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A B S T R A C T

High quality land use/land cover (LULC) data with fine spatial resolution and frequent temporal coverage are
indispensable for revealing detail information of the Earth’s surface, characterizing LULC of the area, predicting
the plausible land use changes, and assessing the viability and impacts of any development plans. While airborne
imagery has high spatial resolution, it only provides limited temporal coverage over time. The LULC data from
historical remote sensing images, such as those from Landsat, have frequent coverages over a long temporal
period, but their spatial resolutions are low.

This paper presents a spatio-temporal Cokriging method to sharpen LULC data and predict the trends of land
use change. A set of time-series coarse resolution LULC maps and one frame of high spatial resolution airborne
imagery of the Upper Mill Creek Watershed were used to illustrate the utility of our method. By explicitly
describing the spatio-temporal dependence within and between different datasets, modelling the Anderson
classification codes using spatial, temporal, and cross-covariance structures, and transforming the Anderson
integer classification code to class probability, our method was able to resolve the differences between multi-
source spatio-temporal LULC data, generate maps with sharpened and detailed land features, characterize the
spatial and temporal LULC changes, reveal the trend of LULC change, and create a quality dataset invaluable for
monitoring, assessing, and modelling LULC changes.

1. Introduction

The terrestrial features on the Earth’s surface are extremely di-
versified, and they are changing rapidly, particularly in urbanized re-
gions. To better observe the features of land use and land cover (LULC),
capture a more realistic and detailed picture of its patterns, and monitor
its changes over time, one needs spatio-temporal (ST) data with fine
spatial and temporal resolutions (Fan et al., 2017; Sun et al., 2016;
Tong and Naramngam, 2007). Nonetheless, many LULC data have ei-
ther high temporal frequency or high spatial resolution, but not both.
The U.S. Geological Survey (USGS) National Land Cover Database
(NLCD), for example, has frequent and extended temporal coverage, but
a low spatial resolution of 30 m. Therefore, a technical challenge is to
derive a spatial data handling method that can produce images at both
high spatial resolution and high temporal frequency.

Numerous image-sharpening methods have been developed
whereby an image from a fine resolution panchromatic band is used to
increase the spatial resolution of another data source. Traditional
methods include wavelet transformation (Yocky, 1996) and Gram-

Schmidt method (Ling et al., 1986). Geostatistical methods, such as
inverse distance weighted method (IDW), have also been applied to
spatial data fusion and sharpening (Kyriakidis and Journel, 1999).
Recently, Jeganathan et al. (2011) developed a thermal image shar-
pening algorithm and Gilbertson et al, (2017) proposed a multi-tem-
poral imagery sharpening model. While these methods can improve the
spatial resolution of a dataset, they are not suitable to perform spatio-
temporal data sharpening, because they model only one point in time
and do not address the quantitative temporal changes induced by
phenology and seasonality. Other researchers, such as Snepvangers
et al. (2003), used two kriging methods (a spatio-temporal ordinary
kriging and a spatio-temporal kriging with an external drift). Never-
theless, their kriging methods were not designed to deal with raster
datasets created from satellite observations. Atkinson et al. (2008) de-
veloped a downscaling Cokriging method by using a coarse resolution
image as a primary variable and a higher spatial resolution image at a
different spectral band as a co-variable. Although spatial covariance
and cross-covariance structures between primary and secondary images
were taken into account in their study, the downscaling Cokriging
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method did not model the time dimension. Therefore, their method is
still unable to perform spatio-temporal data sharpening. Liu et al.
(2008) used dominant driving factors, such as encroachment of urban
development, to model LULC change. While their method works well, it
is not suitable for a region that lacks data on the dominant factors. van
der Sande et al. (2003) derived a segmentation-based approach to im-
prove LULC mapping for flood assessments, but their approach is not
suitable for LULC change detection analyses because it only uses spatial
information to depict the LULC pattern. Verhoeye and Wulf (2002) also
proposed to use a linear optimization algorithm, which utilizes a
weighted function to address spectral differences between multi-sensors
data. However, they adopted a heuristic approach and arbitrarily as-
signed fraction values to the sub-pixel of the LULC data. The effec-
tiveness and accuracy of this method are therefore limited.

