885 research outputs found
Ultra-sensitive magnetometry based on free precession of nuclear spins
We discuss the design and performance of a very sensitive low-field
magnetometer based on the detection of free spin precession of gaseous, nuclear
polarized 3He or 129Xe samples with a SQUID as magnetic flux detector. The
device will be employed to control fluctuating magnetic fields and gradients in
a new experiment searching for a permanent electric dipole moment of the
neutron as well as in a new type of 3He/129Xe clock comparison experiment which
should be sensitive to a sidereal variation of the relative spin precession
frequency. Characteristic spin precession times T_2 of up to 60h could be
measured. In combination with a signal-to-noise ratio of > 5000:1, this leads
to a sensitivity level of deltaB= 1fT after an integration time of 220s and to
deltaB= 10^(-4)fT after one day. Even in that sensitivity range, the
magnetometer performance is statistically limited, and noise sources inherent
to the magnetometer are not limiting. The reason is that free precessing 3He
(129Xe) nuclear spins are almost completely decoupled from the environment.
That makes this type of magnetometer in particular attractive for precision
field measurements where a long-term stability is required
Multi-drug resistant Acinetobacter infections in critically injured Canadian forces soldiers
<p>Abstract</p> <p>Background</p> <p>Military members, injured in Afghanistan or Iraq, have returned home with multi-drug resistant <it>Acinetobacter baumannii </it>infections. The source of these infections is unknown.</p> <p>Methods</p> <p>Retrospective study of all Canadian soldiers who were injured in Afghanistan and who required mechanical ventilation from January 1 2006 to September 1 2006. Patients who developed <it>A. baumannii </it>ventilator associated pneumonia (VAP) were identified. All <it>A. baumannii </it>isolates were retrieved for study patients and compared with <it>A. baumannii </it>isolates from environmental sources from the Kandahar military hospital using pulsed-field gel electrophoresis (PFGE).</p> <p>Results</p> <p>During the study period, six Canadian Forces (CF) soldiers were injured in Afghanistan, required mechanical ventilation and were repatriated to Canadian hospitals. Four of these patients developed <it>A. baumannii </it>VAP. <it>A. baumannii </it>was also isolated from one environmental source in Kandahar – a ventilator air intake filter. Patient isolates were genetically indistinguishable from each other and from the isolates cultured from the ventilator filter. These isolates were resistant to numerous classes of antimicrobials including the carbapenems.</p> <p>Conclusion</p> <p>These results suggest that the source of <it>A. baumannii </it>infection for these four patients was an environmental source in the military field hospital in Kandahar. A causal linkage, however, was not established with the ventilator. This study suggests that infection control efforts and further research should be focused on the military field hospital environment to prevent further multi-drug resistant <it>A. baumannii </it>infections in injured soldiers.</p
Effects of Timing of Grazing on Arthropod Communities in Semi-Natural Grasslands
Arthropod communities were investigated in two Swedish semi-natural grasslands, each subject to two types of grazing regime: conventional grazing from May to September (continuous grazing) and traditional late management from mid-July (late grazing). Pitfall traps were used to investigate abundance of carabids, spiders, and ants over the grazing season. Ant abundance was also measured by mapping nest density during three successive years. Small spiders, carabids and ants (Myrmica spp.) were more abundant in continuous grazing than in late grazing while larger spiders, carabids, and ants (Formica spp.) were more abundant in late grazing. The overall abundance of carabids was higher in continuous grazing in the early summer but higher in late grazing in the late summer. The switch of preference from continuous to late grazing coincided with the time for larvae hibernating species replacing adult hibernating. We discuss possible explanations for the observed responses in terms of effects of grazing season on a number of habitat variables for example temperature, food resources, structure of vegetation, litter layer, competition, and disturbance
Second law, entropy production, and reversibility in thermodynamics of information
We present a pedagogical review of the fundamental concepts in thermodynamics
of information, by focusing on the second law of thermodynamics and the entropy
production. Especially, we discuss the relationship among thermodynamic
reversibility, logical reversibility, and heat emission in the context of the
Landauer principle and clarify that these three concepts are fundamentally
distinct to each other. We also discuss thermodynamics of measurement and
feedback control by Maxwell's demon. We clarify that the demon and the second
law are indeed consistent in the measurement and the feedback processes
individually, by including the mutual information to the entropy production.Comment: 43 pages, 10 figures. As a chapter of: G. Snider et al. (eds.),
"Energy Limits in Computation: A Review of Landauer's Principle, Theory and
Experiments
Human Mas-related G protein-coupled receptors-X1 induce chemokine receptor 2 expression in rat dorsal root ganglia neurons and release of chemokine ligand 2 from the human LAD-2 mast cell line
Primate-specific Mas-related G protein-coupled receptors-X1 (MRGPR-X1) are highly enriched in dorsal root ganglia (DRG) neurons and induce acute pain. Herein, we analyzed effects of MRGPR-X1 on serum response factors (SRF) or nuclear factors of activated T cells (NFAT), which control expression of various markers of chronic pain. Using HEK293, DRG neuron-derived F11 cells and cultured rat DRG neurons recombinantly expressing human MRGPR-X1, we found activation of a SRF reporter gene construct and induction of the early growth response protein-1 via extracellular signal-regulated kinases-1/2 known to play a significant role in the development of inflammatory pain. Furthermore, we observed MRGPR-X1-induced up-regulation of the chemokine receptor 2 (CCR2) via NFAT, which is considered as a key event in the onset of neuropathic pain and, so far, has not yet been described for any endogenous neuropeptide. Up-regulation of CCR2 is often associated with increased release of its endogenous agonist chemokine ligand 2 (CCL2). We also found MRGPR-X1-promoted release of CCL2 in a human connective tissue mast cell line endogenously expressing MRGPR-X1. Thus, we provide first evidence to suggest that MRGPR-X1 induce expression of chronic pain markers in DRG neurons and propose a so far unidentified signaling circuit that enhances chemokine signaling by acting on two distinct yet functionally co-operating cell types. Given the important role of chemokine signaling in pain chronification, we propose that interruption of this signaling circuit might be a promising new strategy to alleviate chemokine-promoted pain
Atypical Forms of Employment in the Public Sector Are There Any?
