75 research outputs found

    Scaling effects of riparian peatlands on stable isotopes in runoff and DOC mobilization

    Get PDF
    Acknowledgments The authors would like to thank the European Research Council ERC (project GA 335910 VeWa) for funding the VeWa project. Part of this work was funded through the Natural Environment Research Council (NERC) (project NE/K000268/1). We would also like to thank our NRI colleagues for all their help with field and laboratory work, especially Jason Lessels, Matthias Sprenger, Jonathan Dick, Audrey Innes and Ann Porter. We would like to also thank Iain Malcolm (Marine Scotland Science) for providing AWS and Girnock flow data. Please contact the authors for access to the data used in this paper.Peer reviewedPostprin

    Structure and activity investigations of the cell fate determinant, SpoIIE, from Bacillus subtilis

    Get PDF
    For many years the Gram positive bacterium Bacillus subtilis has been a model organism for prokaryotic cell and molecular biology. The asymmetric cell division which B. subtilis undergoes during sporulation is a simple system by which to study the process of cell differentiation. Sporulation is governed by a series of genetic temporal and spatial controls. Gene regulation brought about by a series of σ factors and transcriptional regulators is coupled to key morphological stages or checkpoints. σF initiates the first step in a cascade of complex genetic control which eventually produces a resilient endospore. The activation of σF, the first compartment-specific sigma factor, in the forespore and its regulation through interaction between three proteins; SpoIIAA, SpoIIAB and SpoIIE, is of particular interest. SpoIIE, a protein phosphatase which binds to the asymmetric division septum, is a crucial factor in the selective activation of σF in the forespore. Of three putative domains in SpoIIE only the C-terminal PP2C phosphatase domain has been structurally characterised. The central domain, domain II, of SpoIIE has been assigned a role in interaction with the cell division machinery; however mutational studies have shown that, in addition, this domain is also responsible for the regulation of phosphatase activity. This work describes the isolation and characterisation of three new fragments of SpoIIE containing elements of the central cytoplasmic domain of SpoIIE. These include a fragment found to accurately represent the N-terminal solubility limit of domain II which shows a high degree of oligomeric character. The fragments isolated show specific phosphatase activity against SpoIIAA~P, albeit at reduced rates compared to the free phosphatase domain, which indicates an inhibitory role for SpoIIE domain II against the PP2C domain. Three ultimately unsuccessful approaches were attempted to isolate a co-complex of SpoIIE and SpoIIAA~P for structural characterisation. A tendency for domain II containing SpoIIE fragments to precipitate in the presence of Mn(2+) is also identified. An in vivo investigation into the sporulation efficiencies of amino acid substitutions in a potential regulatory interface between domains II and III of SpoIIE indicated no strong sporulation defects

    Future directions for positive body image research

    Get PDF
    © 2015 Elsevier Ltd. The emergence of positive body image research during the last 10 years represents an important shift in the body image literature. The existing evidence provides a strong empirical basis for the study of positive body image and research has begun to address issues of age, gender, ethnicity, culture, development, and intervention in relation to positive body image. This article briefly reviews the existing evidence before outlining directions for future research. Specifically, six areas for future positive body image research are outlined: (a) conceptualization, (b) models, (c) developmental factors, (d) social interactions, (e) cognitive processing style, and (f) interventions. Finally, the potential role of positive body image as a protective factor within the broader body image literature is discussed

    In situ fluorescence measurements of dissolved organic matter: a review

    Get PDF
    YesThere is a need for an inexpensive, reliable and fast monitoring tool to detect contaminants in a short time, for quick mitigation of pollution sources and site remediation, and for characterization of natural dissolved organic matter (DOM). Fluorescence spectroscopy has proven to be an excellent technique in quantifying aquatic DOM, from autochthonous, allochthonous or anthropogenic sources. This paper reviews the advances in in situ fluorescence measurements of DOM and pollutants in various water environments. Studies have demonstrated, using high temporal-frequency DOM fluorescence data, that marine autochthonous production of DOM is highly complex and that the allochthonous input of DOM from freshwater to marine water can be predicted. Furthermore, river measurement studies found a delayed fluorescence response of DOM following precipitation compared to turbidity and discharge, with various lags, depending on season, site and input of dissolved organic carbon (DOC) concentration. In addition, research has shown that blue light fluorescence (λemission = 430–500 nm) can be a good proxy for DOC, in environments with terrestrial inputs, and ultraviolet fluorescence (λemission = UVA–320–400 nm) for biochemical oxygen demand, and also E. coli in environments with sanitation issues. The correction of raw fluorescence data improves the relationship between fluorescence intensity and these parameters. This review also presents the specific steps and parameters that must be considered before and during in situ fluorescence measurement session for a harmonized qualitative and quantitative protocol. Finally, the strengths and weaknesses of the research on in situ fluorescence are identified.Authors, E.M. Carstea and C.L. Popa, acknowledge the support of the Ministry of Research and Innovation, CNCS-UEFISCDI, project number PN-III-P1-1.1-TE-2016-0646, within PNCDI III, project number 18N/2019, under the Core Program OPTRONICA VI, project number 19PFE/17.10.2018 and project number 152/2016, SMIS 108109
    corecore