m∑

k=1

wk = 1 and wk ≥ 0. (7)
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The weights wk are defined by the user. Setting different weights allows accounting
for the fact that the pertinent measure of distance may be different for each variable.
Joint simulations are performed using a single (random) path that visits all compo-
nents of vector Z at all nodes of the simulation grid.

3 Dealing with a Missing Scale

We propose a general super-resolution method that does not rely on any other
input data than a single coarse image (i.e., it does not need an external train-
ing image) and that has the advantage of being very parsimonious in parameter-
ization. The central idea is to use the known coarse image as a training image
for inferring small-scale patterns. It assumes that the parameters of interest have
properties of scale invariance (Mandelbrot 1967), thus allowing to infer the fine
scale structures from the coarse ones. This assumption constitutes a model for
the missing scale. The outcomes of physical processes can often present fractal
properties. For example, self-similar characteristics have been observed for a wide
range of geological physical properties (Kiraly 1988; Barton and La Pointe 1991;
Turcotte 1992). Capitalizing on these fractal properties, it becomes possible to per-
form realistic super-resolution mapping of coarse images.

We propose to accomplish super-resolution mapping in a similar way as the fractal
cascades proposed by Mandelbrot (1974). The main idea is to consider a coarse image
as a sampling of the same image in high resolution. At each step of a two-dimensional
super-resolution problem, the coarse nodes are divided in four children nodes. The
value of each coarse node is assigned to one of its children. Next, we define a mi-
gration scheme that systematically attributes the value of the parent node to its the
top left child node. Once this migration has been accomplished, all values of Z are
determined by multiple-point simulation. Where multiple-point simulation methods
determine the value of the simulated pixels by using an external training image, we
use instead the coarse image at its original resolution (all pixels are four times larger
on the coarse image). The result is that the large-scale patterns of the coarse image
are reproduced at the smaller simulation scale, resulting in scale-invariant structures.
Treating a three-dimensional problem is identical, except that each coarse grid node
has eight children nodes. Note that by migrating the value of coarse pixels at a small
scale, we ignore possible scale and support effects in the variable of interest. In con-
trast to most downscaling techniques, this algorithm does not ensure that the mean of
children nodes values is equal to the integral value of their respective parent nodes.

In this paper, we use direct sampling simulation, but any other multiple-point
method can be applied. Using traditional MP techniques instead of DS would call
for considering the multiple-grids approach (Strebelle 2002), which would consist
of creating an additional fine multiple-grid and assuming that the patterns catalogue
(the search tree or the data events list) remains unchanged between this finer grid
and the coarser ones. Nevertheless, problems would arise because of the migration of
a large number of conditioning data between multiple-grids (Strebelle 2002). More-
over, super-resolution would be limited to categorical variables.

The super-resolution mapping algorithm proceeds as follows:
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Fig. 1 Visual representation of the zooming procedure for a single coarse grid node with the deterministic
migration scheme. (a) and (b) Migrate the value of the coarse grid to the top left one of the 4 possible
equivalent fine grid nodes. (c) Simulate the remaining 3 fine grid nodes using the coarse grid as training
image. (d), (e) and (f) Second super-resolution iteration

1. Given a coarse image on grid G1 of size [X,Y ], create a finer grid G2 of size
[2X,2Y ].

2. For each node xG1 of G1, assign Z(xG1) to one of its 4 children nodes on G2.
3. Define a random path through all nodes of G2.
4. Simulate the remaining children nodes Z(xG2) by multiple-point technique, using

G1 as training image grid.

This procedure can be performed many times, using G2 as coarse grid and G4 (size
[4X,4Y ]) as fine grid, etc., by iteratively applying a factor 2. Figure 1 illustrates two
iterations of super-resolution for a single coarse grid node.

Two major assumptions underlie our super-resolution mapping algorithm. The first
one is the assumption of stationarity which is common to most geostatistical methods.
It requires that the patterns found in a subset of the image are similar to the patterns
found in another subset of the image. This assumption is required because multiple-
point methods extrapolate statistical properties to unknown locations at the fine scale,
and can only do so if the attribute values in the part of the domain to complete are
statistically equivalent to the part that is known. The second assumption particular to
our approach is that the patterns at coarse and fine scales are compatible, i.e. that it
is possible to populate the children nodes with rescaled coarse-scale patterns without
causing incompatibilities. This assumption means that our method applies to images
that have scale-invariant properties.

