99 research outputs found
Mycobacterium bovis prevalence affects the performance of a commercial serological assay for bovine tuberculosis in African buffaloes
The endemic presence of bovine tuberculosis (BTB) in African buffaloes in South Africa has severe consequences for BTB control in domestic cattle, buffalo ranching and wildlife conservation, and poses a potential risk to public health. This study determined the BTB prevalence in free-ranging buffaloes in two game reserves and assessed the influence of the prevalence of mycobacterial infections on the performance of a commercial cattle-specific serological assay for BTB (TB ELISA). Buffaloes (n = 997) were tested with the tuberculin skin test and TB ELISA; a subset (n = 119) was tested longitudinally. Culture, PCR and sequencing were used to confirm infection with M. bovis and/or non-tuberculous mycobacteria (NTM). Prevalence of BTB, but not NTM, influenced the TB ELISA performance. Multiple testing did not increase test confidence. The findings strongly illustrate the need for development of novel assays that can supplement existing assays for a more comprehensive testing scheme for BTB in African buffaloes
Genetic profiling of Mycobacterium bovis strains from slaughtered cattle in Eritrea
<div><p><i>Mycobacterium bovis</i> (<i>M</i>.<i>bovis</i>) is the main causative agent for bovine tuberculosis (BTB) and can also be the cause of zoonotic tuberculosis in humans. In view of its zoonotic nature, slaughterhouse surveillance, potentially resulting in total or partial condemnation of the carcasses and organs, is conducted routinely. Spoligotyping, VNTR profiling, and whole genome sequencing (WGS) of <i>M</i>. <i>bovis</i> isolated from tissues with tuberculosis-like lesions collected from 14 cattle at Eritrea’s largest slaughterhouse in the capital Asmara, were conducted.The 14 <i>M</i>. <i>bovis</i> isolates were classified into three different spoligotype patterns (SB0120, SB0134 and SB0948) and six VNTR profiles. WGS results matched those of the conventional genotyping methods and further discriminated the six VNTR profiles into 14 strains. Furthermore, phylogenetic analysis of the <i>M</i>. <i>bovis</i> isolates suggests two independent introductions of BTB into Eritrea possibly evolving from a common ancestral strain in Europe.This molecular study revealed the most important strains of <i>M</i>. <i>bovis</i> in Eritrea and their (dis)similarities with the strains generally present in East Africa and Europe, as well as potential routes of introduction of <i>M</i>. <i>bovis</i>. Though the sample size is small, the current study provides important information as well as platform for future in-depth molecular studies on isolates from both the dairy and the traditional livestock sectors in Eritrea and the region. This study provides information onthe origin of some of the <i>M</i>. <i>bovis</i> strains in Eritrea, its genetic diversity, evolution and patterns of spread between dairy herds. Such information is essential in the development and implementation of future BTB control strategy for Eritrea.</p></div
Two canine CD1a proteins are differentially expressed in skin
Lipid antigens are presented to T cells by the CD1 family of proteins. In this study, we characterize the complete dog (Canis familiaris) CD1 locus, which is located on chromosome 38. The canine locus contains eight CD1A genes (canCD1A), of which five are pseudogenes, one canCD1B, one canCD1C, one canCD1D, and one canCD1E gene. In vivo expression of canine CD1 proteins was shown for canCD1a6, canCD1a8, and canCD1b, using a panel of anti-CD1 monoclonal antibodies (mAbs). CanCD1a6 and canCD1a8 are recognized by two distinct mAbs. Furthermore, we show differential transcription of the three canCD1A genes in canine tissues. In canine skin, the transcription level of canCD1A8 was higher than that of canCD1A6, and no transcription of canCD1A2 was detected. Based on protein modeling and protein sequence alignment, we predict that both canine CD1a proteins can bind different glycolipids in their groove. Besides differences in ectodomain structure, we observed the unique presence of three types of cytoplasmic tails encoded by canCD1A genes. cDNA sequencing and expressed sequence tag sequences confirmed the existence of a short, human CD1a-like cytoplasmic tail of four amino acids, of an intermediate length form of 15 amino acids, and of a long form of 31 amino acids
Perforin and granzyme A release as novel tool to measure NK cell activation in chickens
Natural killer (NK) cells are cytotoxic lymphocytes that are present in the circulation but also in many organs including spleen and gut, where they play an important role in the defense against infections. Interaction of NK cells with target cells leads to degranulation, which results in the release of perforin and granzymes in the direct vicinity of the target cell. Chicken NK cells have many characteristics similar to their mammalian counterparts and based on similarities with studies on human NK cells, surface expression of CD107 was always presumed to correlate with granule release. However, proof of this degranulation or in fact the actual presence of perforin (PFN) and granzyme A (GrA) in chicken NK cells and their release upon activation is lacking. Therefore, the purpose of the present study was to determine the presence of perforin and granzyme A in primary chicken NK cells and to measure their release upon degranulation, as an additional tool to study the function of chicken