The paper deals with various forms of atypical employment in the public sector that are widely neglected in existing research; its specific focus is on their development, scope, distribution and structural features. In the first part we break down the purely statistical category and differentiate between the disparate forms (part-time, marginal employment or minijobs, midijobs, fixed-term, agency work). In the second part we address the question if these forms are not only atypical, but also have to be classified as precarious. We distinguish various risks operative in the short, medium and long term (income, stability of employment and employability, pensions). Finally, we differentiate between employment in the private as well as the public sector and draw parallels and indicate specific differences in their development and situation. Our basic finding is that atypical forms of employment are also widespread in the public sector but are all in all less precarious than in the private sector. The distribution of individual forms shows major differences between both sectors whereas the over-all percentages are similar
TMEFF2 Is a PDGF-AA Binding Protein with Methylation-Associated Gene Silencing in Multiple Cancer Types Including Glioma
BACKGROUND: TMEFF2 is a protein containing a single EGF-like domain and two follistatin-like modules. The biological function of TMEFF2 remains unclear with conflicting reports suggesting both a positive and a negative association between TMEFF2 expression and human cancers. METHODOLOGY/PRINCIPAL FINDINGS: Here we report that the extracellular domain of TMEFF2 interacts with PDGF-AA. This interaction requires the amino terminal region of the extracellular domain containing the follistatin modules and cannot be mediated by the EGF-like domain alone. Furthermore, the extracellular domain of TMEFF2 interferes with PDGF-AA-stimulated fibroblast proliferation in a dose-dependent manner. TMEFF2 expression is downregulated in human brain cancers and is negatively correlated with PDGF-AA expression. Suppressed expression of TMEFF2 is associated with its hypermethylation in several human tumor types, including glioblastoma and cancers of ovarian, rectal, colon and lung origins. Analysis of glioma subtypes indicates that TMEFF2 hypermethylation and decreased expression are associated with a subset of non-Proneural gliomas that do not display CpG island methylator phentoype. CONCLUSIONS/SIGNIFICANCE: These data provide the first evidence that TMEFF2 can function to regulate PDGF signaling and that it is hypermethylated and downregulated in glioma and several other cancers, thereby suggesting an important role for this protein in the etiology of human cancers
Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at s√=8 TeV with ATLAS
Measurements of fiducial and differential cross sections are presented for Higgs boson production in proton-proton collisions at a centre-of-mass energy of s√=8 TeV. The analysis is performed in the H → γγ decay channel using 20.3 fb−1 of data recorded by the ATLAS experiment at the CERN Large Hadron Collider. The signal is extracted using a fit to the diphoton invariant mass spectrum assuming that the width of the resonance is much smaller than the experimental resolution. The signal yields are corrected for the effects of detector inefficiency and resolution. The pp → H → γγ fiducial cross section is measured to be 43.2 ±9.4(stat.) − 2.9 + 3.2 (syst.) ±1.2(lumi)fb for a Higgs boson of mass 125.4GeV decaying to two isolated photons that have transverse momentum greater than 35% and 25% of the diphoton invariant mass and each with absolute pseudorapidity less than 2.37. Four additional fiducial cross sections and two cross-section limits are presented in phase space regions that test the theoretical modelling of different Higgs boson production mechanisms, or are sensitive to physics beyond the Standard Model. Differential cross sections are also presented, as a function of variables related to the diphoton kinematics and the jet activity produced in the Higgs boson events. The observed spectra are statistically limited but broadly in line with the theoretical expectations
Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC
The uncertainty on the calorimeter energy response to jets of particles is
derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the
calorimeter response to single isolated charged hadrons is measured and
compared to the Monte Carlo simulation using proton-proton collisions at
centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009
and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter
response to specific types of particles (positively and negatively charged
pions, protons, and anti-protons) is measured and compared to the Monte Carlo
predictions. Finally, the jet energy scale uncertainty is determined by
propagating the response uncertainty for single charged and neutral particles
to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3%
for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table,
submitted to European Physical Journal
Expected Performance of the ATLAS Experiment - Detector, Trigger and Physics
A detailed study is presented of the expected performance of the ATLAS
detector. The reconstruction of tracks, leptons, photons, missing energy and
jets is investigated, together with the performance of b-tagging and the
trigger. The physics potential for a variety of interesting physics processes,
within the Standard Model and beyond, is examined. The study comprises a series
of notes based on simulations of the detector and physics processes, with
particular emphasis given to the data expected from the first years of
operation of the LHC at CERN
- …