A possibility to extend the algorithm is to consider refinement factors greater
than 2. For example, one can divide a pixel into nine (instead of four) pixels in two-
dimensions using a refinement factor of 3 in each direction. In this case, eight fine
pixels would need to be simulated for each coarse pixel. Similarly, one can use a re-
finement factor of 5, or even more. The rest of the approach remains identical: the
coarse scale value is associated to one pixel and the remaining unknown pixels are



790 Math Geosci (2011) 43:783–797

simulated using the multiple-point technique. Although this approach seems appeal-
ing because it can use refinement factors that are not multiples of 2, it introduces
artifacts due to the low density of data in the simulation grid. In the next section,
we investigate both approaches, and show that successive refinement by a factor 2 is
preferable because it does not introduce as much artifacts.

4 Fractal Dimensions with a Categorical Variable

Computation of fractal dimension is the standard way to quantify scale invariance.
It is determined by computing the number of self-similar objects that are needed to
cover an entire system as a function of the object size. A classical example of fractal
dimension computation is the measurement of the length of a coastline using rulers
of different sizes (Mandelbrot 1967). Smaller rulers results in longer coastlines be-
cause it takes into account more irregularities. If plotting on a log-log scale the coast-
line length as a function of the ruler size results in a linear function, the system can
be termed self-similar on the corresponding range of scales (Ronayne and Gorelick
2006). The fractal dimension is then the slope of this line.

In order to use this measure to validate our method, we perform super-resolution
simulation of a categorical image that has similar characteristics as a coastline. Fractal
dimensions are then computed on both coarse and refined images, and we show that
the refined image is a fractal extrapolation of the coarse one. The original coarse im-
age (Fig. 2a) was obtained by segmentation of a satellite image (Lena delta, Russian
Federation) in three categories representing rivers, land and lakes. Direct Sampling
is used with the distance formulated in (4) to perform three super-resolution steps,
each time using a factor 2 (respectively, corresponding to G2, G4 and G8. Figure 2b
shows the resulting image refined once and Fig. 2c displays the image refined twice.
The zoomed areas allow a detailed comparison of the small-scale structures. Where
the coarse image shows stair-like interfaces between the different categories, the fine
image is smoother, but still presents some degree of roughness. At the fine scale,
the irregularities of the boundaries between facies reflect the features that occur at a
larger scale in the coarse image. Note that on Fig. 2, the resolution increase is most
visible between the coarse and the medium images. However, the fractal dimension
analysis shows that a coherent zooming is performed at the fine scale as well.

A fractal dimension analysis of facies boundaries is performed on both images.
The boundary of each category is delineated using an edge detection algorithm (Shih
2009) and the lengths of these boundaries are computed using rulers of different sizes.
The resulting functions, plotted in a log-log scale, are shown in Fig. 3. With rulers
sizes ranging from 1 to 12 (the unit length is one coarse pixel), the coarse and refined
images have similar scale dependence for the boundary length of all 3 categories.
A scale-invariant behavior, characterized by an almost linear function, is observed
with ruler sizes between 1 and 5. This linear behavior is an indication that it is rea-
sonable to make a hypothesis of scale invariance in this case. We perform the same
boundary length analysis on the refined images, but since they have smaller pixels, it
is also possible to measure boundary length with rulers of size 0.5, 0.25 and 0.125,
respectively for the first (G2), second (G4) and third (G8) degrees of refinement. The
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Fig. 2 Super-resolution of a Landsat image (USGS/EROS) of the Lena delta (Russian Federation) con-
sisting of 3 categories. (a) Original coarse image. (b) Result after one super-resolution pass. (c) Result
after two super-resolution passes
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Fig. 3 Length of the boundary of each category measured with rulers of varying size with repeated appli-
cation of a refinement factor 2 (length unit: one coarse pixel)

Table 1 Fractal dimension of
the boundary length of each
category, for original and
images refined successively with
a factor 2

Category 0 Category 1 Category 2

Original coarse image (G1) 1.1304 1.1201 1.2025

Image refined once (G2) 1.1145 1.1106 1.1912

Image refined twice (G4) 1.1045 1.1065 1.1844

Image refined 3 times (G8) 1.1004 1.1058 1.1774

resulting boundary lengths are in the continuity of the linear function observed for
larger ruler sizes, hence the fractal dimension of the coarse image is preserved.

Table 1 provides numerical values for the calculated fractal dimensions. Values for
coarse and refined images are similar, showing that in this case, the method allows
inferring small-scale features while preserving scale-invariant characteristics of the
image. In Fig. 4, we display similar results using refinement factors larger than 2. The
method has been applied with refinement values ranging between 2 and 12. We see
that the use of high refinement factors induces a bias of the fractal dimension which
tends to increase (the slope increases) in this example, as shown in Table 2. We inter-
pret this artificial increase in the fractal dimension as a consequence of noise, which
is due to the large ratio of the number of nodes to be simulated versus the number
of conditioning data. We conclude from this analysis that a refinement factor of 2
provides the most natural extrapolation of the image at a small scale as it preserves
its fractal dimension.
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Fig. 4 Length of the boundary of each category measured with rulers of varying size, when applying
refinement factors varying from 2 (G2) to 12 (G12) (length unit: one coarse pixel)