This paper proposes a new spatio-temporal Cokriging (ST-
Cokriging) technique by extending traditional Cokriging from a spatial
domain to a space-time domain. This is the first attempt to sharpen
classification maps via a geostatistical approach. Our method is capable
of assimilating images of temporally frequent but coarse spatial re-
solution with images of fine spatial resolution but a sparse temporal
coverage. Its algorithm takes into account the spatial and temporal
covariance and cross-covariance structures. The validation results and
accuracy assessments showed that our multi-scale spatio-temporal
sharpening technique provided reliable LULC predictions with more
detail.

Moreover, previous LULC change detection methods, such as those
by Liu et al. (2008), were designed to use the image spectral values
rather than the classification codes. Only a few were focused on es-
tablishing the quantitative connection and transmission between LULC
classes (van der Sande et al., 2003). However, the coded classes are
different from spectral values. To calculate the spatio-temporal change
probabilities, the relationships between nested classes need to be con-
sidered, while spatial, temporal, and spatio-temporal independence
between and within multi-source data need to be modelled appro-
priately. In this research, our sharpening algorithm was designed spe-
cifically for systematic classification values, such as the LULC Anderson
classification codes (Anderson et al., 1976). As the Anderson codes are
transmittable and generalizable, the changing trend and the rate of the
temporal changes can be calculated; as such, the sharpened maps are
invaluable for future land development. To make it easier for other
users, our sharpening algorithm is included in a software package.
Through the user interface for batch processing, users can apply it to
other study regions even with a different spatial scale.

2. Methodology

2.1. Sharpening method for Anderson classification

The Anderson classification method is commonly used to classify
datasets, including NLCD LULC (Anderson et al., 1976; MRLC (Multi-
Resolution Land Characteristics Consortium), 2017). By naming classes
according to accepted terminology, coding information so that it can be
transmitted, and allowing inductive generalizations, it satisfies the
three major attributes of classification (Grigg, 1965). To allow cross-
categories comparison, its nested class codes are represented by two
digits (the first digit represents the land use category, and the second
digit shows the different levels within that land use category; see
Table 1). For instance, when comparing the categories of deciduous
forest with shrub/scrub and high density developed area, the difference
between deciduous forest (41) and shrub/scrub (52) is smaller than the
difference between deciduous forest (41) and high intensity developed
area (24), thereby reflecting that the class category of deciduous forest
is more similar to shrub/scrub (52) than to high intensity developed
area (24). The order of the class code also represents the trend of LULC
change; for example, in the category of developed area, open space is
coded as 21, low intensity developed area is 22, medium intensity is 23,

and high intensity is 24. With the classes coded in integers, the class
order enables the calculation of the probability of change between two
adjacent class codes. As shown in Fig. 1, the decimal between the
classes could be used to show the temporal correlation between the
time-series LULC data and calculate the LULC changing probability. As
an illustration, the value of 21.73, which represents developed area,
means that there is a 73% probability for the object to be in the class of
low intensity development (Anderson class code 22). By representing
not only the possibility of an object that will fall in a specific LULC
class, but also the trend of transformation in the spatio-temporal con-
text, the LULC probability is useful for detecting the spatio-temporal
change of LULC.

2.2. Spatio-temporal extended Cokriging

Cokriging is an extension of a kriging system to more than one
variable in the space domain with one primary target variable and one
or more secondary variable (Chilès and Delfiner, 1999). Previous re-
search has demonstrated that Cokriging can be used for downscaling
and sharpening airborne raster data (Atkinson et al., 2008; Pardo-
Igúzquiza et al., 2006). We extended the traditional Cokriging method
from the spatial domain to the space-time domain to model the spatial,
temporal, and spatio-temporal correlations in the LULC change process.
The primary variable was the NLCD LULC images with low spatial re-
solution but high temporal frequency at multiple time points. The
secondary co-variable was the high spatial resolution image acquired at
one time point. The derived spatio-temporal Cokriging predictor can be
expressed as:
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0

0 is spatio-temporal probability at location s0 and time t .0
Z s( )t

iji is time-series LULC at pixel sij and time t ;i Z u( )v
t

k2 is the high
resolution secondary co-variable at location uk and time t2. ij and k are
two sets of weight to be estimated by minimizing the corresponding
mean squared prediction error (Chilès and Delfiner, 1999). Mathema-
tically, two sets of weights were obtained by solving the spatio-tem-
poral covariance system, =C b, where

Table 1
Anderson land cover classification system for NLCD data.

