249 research outputs found

    Correction to: Does transcranial direct current stimulation improve functional locomotion in people with Parkinson’s disease? A systematic review and meta-analysis

    Get PDF
    In the original article [1], we mentioned that some study characteristics of the article by Dagan and colleagues [2] were unavailable. However, we realized that the authors provided the relevant information in their supplementary file. As such, we added participant characteristics (i.e., age = 68.8 ± 6.8, gender = 17 M, 3 F, PD duration = 9.0 ± 5.7, and UPDRS Part III at baseline = Total 39.7 ± 14.6) to Table 1, stimulation parameters (i.e., intensity = 3 mA, duration = 20 min, areas = 3 cm2) to Table 2, and methodological quality assessments (i.e., allocation concealment = 1 and Total score = 9) to Table 3. Based on the new information, we updated Fig. 2 with the corrected selection bias and performance bias results. Finally, we confirmed that these corrections did not change the meta-analytic findings in the original article

    WEB-BASED LABORATORY MODULES FOR LINEAR AND ANGULAR KINEMATICS

    Get PDF
    Two Web-based laboratory modules have been developed and implemented for reinforcing basic concepts in kinematics in the learning of biomechanics. In the linear kinematics module, students digitize the mid-hip, heel and toe on images showing the side views of sprinting, running and jogging and analyze the stride length and time and velocity alTlong these actions. For the angular kinematics module, students digitize the near shoulder, hip, and knee on images of one complete revolution of a forward giant swing of a gymnast and determine the hip angle, the angular velocity and acceleration of the trunk. Evaluations and feedback from biomechanics instructors and students in biomechanics courses have suggested that these modules have the potential to be effective educational tools

    Correlations between arm motor behavior and brain function following bilateral arm training after stroke:A systematic review

    Get PDF
    Background Bilateral training (BT) of the upper limb (UL) might enhance recovery of arm function after stroke. To better understand the therapeutic potential of BT, this study aimed to determine the correlation between arm motor behavior and brain structure/function as a result of bilateral arm training poststroke. Methods A systematic review of quantitative studies of BT evaluating both UL motor behavior and neuroplasticity was conducted. Eleven electronic databases were searched. Two reviewers independently selected studies, extracted data and assessed methodological quality, using the Effective Public Health Practice Project (EPHPP) tool. Results Eight studies comprising 164 participants met the inclusion criteria. Only two studies rated β€œstrong” on the EPHPP tool. Considerable heterogeneity of participants, BT modes, comparator interventions and measures contraindicated pooled outcome analysis. Modes of BT included: in-phase and anti-phase; functional movements involving objects; and movements only. Movements were mechanically coupled, free, auditory-cued, or self-paced. The Fugl-Meyer Assessment (UL section) was used in six of eight studies, however, different subsections were used by different studies. Neural correlates were measured using fMRI and TMS in three and five studies, respectively, using a wide variety of variables. Associations between changes in UL function and neural plasticity were inconsistent and only two studies reported a statistical correlation following BT. Conclusions No clear pattern of association between UL motor and neural response to BT was apparent from this review, indicating that the neural correlates of motor behavior response to BT after stroke remain unknown. To understand the full therapeutic potential of BT and its different modes, further investigation is required

    Bilateral Assessment of Functional Tasks for Robot-assisted Therapy Applications

    Get PDF
    This article presents a novel evaluation system along with methods to evaluate bilateral coordination of arm function on activities of daily living tasks before and after robot-assisted therapy. An affordable bilateral assessment system (BiAS) consisting of two mini-passive measuring units modeled as three degree of freedom robots is described. The process for evaluating functional tasks using the BiAS is presented and we demonstrate its ability to measure wrist kinematic trajectories. Three metrics, phase difference, movement overlap, and task completion time, are used to evaluate the BiAS system on a bilateral symmetric (bi-drink) and a bilateral asymmetric (bi-pour) functional task. Wrist position and velocity trajectories are evaluated using these metrics to provide insight into temporal and spatial bilateral deficits after stroke. The BiAS system quantified movements of the wrists during functional tasks and detected differences in impaired and unimpaired arm movements. Case studies showed that stroke patients compared to healthy subjects move slower and are less likely to use their arm simultaneously even when the functional task requires simultaneous movement. After robot-assisted therapy, interlimb coordination spatial deficits moved toward normal coordination on functional tasks

    Home-based therapy programmes for upper limb functional recovery following stroke