NK cells. Using human specific antibodies against PFN and GrA in fluorescent and confocal microscopy resulted in staining in chicken NK cells. The presence of PFN and GrA was also confirmed by Western blot analyses and its gene expression by PCR. Stimulation of NK cells with the pectin SPE6 followed by flow cytometry resulted in reduced levels of intracellular PFN and GrA, suggesting release of PFN and GrA. Expression of PFN and GrA reversely correlated with increased surface expression of the lysosomal marker CD107. Finally it was shown that the supernatant of activated NK cells, containing the NK cell granule content including PFN and GrA, was able to kill Escherichia coli. This study correlates PFN and GrA release to activation of chicken NK cells and establishes an additional tool to study activity of cytotoxic lymphocytes in chickens
Allergen-specific cytokine polarization protects Shetland ponies against Culicoides obsoletus-induced insect bite hypersensitivity
The immunological mechanisms explaining development of an allergy in some individuals and not in others remain incompletely understood. Insect bite hypersensitivity (IBH) is a common, seasonal, IgE-mediated, pruritic skin disorder that affects considerable proportions of horses of different breeds, which is caused by bites of the insect Culicoides obsoletus (C. obsoletus). We investigated the allergen-specific immune status of individual horses that had either been diagnosed to be healthy or to suffer of IBH. Following intradermal allergen injection, skin biopsies were taken of IBH-affected and healthy ponies and cytokine expression was determined by RT-PCR. In addition, allergen-specific antibody titers were measured and cytokine expression of in vitro stimulated, allergen-specific CD4 T-cells was determined. 24 hrs after allergen injection, a significant increase in mRNA expression of the type-2 cytokine IL-4 was observed in the skin of IBH-affected Shetland ponies. In the skin of healthy ponies, however, an increase in IFN¿ mRNA expression was found. Analysis of allergen-specific antibody titers revealed that all animals produced allergen-specific antibodies, and allergen-specific stimulation of CD4 T-cells revealed a significant higher percentage of IFN¿-expressing CD4 T-cells in healthy ponies compared to IBH-affected ponies. These data indicate that horses not affected by IBH, in contrast to the so far established dogma, are not immunologically ignorant but have a Th1-skewed allergen-specific immune response that appears to protect against IBH-associated symptoms. To our knowledge this is the first demonstration of a natural situation, in which an allergen-specific immune skewing is protective in an allergic disorder
Characterization of polarization states of canine monocyte derived macrophages
Macrophages can reversibly polarize into multiple functional subsets depending on their micro-environment. Identification and understanding the functionality of these subsets is relevant for the study of immune‑related diseases. However, knowledge about canine macrophage polarization is still in its infancy. In this study, we polarized canine monocytes using GM-CSF/IFN- γ and LPS towards M1 macrophages or M-CSF and IL-4 towards M2 macrophages and compared them to undifferentiated monocytes (M0). Polarized M1 and M2 macrophages were thoroughly characterized for morphology, surface marker features, gene profiles and functional properties. Our results showed that canine M1-polarized macrophages obtained a characteristic large, roundish, or amoeboid shape, while M2-polarized macrophages were smaller and adopted an elongated spindle-like morphology. Phenotypically, all macrophage subsets expressed the pan-macrophage markers CD14 and CD11b. M1-polarized macrophages expressed increased levels of CD40, CD80 CD86 and MHC II, while a significant increase in the expression levels of CD206, CD209, and CD163 was observed in M2-polarized macrophages. RNAseq of the three macrophage subsets showed distinct gene expression profiles, which are closely associated with immune responsiveness, cell differentiation and phagocytosis. However, the complexity of the gene expression patterns makes it difficult to assign clear new polarization markers. Functionally, undifferentiated -monocytes, and M1- and M2- like subsets of canine macrophages can all phagocytose latex beads. M2-polarized macrophages exhibited the strongest phagocytic capacity compared to undifferentiated monocytes- and M1-polarized cells. Taken together, this study showed that canine M1 and M2-like macrophages have distinct features largely in parallel to those of well-studied species, such as human, mouse and pig. These findings enable future use of monocyte derived polarized macrophages particularly in studies of immune related diseases in dogs
Young elephants in a large herd maintain high levels of elephant endotheliotropic herpesvirus-specific antibodies and do not succumb to fatal haemorrhagic disease