Category Class Code

Water Open Water 11
Perennial Ice/Snow 12

Developed Developed, Open Space 21
Developed, Low Intensity 22
Developed, Medium Intensity 23
Developed High Intensity 24

Barren Barren Land (Rock/Sand/Clay) 31
Forest Deciduous Forest 41

Evergreen Forest 42
Mixed Forest 43

Shrubland Dwarf Scrub 51
Shrub/Scrub 52

Herbaceous Grassland/Herbaceous 71
Sedge/Herbaceous 72
Lichens 73
Moss 74

Planted/Cultivated Pasture/Hay 81
Cultivated Crops 82

Wetlands Woody Wetlands 90
Emergent Herbaceous Wetlands 95
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The spatio-temporal covariance matrix C has covariance C il
1 , which

is the ×N Ni l covariance matrix of the primary variable at time t . C i
12 is

the ×N Mi cross-covariance matrix between primary variable at time ti

and the secondary co-variable at time t2 with =C C .i i
21 12 C2 is the ×M M

covariance matrix of the secondary variable tat time 2.
In the right-side of the equation, =b C s C s[ ( ) ( ) 1 0 ]i

1 0 2 0 , where
C s( )i

1 0 is the ×N 1i cross-covariance vector between primary variable at
time ti and predicting location s0, C s( )2 0 is the ×M 1 cross-covariance
vector between the secondary co-variable at time t2 and the predicting
location s0. = m m[ ]TN M 1 2T , where m1 and m2 are Lagrange
multipliers (Myers and Milton, 1991) for the two constraints:
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i . Solving the Cokriging system via the in-

version of matrix C , we obtained the weights and the corresponding
predictor Z sˆ ( )t

0
0 . With varying s0 over the spatial domain of interest

and t0 over the time domain, we obtained the prediction for the primary
variable over time at the same spatial resolution as the secondary co-
variable. This, therefore, generated the spatio-temporal sharpening
imagery.

To satisfy the secondary-stationary assumption, a detrending pro-
cess is required (Snepvangers et al., 2003). Here, a local mean value of
pixels at the closest predicting time was estimated as the trend surface.
The residuals after removing the fitted trend surface were used to es-
timate the semi-variogram and autocorrelations. In addition, in this
study, as in general practice, (co)kriging was implemented locally
within a moving window. The window’s size was chosen based on the
effective range of the spatial semi-variogram, since it indicates the valid
spatial range of the spatial dependency.

2.3. Building the spatio-temporal structure

To estimate the spatio-temporal structure, we used the spatio-tem-
poral covariance function governing both spatial and temporal covar-
iance. But there are some challenges in constructing a model for the
spatio-temporal semi-variogram. First, to be a valid covariance func-
tion, the function must satisfy a positive-definiteness condition (Cressie,
1993). A property of the spatio-temporal covariances is that they can be
written as a product of a valid spatial covariance and a valid temporal
covariance (De Cesare et al., 2001). While this product did not model
the interaction (Cressie and Huang, 1999), it is computationally effi-
cient for regular raster data and can ensure the positive-definiteness
condition. Accordingly, we chose the spatial-temporal covariance
function for achieving the best balance between efficiency and accu-
racy.

=cov Z s t Z s t cov s s r t t( ( , ), ( , )) ( )· ( )s t1 1 1 2 2 2 1 2 1 2 (3)

where covs is the valid spatial covariance and rt is the temporal corre-
lation function. As in classical geostatistics and time-series analysis, we
first used the available images to compute the empirical spatial semi-

variogram ŝ and empirical temporal semi-variogram t̂. Then, appro-
priate parametric spatial semi-variogram and auto correlation models
were chosen. The ordinary least squares (OLS) adjustment fitting
method was used in this case to estimate associated model parameters.

Spatial semi-variogram h( )s s was computed by selecting pixel pairs
with the spatial distance hs, then their average squared differences were
calculated by:
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where N h( )s is the number of randomly chosen pixel pairs. In this
study, 5000 randomly chosen pairs of pixels with a spatial distance hs
were used to calculate the spatial semi-variogram and to estimate the
spatio-temporal covariance structure as the training dataset.

Next, the empirical temporal semi-variogram h( )t was calculated
as the function of the temporal distance ht (in year). Time-series LULC
images were used to calculate the temporal semi-variograms. Time-
series data acquired in ht years before or after the predicted time points
were used in the following equation,

= +
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where N h( )t is the number of pixel pairs which are located at the same
location while separated by ht years.

