9,900 research outputs found

    A Simple Upper Limb Rehabilitation Trainer

    Get PDF
    Stroke is the leading cause of disability. Reaching movement including shoulder and elbow movements is the most important movement for many daily activities routine. To maximize functional recovery, stroke survivors go through rehabilitation sessions, under the supervision of physiotherapists in hospitals. Unfortunately, physiotherapy is generally limited to only a few hours per week and labor-intensive. There are many robotic devices have been developed to overcome this problem. However, the cost of rehabilitation robots is still a common problem, limiting their cost-benefit profile and making evaluating and implementing them on a large scale difficult. This paper presents the simple, compact and low cost interactive rehabilitation module for upper limb rehabilitation purposes. This module is intended to be used for training of shoulder and elbow movements integrated with game like virtual reality system

    Immersive Virtual Reality and Robotics for Upper Extremity Rehabilitation

    Full text link
    Stroke patients often experience upper limb impairments that restrict their mobility and daily activities. Physical therapy (PT) is the most effective method to improve impairments, but low patient adherence and participation in PT exercises pose significant challenges. To overcome these barriers, a combination of virtual reality (VR) and robotics in PT is promising. However, few systems effectively integrate VR with robotics, especially for upper limb rehabilitation. Additionally, traditional VR rehabilitation primarily focuses on hand movements rather than joint movements of the limb. This work introduces a new virtual rehabilitation solution that combines VR with KinArm robotics and a wearable elbow sensor to measure elbow joint movements. The framework also enhances the capabilities of a traditional robotic device (KinArm) used for motor dysfunction assessment and rehabilitation. A preliminary study with non-clinical participants (n = 16) was conducted to evaluate the effectiveness and usability of the proposed VR framework. We used a two-way repeated measures experimental design where participants performed two tasks (Circle and Diamond) with two conditions (VR and VR KinArm). We found no main effect of the conditions for task completion time. However, there were significant differences in both the normalized number of mistakes and recorded elbow joint angles (captured as resistance change values from the wearable sensor) between the Circle and Diamond tasks. Additionally, we report the system usability, task load, and presence in the proposed VR framework. This system demonstrates the potential advantages of an immersive, multi-sensory approach and provides future avenues for research in developing more cost-effective, tailored, and personalized upper limb solutions for home therapy applications.Comment: Submitted to International Journal of Human-Computer Interactio

    Development and preliminary evaluation of a novel low cost VR-based upper limb stroke rehabilitation platform using Wii technology.

    Get PDF
    Abstract Purpose: This paper proposes a novel system (using the Nintendo Wii remote) that offers customised, non-immersive, virtual reality-based, upper-limb stroke rehabilitation and reports on promising preliminary findings with stroke survivors. Method: The system novelty lies in the high accuracy of the full kinematic tracking of the upper limb movement in real-time, offering strong personal connection between the stroke survivor and a virtual character when executing therapist prescribed adjustable exercises/games. It allows the therapist to monitor patient performance and to individually calibrate the system in terms of range of movement, speed and duration. Results: The system was tested for acceptability with three stroke survivors with differing levels of disability. Participants reported an overwhelming connection with the system and avatar. A two-week, single case study with a long-term stroke survivor showed positive changes in all four outcome measures employed, with the participant reporting better wrist control and greater functional use. Activities, which were deemed too challenging or too easy were associated with lower scores of enjoyment/motivation, highlighting the need for activities to be individually calibrated. Conclusions: Given the preliminary findings, it would be beneficial to extend the case study in terms of duration and participants and to conduct an acceptability and feasibility study with community dwelling survivors. Implications for Rehabilitation Low-cost, off-the-shelf game sensors, such as the Nintendo Wii remote, are acceptable by stroke survivors as an add-on to upper limb stroke rehabilitation but have to be bespoked to provide high-fidelity and real-time kinematic tracking of the arm movement. Providing therapists with real-time and remote monitoring of the quality of the movement and not just the amount of practice, is imperative and most critical for getting a better understanding of each patient and administering the right amount and type of exercise. The ability to translate therapeutic arm movement into individually calibrated exercises and games, allows accommodation of the wide range of movement difficulties seen after stroke and the ability to adjust these activities (in terms of speed, range of movement and duration) will aid motivation and adherence - key issues in rehabilitation. With increasing pressures on resources and the move to more community-based rehabilitation, the proposed system has the potential for promoting the intensity of practice necessary for recovery in both community and acute settings.The National Health Service (NHS) London Regional Innovation Fund