Elephant endotheliotropic herpesviruses (EEHVs) have co-existed with elephants for millions of years, yet may cause fatal haemorrhagic disease (EEHV-HD), typically in elephants between 1 and 10 years of age. EEHV is omnipresent in (sub)adult elephants, and young elephants with low EEHV-specific antibody levels are at risk for EEHV-HD, suggesting that fatal disease may occur due to an insufficiently controlled primary infection. To further address this hypothesis, sera of three large elephant cohorts were subjected to a multiple EEHV species ELISA: (I) 96 Asian elephants between 0 and 57 years, including 13 EEHV-HD fatalities, from European zoo herds typically sized five to six elephants, (II) a herd of 64 orphaned elephants aged 0–15 years at the Elephant Transit Home in Sri Lanka and (III) 31 elephants aged 8–63 years, part of a large herd of 93 elephants at Pinnawala Elephant Orphanage, Sri Lanka. All Sri Lankan elephants showed high EEHV-specific antibody levels regardless of their age. While antibody levels of most European zoo elephants were comparable to those of Sri Lankan elephants, the average antibody level of the European juveniles (1–5 years of age) was significantly lower than those of age-matched Sri Lankan individuals. Moreover, the European juveniles showed a gradual decrease between 1 and 4 years of age, to be attributed to waning maternal antibodies. Maintenance of high levels of antibodies in spite of waning maternal antibodies in young Sri Lankan elephants is likely due to the larger herd size that increases the likelihood of contact with EEHV-shedding elephants. Together with the observation that low levels of EEHV-specific antibodies correlate with increased numbers of EEHV-HD fatalities, these results suggest that infection in presence of high maternal antibody levels may protect calves from developing EEHV-HD, while at the same time activating an immune response protective in future encounters with this virus
Genomic analysis of European bovine Staphylococcus aureus from clinical versus subclinical mastitis
Abstract: Intramammary infections (IMI) with Staphylococcus aureus are a common cause of bovine mastitis and can result in both clinical (CM) or subclinical mastitis (SCM). Although bacterial isolates of S. aureus differ in their virulence potential it is largely unclear which bacterial virulence factors are responsible for increased clinical severity. We performed a genome wide association study and used a generalized linear mixed model to investigate the correlation between gene carriage, lineage and clinical outcome of IMI in a collection of S. aureus isolates from cattle with CM (n = 125) and SCM (n = 151) from 11 European countries. An additional aim was to describe the genetic variation of bovine S. aureus in Europa. The dominant lineages in our collection were clonal complex (CC) 151 (81/276, 29.3%), CC97 (54/276, 19.6%), CC479 (32/276, 11.6%) and CC398 (19/276, 6.9%). Virulence and antimicrobial resistance (AMR) gene carriage was highly associated with CC. Among a selection of nine virulence and AMR genes, CC151, CC479 and CC133 carried more virulence genes than other CCs, and CC398 was associated with AMR gene carriage. Whereas CC151, CC97 were widespread in Europe, CC479, CC398 and CC8 were only found in specific countries. Compared to CC151, CC479 was associated with CM rather than SCM (OR 3.62; 95% CI 1.38–9.50) and the other CCs were not. Multiple genes were associated with CM, but due to the clustering within CC of carriage of these genes, it was not possible to differentiate between the effect of gene carriage and CC on clinical outcome of IMI. Nevertheless, this study demonstrates that characterization of S. aureus CC and virulence genes helps to predict the likelihood of the occurrence of CM following S. aureus IMI and highlights the potential benefit of diagnostics tools to identify S. aureus CC during bovine mastitis
A phylogenetic classification of the world’s tropical forests
Knowledge about the biogeographic affinities of the world’s tropical forests helps to better understand regional differences in forest structure, diversity, composition and dynamics. Such understanding will enable anticipation of region specific responses to global environmental change. Modern phylogenies, in combination with broad coverage of species inventory data, now allow for global biogeographic analyses that take species evolutionary distance into account. Here we present the first classification of the world’s tropical forests based on their phylogenetic similarity. We identify five principal floristic regions and their floristic relationships: (1) Indo-Pacific, (2) Subtropical, (3) African, (4) American, and (5) Dry forests. Our results do not support the traditional Neo- versus Palaeo-tropical forest division, but instead separate the combined American and African forests from their Indo-Pacific counterparts. We also find indications for the existence of a global dry forest region, with representatives in America, Africa, Madagascar and India. Additionally, a northern hemisphere Subtropical forest region was identified with representatives in Asia and America, providing support for a link between Asian and American northern hemisphere forests
The UK Biobank imaging enhancement of 100,000 participants: rationale, data collection, management and future directions
UK Biobank is a population-based cohort of half a million participants aged 40–69 years recruited between 2006 and 2010. In 2014, UK Biobank started the world’s largest multi-modal imaging study, with the aim of re-inviting 100,000 participants to undergo brain, cardiac and abdominal magnetic resonance imaging, dual-energy X-ray absorptiometry and carotid ultrasound. The combination of large-scale multi-modal imaging with extensive phenotypic and genetic data offers an unprecedented resource for scientists to conduct health-related research. This article provides an in-depth overview of the imaging enhancement, including the data collected, how it is managed and processed, and future direction
- …