Both spatial and temporal semi-variograms are required to estimate
the covariance matrix. We constructed the empirical variograms based
on the available LULC data, since Anderson classification system coded
the more related classes with closer numbers. The spatial semi-vario-
gram was estimated using high resolution data with more detailed
spatial information. Meanwhile, the temporal semi-variogram was es-
timated by using the time-series primary variable, because there was
only one frame of the secondary variable available in the temporal
domain and that time point was included in the temporal domain of the
primary variable. As the spatial and the temporal semi-variograms were
estimated from different dataset, the change-of-support was not in-
volved in the calculation in this study.

3. Study area and data acquisition

3.1. Study area

The upper portion of the Mill Creek watershed (UMCW) in south-
western Ohio (Fig. 2) was selected to demonstrate the LULC sharpening
results through ST-Cokriging. Mill Creek is 72.4 km long, stretching
from its headwater in the eastern central part of Butler County through
the industrial centers of the Hamilton County before it joins the Ohio
River in the western side of downtown Cincinnati. Because of its loca-
tion, the Mill Creek Valley has been serving as a transportation corridor
for industrial development and has helped to build Cincinnati into a
prosperous industrial powerhouse (Mill Creek Watershed Council,
2017). Over the years, the UMCW has been experiencing rapid urba-
nization. Its population has doubled in the last 20 years to nearly
40,000 (U.S. Census Bureau, 2014), and its land use has been changing

Fig. 1. Class numbers in the Anderson classification system.
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rapidly, especially in and around Liberty Township in the southeastern
region of Butler County along the interstate I-75. As the UMCW con-
tinues to be developed, there will be more changes in its already het-
erogeneous and diversified LULC. The UMCW is therefore an ideal
study area to demonstrate the efficacy of spatio-temporal modelling and
LULC data sharpening.

3.2. LULC data as the primary variable

All LULC images were clipped to the UMCW and projected to NAD
1983 State Plane Ohio South FIPS 3402 coordinate system. Fig. 3 shows
the 1992, 2001, 2006, and 2011 NLCD LULC over the UMCW. It is
evident that since 1992, the overall LULC trend of the area is a decrease
of vegetation coverage. The developed regions with class codes of 20 to
25 expanded from 232.6 km2 in 2001 to 239.1 km2 in 2006 and
240.1 km2 in 2011.

Since the original 1992 NLCD LULC map was generated from un-
supervised classification of Landsat Thematic Mapper (TM) circa 1990′s
satellite data (Riitters et al., 2002), it has a different legend from the
other maps. Hence, we did not directly compare the 1992 data with
other NLCD data; instead, they were used as supporting data to estimate
the spatio-temporal structure.

One challenge in estimating the spatio-temporal LULC changes is
the lack of temporal valid points and the relatively short sampling
period. To better depict the spatio-temporal LULC changes, we need

multiple land use measurements covering an extensive temporal do-
main to provide additional information of the temporal structure and a
longer temporal trend of LULC change. To circumvent this requirement,
we generated future LULC scenarios for 2030, 2040, and 2050 using a
Markov Cellular Automata (CA-Markov) model in IDRISI (Clack Labs,
2012). The predictability of the LULC map generated from IDRISI was
verified by comparing the simulated 2011 map with the actual 2011
NLCD map using Kappa statistic, a commonly used measure of the
overall accuracy of agreement between two images (Pontius et al.,
2001). It has a value ranging from 0 (no agreement between the two
images) to 1 (perfect agreement). Because the value of the Kappa sta-
tistic in this research was found to be 0.9291, the model results were
accepted and coded in accordance with the Anderson Level II classifi-
cation criteria. The “urban areas” in the future land use scenarios were
classified into “developed open space,” “developed low intensity,”
“developed medium intensity,” and “developed high intensity” (Fig. 4).

Modeling results show that the total areal extent of developed re-
gions with class codes 20 to 25 expanded from 202.4 km2 in 2030 to
202.8 km2 in 2040 and 207.2 km2 in 2050. While all of these four ca-
tegories depict urbanized lands, the speed of impervious surface ex-
pansion in each category is different.