    A simple upper limb rehabilitation trainer

    Get PDF
    Stroke is a leading cause of disability which can affect shoulder and elbow movements which are necessary for reaching activities in numerous daily routines. To maximize functional recovery of these movements, stroke survivors undergo rehabilitation sessions under the supervision of physiotherapists in healthcare settings. Unfortunately, these sessions may be limited due to staff constraints and are often labor-intensive. There are numerous robotic devices which have been developed to overcome this problem. However, the high cost of these robots is a major concern as it limits their cost-benefit profiles, thus impeding large scale implementation. This paper presents a simple and low cost interactive training module for the purpose of upper limb rehabilitation. The module, which uses a conventional mouse integrated with a small DC motor to generate vibration instead of any robotic actuator, is integrated with a game-like virtual reality system intended for training shoulder and elbow movements. Three games for the module were developed as training platforms, namely: Triangle, Square and Circle games. Results from five healthy study subjects showed that their performances improved with practice and time taken to complete the Triangle game was the fastest of the three

    Augmented reality system for rehabilitation : new approach based on human interaction and biofeedback

    Full text link
    University of Technology Sydney. Faculty of Engineering and Information Technology.Rehabilitation is the process of training for someone in order to recover or improve their lost functions caused by neurological deficits. The upper limb rehabilitation system provides relearning of motor skills that are lost due to any neurological injuries via motor rehabilitation training. The process of motor rehabilitation is a form of motor learning via practice or experience. It requires thorough understanding and examination of neural processes involved in producing movement and learning as well as the medical aspects that may affect the central nervous system (CNS) or peripheral nervous system (PNS) in order to develop an effective treatment system. Although there are numerous rehabilitation systems which have been proposed in literatures, a low cost upper limb rehabilitation system that maximizes the functional recovery by stimulating the neural plasticity is not widely available. This is due to lack of motivation during rehabilitation training, lack of real time biofeedback information with complete database, the requirement of one to one attention between physiotherapist and patient, the technique to stimulate human neural plasticity. Therefore, the main objective of this thesis is to develop a novel low cost rehabilitation system that helps recovery not only from loss of physical functions, but also from loss of cognitive functions to fulfill the aforementioned gaps via multimodal technologies such as augmented reality (AR), computer vision and signal processing. In order to fulfill such ambitious objectives, the following contributions have been implemented. Firstly, since improvements in physical functions are targeted, the Rehabilitation system with Biofeedback simulation (RehaBio) is developed. The system enhances user’s motivation via game based therapeutic exercises and biofeedback. For this, AR based therapeutic games are developed to provide eye-hand coordination with inspiration in motivation via immediate audio and visual feedback. All the exercises in RehaBio are developed in a safe training environment for paralyzed patients. In addition to that, real-time biofeedback simulation is developed and integrated to serve in two ways: (1) from the patient’s point of view, the biofeedback simulation motivates the user to execute the movements since it will animate the different muscles in different colors, and (2) from the therapist’s point of view, the muscle simulations and EMG threshold level can be evaluated as patient’s muscle performance throughout the rehabilitation process. Secondly, a new technique that stimulates the human neural plasticity is proposed. This is a virtual human arm (VHA) model that driven by proposed continuous joint angle prediction in real time based on human biological signal, Electromyogram (EMG). The VHA model simulation aims to create the illusion environment in Augmented Reality-based Illusion System (ARIS). Finally, a complete novel upper limb rehabilitation system, Augmented Reality-based Illusion System (ARIS) is developed. The system incorporates some of the developments in RehaBio and real time VHA model to develop the illusion environment. By conducting the rehabilitation training with ARIS, user’s neural plasticity will be stimulated to re-establish the neural pathways and synapses that are able to control mobility. This is achieved via an illusion concept where an illusion scene is created in AR environment to remove the impaired real arm virtually and replace it with VHA model to be perceived as part of the user’s own body. The job of the VHA model in ARIS is when the real arm cannot perform the required task, it will take over the job of the real one and will let the user perceive the sense that the user is still able to perform the reaching movement by their own effort to the destination point. Integration with AR based therapeutic exercises and motivated immediate intrinsic and extrinsic feedback in ARIS leads to serve as a novel upper limb rehabilitation system in a clinical setting. The usability tests and verification process of the proposed systems are conducted and provided with very encouraging results. Furthermore, the developments have been demonstrated to the clinical experts in the rehabilitation field at Port Kembla Hospital. The feedback from the professionals is very positive for both the RehaBio and ARIS systems and they have been recommended to be used in the clinical setting for paralyzed patients

    Patients' use of a home-based virtual reality system to provide rehabilitation of the upper limb following stroke