    Get PDF
    Background: With an increased focus on home-based stroke services and the undertaking of programmes, targeted at upper limb recovery within clinical practice, a systematic review of home-based therapy programmes for individuals with upper limb impairment following stroke was required. Objectives: To determine the effects of home-based therapy programmes for upper limb recovery in patients with upper limb impairment following stroke. Search methods: We searched the Cochrane Stroke Group's Specialised Trials Register (May 2011), the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2011, Issue 2), MEDLINE (1950 to May 2011), EMBASE (1980 to May 2011), AMED (1985 to May 2011) and six additional databases. We also searched reference lists and trials registers. Selection criteria: Randomised controlled trials (RCTs) in adults after stroke, where the intervention was a home-based therapy programme targeted at the upper limb, compared with placebo, or no intervention or usual care. Primary outcomes were performance in activities of daily living (ADL) and functional movement of the upper limb. Secondary outcomes were performance in extended ADL and motor impairment of the arm. Data collection and analysis: Two review authors independently screened abstracts, extracted data and appraised trials. We undertook assessment of risk of bias in terms of method of randomisation and allocation concealment (selection bias), blinding of outcome assessment (detection bias), whether all the randomised patients were accounted for in the analysis (attrition bias) and the presence of selective outcome reporting. Main results: We included four studies with 166 participants. No studies compared the effects of home-based upper limb therapy programmes with placebo or no intervention. Three studies compared the effects of home-based upper limb therapy programmes with usual care. Primary outcomes: we found no statistically significant result for performance of ADL (mean difference (MD) 2.85; 95% confidence interval (CI) -1.43 to 7.14) or functional movement of the upper limb (MD 2.25; 95% CI -0.24 to 4.73)). Secondary outcomes: no statistically significant results for extended ADL (MD 0.83; 95% CI -0.51 to 2.17)) or upper limb motor impairment (MD 1.46; 95% CI -0.58 to 3.51). One study compared the effects of a home-based upper limb programme with the same upper limb programme based in hospital, measuring upper limb motor impairment only; we found no statistically significant difference between groups (MD 0.60; 95% CI -8.94 to 10.14). Authors' conclusions: There is insufficient good quality evidence to make recommendations about the relative effect of home-based therapy programmes compared with placebo, no intervention or usual care

    Mirror Symmetric Bimanual Movement Priming Can Increase Corticomotor Excitability and Enhance Motor Learning

    Get PDF
    Repetitive mirror symmetric bilateral upper limb may be a suitable priming technique for upper limb rehabilitation after stroke. Here we demonstrate neurophysiological and behavioural after-effects in healthy participants after priming with 20 minutes of repetitive active-passive bimanual wrist flexion and extension in a mirror symmetric pattern with respect to the body midline (MIR) compared to an control priming condition with alternating flexion-extension (ALT). Transcranial magnetic stimulation (TMS) indicated that corticomotor excitability (CME) of the passive hemisphere remained elevated compared to baseline for at least 30 minutes after MIR but not ALT, evidenced by an increase in the size of motor evoked potentials in ECR and FCR. Short and long-latency intracortical inhibition (SICI, LICI), short afferent inhibition (SAI) and interhemispheric inhibition (IHI) were also examined using pairs of stimuli. LICI differed between patterns, with less LICI after MIR compared with ALT, and an effect of pattern on IHI, with reduced IHI in passive FCR 15 minutes after MIR compared with ALT and baseline. There was no effect of pattern on SAI or FCR H-reflex. Similarly, SICI remained unchanged after 20 minutes of MIR. We then had participants complete a timed manual dexterity motor learning task with the passive hand during, immediately after, and 24 hours after MIR or control priming. The rate of task completion was faster with MIR priming compared to control conditions. Finally, ECR and FCR MEPs were examined within a pre-movement facilitation paradigm of wrist extension before and after MIR. ECR, but not FCR, MEPs were consistently facilitated before and after MIR, demonstrating no degradation of selective muscle activation. In summary, mirror symmetric active-passive bimanual movement increases CME and can enhance motor learning without degradation of muscle selectivity. These findings rationalise the use of mirror symmetric bimanual movement as a priming modality in post-stroke upper limb rehabilitation

    Fingertip force control during bimanual object lifting in hemiplegic cerebral palsy

    Get PDF
    In the present study we examined unimanual and bimanual fingertip force control during grasping in children with hemiplegic cerebral palsy (CP). Participants lifted, transported and released an object with one hand or both hands together in order to examine the effect on fingertip force control for each hand separately and to determine whether any benefit exists for the affected hand when it performed the task concurrently with the less-affected hand. Seven children with hemiplegic CP performed the task while their movement and fingertip force control were measured. In the bimanual conditions, the weight of the instrumented objects was equal or unequal. The durations of the all temporal phases for the less-affected hand were prolonged during bimanual control compared to unimanual control. We observed close synchrony of both hands when the task was performed with both hands, despite large differences in duration between both hands when they performed separately. There was a marginal benefit for two of the five force related variables for the affected hand (grip force at onset of load force, and peak grip force) when it transported the object simultaneously with the less-affected hand. Collectively, these results corroborate earlier findings of reaching studies that showed slowing down of the less-affected hand when it moved together with the affected hand. A new finding that extends these studies is that bimanual tasks may have the potential to facilitate force control of the affected hand. The implications of these findings for recent rehabilitative therapies in children with CP that make use of bimanual training are discussed
    • …
    corecore