3.3. Airborne imagery and object-oriented classification

The Ohio government has deployed two airborne imagery

Fig. 2. The UMCW overlay with 2011 NLCD LULC data.
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Fig. 3. NLCD LULC over the UMCW in a) 1992; b) 2001, c) 2006, d) 2011.

Fig. 4. IDRISI simulated LULC patterns over the UMCW in: a) 2030; b) 2040, c) 2050.
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reconnaissance surveys, one in 2007–2008 (OSIP I) and the other in
2010–2011 (OSIP II), to acquire high spatial resolution (3 m or less)
airborne imagery. In this study, we used the 2007 OSIP I as the co-
variable for ST-Cokriging sharpening and the 2011 OSIP II imagery for
validating the sharpening results. The 2007 OSIP I imagery has near
infrared (NIR), red, and green bands (Fig. 5). Ground control points
were collected by the OSIP airborne imagery survey group to geo-reg-
ister the airborne imagery and validate the imagery. According to
OGRIP (2017), the overall accuracy of the imagery product is within
0.0254 m.

We used object-oriented classification method to classify the high
resolution OSIP airborne images to the Anderson classification system.
When compared with the pixel-based classification, object-oriented
classification is better suited to extract land use objects, such as
buildings, and its results have better clarity and more contiguous
shapes. With appropriate training samples and parameters, the method
has an excellent capability to delineate objects at a local scale (Jacquin
et al., 2008). It is therefore widely used for automatic and semi-auto-
matic LULC classification in urban areas (Liu et al., 2010; Zhang et al.,
2014).

The object-oriented classification on the OSIP high resolution air-
borne imagery was performed using eCognition (Trimble, 2017). To
illustrate the results of our analyses in more detail, we chose an area
near Liberty Township, the fastest growing area in the UMCW with
rapid LULC changes, as a zoomed-in enlarged area (Fig. 6). Multi-re-
solution classification was used because the high resolution airborne
imagery contains NIR, red, and green bands. To obtain the best classi-
fication results, we set the object size to 200, which was the average
number of pixels for objects in the study region. To calibrate the clas-
sification parameters, a sample of classification results was compared to
the NLCD 2006 LULC data (the selected training object shown in Fig. 6b

and c). By adjusting the coefficients of the shape and compactness of the
image objects to 0.1 and 0.5 respectively, a new LULC map with a finer
spatial resolution (3 m) was produced (Fig. 6a and d). For validation of
the classification results, we used some easily identifiable targets, such
as water bodies, on the image. Ground truth validation ascertains that
these targets are well delineated in our classification results; they are
more distinct, clearly discernable, and with better shapes.

4. Results and discussion

4.1. Estimation of ST-Cokriging equations

The first step of ST-Cokriging was to estimate the spatio-temporal
covariance structure using a primary variable (the time-series NLCD
LULC data with a 30-m spatial resolution) and a secondary variable (the
one frame of OSIP I LULC airborne imagery with a 3-m spatial resolu-
tion). The results of estimated spatial and temporal empirical semi-
variograms derived from Eqs. (4) and (5) are shown in Figs. 7a and b.

The exponential function was chosen to model both the spatial and
temporal semi-variograms and to characterize the covariance structures
because it provided the best fit to the empirical semi-variograms.
Specifically:

=h h( ) 219 [1 exp
194.4

]s s
s

(6)

and:

=(h ) 348 [1 exp h
14.4

]t t
t

(7)

As shown in Fig. 7a and b, the sill values, which represent the
spatial/temporal variances of the variable, are 219 and 348 for the

Fig. 5. 2007 OSIP I airborne imagery over the UMCW with NIR false color combination at a 3-m resolution.
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spatial and temporal models, respectively. According to Cressie (1993),
the effective range is the distance at which the semi-variance reaches
95% of the sill. In this research, the spatial effective range value is
583.2 m and temporal effective range is 43.2 years. Because we were
modeling the LULC change over a long period, the measurement error
(nugget effect) are considered to be infinitesimal in the variogram fit-
ting (Kang et al., 2009).