    Get PDF
    Background: A low cost, virtual reality system that translates movements of the hand, fingers and thumb into game play was designed to provide a flexible and motivating approach to increasing adherence to home based rehabilitation. Objective: Effectiveness depends on adherence, so did patients use the intervention to the recommended level. If not, what reasons did they give? Design: Prospective cohort study plus qualitative analysis of interviews. Methods: 17 patients recovering from stroke recruited to the intervention arm of a feasibility trial had the equipment left in their homes for eight weeks and were advised to use it three times a day for periods of no more than 20 minutes. Frequency and duration of use were automatically recorded. At the end of the intervention, participants were interviewed to determine barriers to using it in the recommended way. Results: Duration of use and how many days they used the equipment are presented for the 13 participants who successfully started the intervention. These figures were highly variable and could fall far short of our recommendations. There was a weak (p=0.053) positive correlation between duration and baseline reported activities of daily living. Participants reported familiarity with technology and competing commitments as barriers to use although appreciated the flexibility of the intervention and found it motivating

    Home-based therapy programmes for upper limb functional recovery following stroke

    Get PDF
    Background: With an increased focus on home-based stroke services and the undertaking of programmes, targeted at upper limb recovery within clinical practice, a systematic review of home-based therapy programmes for individuals with upper limb impairment following stroke was required. Objectives: To determine the effects of home-based therapy programmes for upper limb recovery in patients with upper limb impairment following stroke. Search methods: We searched the Cochrane Stroke Group's Specialised Trials Register (May 2011), the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2011, Issue 2), MEDLINE (1950 to May 2011), EMBASE (1980 to May 2011), AMED (1985 to May 2011) and six additional databases. We also searched reference lists and trials registers. Selection criteria: Randomised controlled trials (RCTs) in adults after stroke, where the intervention was a home-based therapy programme targeted at the upper limb, compared with placebo, or no intervention or usual care. Primary outcomes were performance in activities of daily living (ADL) and functional movement of the upper limb. Secondary outcomes were performance in extended ADL and motor impairment of the arm. Data collection and analysis: Two review authors independently screened abstracts, extracted data and appraised trials. We undertook assessment of risk of bias in terms of method of randomisation and allocation concealment (selection bias), blinding of outcome assessment (detection bias), whether all the randomised patients were accounted for in the analysis (attrition bias) and the presence of selective outcome reporting. Main results: We included four studies with 166 participants. No studies compared the effects of home-based upper limb therapy programmes with placebo or no intervention. Three studies compared the effects of home-based upper limb therapy programmes with usual care. Primary outcomes: we found no statistically significant result for performance of ADL (mean difference (MD) 2.85; 95% confidence interval (CI) -1.43 to 7.14) or functional movement of the upper limb (MD 2.25; 95% CI -0.24 to 4.73)). Secondary outcomes: no statistically significant results for extended ADL (MD 0.83; 95% CI -0.51 to 2.17)) or upper limb motor impairment (MD 1.46; 95% CI -0.58 to 3.51). One study compared the effects of a home-based upper limb programme with the same upper limb programme based in hospital, measuring upper limb motor impairment only; we found no statistically significant difference between groups (MD 0.60; 95% CI -8.94 to 10.14). Authors' conclusions: There is insufficient good quality evidence to make recommendations about the relative effect of home-based therapy programmes compared with placebo, no intervention or usual care

    Synopsis of an engineering solution for a painful problem Phantom Limb Pain

    Get PDF
    This paper is synopsis of a recently proposed solution for treating patients who suffer from Phantom Limb Pain (PLP). The underpinning approach of this research and development project is based on an extension of “mirror box” therapy which has had some promising results in pain reduction. An outline of an immersive individually tailored environment giving the patient a virtually realised limb presence, as a means to pain reduction is provided. The virtual 3D holographic environment is meant to produce immersive, engaging and creative environments and tasks to encourage and maintain patients’ interest, an important aspect in two of the more challenging populations under consideration (over-60s and war veterans). The system is hoped to reduce PLP by more than 3 points on an 11 point Visual Analog Scale (VAS), when a score less than 3 could be attributed to distraction alone

    Rehabilitative devices for a top-down approach

    Get PDF
    In recent years, neurorehabilitation has moved from a "bottom-up" to a "top down" approach. This change has also involved the technological devices developed for motor and cognitive rehabilitation. It implies that during a task or during therapeutic exercises, new "top-down" approaches are being used to stimulate the brain in a more direct way to elicit plasticity-mediated motor re-learning. This is opposed to "Bottom up" approaches, which act at the physical level and attempt to bring about changes at the level of the central neural system. Areas covered: In the present unsystematic review, we present the most promising innovative technological devices that can effectively support rehabilitation based on a top-down approach, according to the most recent neuroscientific and neurocognitive findings. In particular, we explore if and how the use of new technological devices comprising serious exergames, virtual reality, robots, brain computer interfaces, rhythmic music and biofeedback devices might provide a top-down based approach. Expert commentary: Motor and cognitive systems are strongly harnessed in humans and thus cannot be separated in neurorehabilitation. Recently developed technologies in motor-cognitive rehabilitation might have a greater positive effect than conventional therapies

    How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers

    Get PDF
    Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program
    • …
    corecore