Table 2 Fractal dimension of
the boundary length of each
category, for original and images
refined with factors larger than 2

Category 0 Category 1 Category 2

Original coarse image (G1) 1.1304 1.1201 1.2025

Refinement factor 3 (G3) 1.0725 1.0757 1.1511

Refinement factor 4 (G4) 1.1128 1.1228 1.1961

Refinement factor 6 (G6) 1.1610 1.1731 1.227

Refinement factor 8 (G8) 1.2728 1.2858 1.3264

Refinement factor 12 (G12) 1.4370 1.4653 1.5484

5 Continuous Variable

The next example illustrates our super-resolution mapping method applied to a con-
tinuous image that was built by applying geostatistical methods on an aerial photo-
graph of braided channels in the Ohau River, New Zealand (Mosley 1982). The result
is a grid populated with complex patterns of hydraulic log-transmissivity values (T ),
showing heterogeneity and anisotropy. Kerrou et al. (2008) explain in detail the pro-
cedure used for generating the image. The image size is 1000 m by 400 m and it has
been discretized in 440 × 176 grid nodes.

Two super-resolution steps are accomplished with the DS algorithm, using the
measure of distance in (5) because the variable is continuous. Figure 5a shows the
original coarse image G1. Figure 5b depicts a detail of G1, with coarse pixels clearly
visible. The super-resolution is performed many times, using each simulation from
the previous step as a new coarse image that is sampled again. Figures 5c to 5f dis-
play the results of two super-resolution iterations (G2 and G4). In the detailed zone,
the image becomes sharper at each step while preserving the structures present in
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Fig. 5 Results of two super-resolution steps for a continuous variable. (a) Original coarse image (G1),
which contains the only available input data for the super-resolution algorithm. (b) A detail of the
coarse image. (c) Resulting image after one super-resolution iteration (G2). (d) A detail of the correspond-
ing image. (e) Resulting image after two super-resolution iterations (G3). (f) A detail of the corresponding
image. Note that the axes do not represent the real system of coordinates, but the number of nodes in
each image

the coarse image. Comparison of the histograms of the three images (Fig. 6a) shows
that super-resolution does not induce a bias in the distribution of transmissivity val-
ues. The variograms (Fig. 6b) clearly indicate that the spatial structure of the refined
field is not affected. Histograms and variograms are perfectly reproduced, without
performing any histogram transform or variogram adjustment.

6 Conclusions

In this paper, we present a method for performing super-resolution mapping or zoom-
ing of coarse images. Our method infers information on the missing scale by assum-
ing fractal properties for the variable to be simulated. It proceeds by first migrating
pixel values on a refined grid and in a second step by populating the rest of the fine
grid with spatial patterns borrowed from the coarse image. For this second step, we
use multiple-point geostatistical simulation methods (MPS). The main idea is to treat
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Fig. 6 (a) Histograms of the
values of coarse, medium and
fine images. (b) Omnidirectional
variograms of the three images.
Variograms lags have been
computed using the real system
of coordinates with a domain
size of 1000 × 400 meters in the
three cases

the super-resolution problem as a simulation exercise, while keeping the same spa-
tial model for the coarse and the fine scale, therefore making an assumption of scale
invariance. Other simulation techniques than MPS could be used with the same prin-
ciple. However, we find that the use of MPS is especially straightforward in this case
because there is no need to find or to build a training image since it is already available
as the coarse image.

The resulting fine-resolution images present the same properties as their coarse
counterparts, both in terms of fractal dimension and reproduction of spatial statistics.
This super-resolution method is parsimonious in parameterization and valid over a
wide range of scales. Fractal dimensions do not need to be calculated, nor is any
adjustment of parameters necessary, except for the parameters of the multiple-point
simulation algorithm. The key for inferring the fine-scale structure is the hypothe-
sis of self-similarity applied to the patterns of the coarse image. The method does
not need an explicit spatial model such as a training image or a variogram. One re-
quirement of the method is that the coarse image should be large enough to contain a
diversity of patterns to be reproduced at the fine scale. Compared to super-resolution
techniques used in image processing, the proposed super-resolution method is limited
to self-similar structures, which is not always the case for natural images.

The possibility to perform multivariate super-resolution mapping could be used
for applications related to the estimation of fine-resolution land cover maps, based
on coarse-resolution proportions of each land cover class given by remote sensing
images. This could be possible because the algorithm can accommodate multivariate
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images combining both continuous and categorical variables. More generally, the
method can be applied, for example, to remote sensing images whose resolution is
insufficient for given applications (e.g. satellite imaging, geophysics) or time series
measurements (such as precipitation intensity at a given location) that were recorded
with widely spaced time steps.
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