4.2. Sharpening results and validation

To test and validate the spatio-temporal sharpening performance of the
Cokriging algorithm, we used the 2001, 2006, and 2011 NLCD LULC data
and the high resolution 2007 object orientation classification results of the
OSIP I airborne image as the source data and applied the ST-Cokriging

algorithm to generate a sharpened LULC map of 2011 at a 3-m spatial
resolution. Fig. 8 shows the results of the validation. Here, we included the
2011 NLCD LULC map (Fig. 8a) to illustrate the coarse resolution source
data. We also included the results of the enlarged area near Liberty
Township to highlight the sharpening result from ST-Cokriging. Fig. 8b
shows the secondary co-variable of OSIP I airborne imagery classification
results. From the figures, it is unequivocal that the airborne imagery
classification result (Fig. 8b) has more detail information, and it can depict
the spatial pattern more clearly than the NLCD LULC data.

Fig. 8c is the sharpened 2011 LULC probability map at a 3-m spatial
resolution calculated by the ST-Cokriging algorithm. From the spatio-
temporal structure, the probability value of each pixel was generated,
which represents the probability of change between the two adjacent
class codes in the spatio-temporal domain of the LULC trend.

Fig. 6. a) Object-oriented classification results for the 2007 OSIP I airborne image over the UMCW, b) NIR false color combination imagery for an enlarged area (near
Liberty Township) of the study region, c) traning data objects for the object-oriented classification over the same area, and d) object-oriented classification results
over the same area.

Fig. 7. a) Spatial semi-variogram and exponential fitting model, b) Temporal semi-variogram and exponential fitting model.
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The LULC probability map was converted to Anderson classification
LULC map using the nearest neighbor approach (Fig. 8d). For valida-
tion, the sharpening results were compared with the 2011 OSIP II air-
borne image using the K-fold cross-validation method, where the ori-
ginal sample was randomly divided into K equal subsamples to reduce
overfitting. With this method, each observation is used to validate the
model only once and train the model k-1 times. Here, K was set to 10 to
cross-validate the sharpening performance. Apart from the 5000 pixels
that we selected as the training dataset to estimate the spatio-temporal
structure, another 5000 points were randomly selected to calculate the
confusion matrix and Kappa value, and we repeated the calculation 10
times. When the 2011 sharpening results were compared with the OSIP

II data, the 10-fold average value of the Kappa score was 0.9385. In the
enlarged region of Liberty Township, it clearly shows that detailed
spatial LULC pattern has been extracted from the sharpening results.
Roads, greenbelts, boundaries of buildings and farmlands are much
clearer than that shown under the coarse resolution source data
(Fig. 8a). The generated LULC pattern was found to be in accordance to
the reference image.

4.3. Estimating LULC changes on sharpened time-series maps

We used the high resolution airborne LULC map and the 1992 and
2001 NLCD maps to generate the sharpened map for 2001; the 1992,

Fig. 8. ST-Cokriging sharpening resutls: a) NLCD LULC map in 2011 at 30-m resolution and the enlarged area; b) 2007 OSIP I airborne image classification results at
3-m resolution and the enlarged area; c) ST-Cokriging sharpened LULC probability map at 3-m resolution in 2011 and the enlarged area; d) ST-Cokriging LULC map
using Anderson classification system at 3-m resolution and the enlarged area.
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2001, 2006 NLCD maps to generate the sharpened map for 2006; and
the 2001, 2006, 2011 NLCD maps to generate the sharpened map of
2011. Together, we created a time-series ST-Cokriging sharpened LULC
maps at 3 m over the UMCW (Fig. 9).

To highlight the utility of the sharpened high resolution map in
LULC change detection, two maps of LULC change of the enlarged area
were also created. Fig. 10 shows the changes from 2001 to 2006 and
from 2006 to 2011. They were coded according to the LULC values on
the sharpened high resolution LULC maps and were divided into five
categories based on the class codes and class probabilities:

• Built-up area – the LULC class code value is within the category of
developed land (Anderson classification code 21–24), or the class
probability of LULC change shows that it will mostly remain within
the developed land category. It represents the built-up area or an

area under reconstruction from a previously developed area.
• Crop/grass to built-up area – the change of the LULC value is from

cropland (Anderson classification code 81–82) or grassland (71–74)
to developed land. It represents the newly reclaimed impervious
surface converted from agricultural land.

• Forest to built-up area – the change of the LULC value is from forest
(Anderson classification code 41–43 or 51–52) to developed land. It
represents the newly deforested area changing from forested to
developed area.

• Built-up to vegetated area – the change of the LULC value is from
developed area to vegetated surfaces (Anderson classification code
41–82). It represents the area of impervious surface changing back
to vegetated area.

• No change area – there is no substantial change on the LULC
probability map.

Fig. 8. (continued)
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Fig. 9. Sharpened high resolution LULC maps derived from ST-Cokriging for a) 2001, b) 2006, and c) 2011 at a 3-m spatial resolution over the UMCW and the
enlarged area near Liberty Township.
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Table 2 shows the area under each LULC change category in the
UMCW. While it is evident that the region is undergoing a very pro-
nounced urbanization process from 2001 to 2011, the sharpened high
resolution LULC maps from ST-Cokriging reveal more details of the
LULC change. Fig. 10 shows that from 2001 to 2006 and from 2006 to
2011, a vast portion of Liberty Township changed from vegetated area
to developed area. Most of the impervious surface areas were developed
from the crop/grass area, but a large portion of the forested lands could
still be found surrounding the developed areas. This may be because it
is more cost-effective to convert the crop/grass (rather than forested)
areas to impervious areas. Fig. 10b shows that most of the newly ur-
banizing areas were found in the marginal areas bordering the original
urbanized areas as depicted in Fig. 10a. However, the areal extent of
this area was smaller than that in Fig. 10a. It can be inferred that the
majority of the urbanization process started during the period from
2001 to 2006, where many land parcels had been reclaimed and cleared
for development. For the subsequent five-year period, from 2006 to
2011, many of these open spaces were developed and were replaced by
the newly constructed buildings and impervious surfaces. Although
there was a huge portion of vegetated area changing to developed area,
only a very small area of impervious surface and a few buildings were
converted back to vegetated area, often as newly planted trees sur-
rounding the developed areas. The predominant change in LULC was
therefore an increase in built-up areas; most of which was converted
from reclaimed vegetated areas while some lower intensity developed
areas were also converted to higher intensity development. From this
analysis, it is apparent that the shape of the sharpened image and the
relative position of the changes of LULC can offer useful insights into
the trend of LULC change over time; as such, better inferences can be
drawn.

5. Conclusions

This paper presents a geostatistical approach of spatio-temporal
sharpening of LULC data. Our ST-Cokriging algorithm extended the
traditional Cokriging method from a spatial domain to a spatio-tem-
poral domain by modelling spatial covariance, temporal covariance,
and spatio-temporal covariance. By taking advantage of airborne ima-
gery as a secondary co-variable, it can spatially sharpen the time-series
LULC maps to higher spatial resolution while temporally estimate the
trend probability map, thereby revealing the changing direction and
speed quantitatively.

Previous LULC sharpening methods were primarily based on in-
vestigating the spectral patterns and decomposing the pixel nesting
structure, and few of them established the quantitative connection and
transmission between LULC classes. We utilized the Anderson classifi-
cation system to ensure that the LULC classes can be calculated and
transmitted through ST-Cokriging sharpening. Using the ST-Cokriging
algorithm on the LULC data over the UMCW at a 30-m spatial resolu-
tion, we generated the sharpened LULC at a 3-m spatial resolution as
well as a set of probabilities for LULC change. The algorithm has been
successfully applied to sharpen the historical and future LULC data. The
results demonstrate that our method can effectively generate reliable
results with detailed LULC features and enhance the interpretation and
extraction of surface features.

From our sharpened LULC maps, it is obvious that the shapes of the
land use and spatial nest relations are more readily identifiable. The
new maps provide more detail characterizations and accurate estima-
tions of LULC change. By showing how the expansion of the “open
space developed land” is alternating with the growth of developed
lands, the new maps help to reveal a clearer picture of the urbanization
process. By quantitatively measuring the probabilities of LULC change
between land use classes, the sharpened LULC probability maps also
help us to understand further the trend of land use change. Better
quality time-series land use data can also help us to differentiate the
variabilities of changes within one land use category over time.

Declaration of interests
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Fig. 10. An enlarged part of land use change near Liberty Township, a) from 2001 to 2006, b) from 2006 to 2011.

Table 2
LULC change (in km2) for the UMCW from 2001 to 2006 and 2006 to 2011.

Class Change of LULC code 2001–2006 2006–2011

Built-up area 21–24 to 21–24 82.06 km2 62.07 km2

Crop/grass to building area 71–82 to 21–24 7.28 km2 4.54 km2

Forest to building area 41–52 to 21–24 2.54 km2 0.34 km2

Built-up to vegetation area 21–24 to 41–82 0.02 km2 1.56 km2
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