4 research outputs found

    L'insigne et la médaille de blessés de guerre

    No full text
    [Article sur un lot de médailles des blessés depuis sa création - octobre-novembre-décembre 2003

    Nanolayered cobalt-molybdenum sulphides (Co-Mo-S) catalyse borrowing hydrogen C-S bond formation reactions of thiols or H2S with alcohols

    Full text link
    [EN] Nanolayered cobalt-molybdenum sulphide (Co-Mo-S) materials have been established as excellent catalysts for C-S bond construction. These catalysts allow for the preparation of a broad range of thioethers in good to excellent yields from structurally diverse thiols and readily available primary as well as secondary alcohols. Chemoselectivity in the presence of sensitive groups such as double bonds, nitriles, carboxylic esters and halogens has been demonstrated. It is also shown that the reaction takes place through a hydrogen-autotransfer (borrowing hydrogen) mechanism that involves Co-Mo-Smediated dehydrogenation and hydrogenation reactions. A novel catalytic protocol based on the thioetherification of alcohols with hydrogen sulphide (H2S) to furnish symmetrical thioethers has also been developed using these earth-abundant metal-based sulphide catalysts.Financial support by the Spanish Government-MINECO through the program "Severo Ochoa" (SEV-2016-0683) is gratefully acknowledged. I. S. also acknowledges the Vice-Rectorate for Research, Innovation and Transfer of the Universitat Politecnica de Valencia (UPV) for a postdoctoral fellowship and the Spanish Government-MINECO for a "Juan de la Cierva-Incorporacion" fellowship. The authors also acknowledge the Microscopy Service of the UPV and Dr Jose Maria Moreno for kind help with TEM and STEM measurements.Sorribes-Terrés, I.; Corma Canós, A. (2019). Nanolayered cobalt-molybdenum sulphides (Co-Mo-S) catalyse borrowing hydrogen C-S bond formation reactions of thiols or H2S with alcohols. Chemical Science. 10(10):3130-3142. https://doi.org/10.1039/c8sc05782fS313031421010E. Block , Reactions of Organosulfur Compounds , Academic Press , New York , 1978M. E. Peach , in The Chemistry of the Thiol Group , ed. S. Patai , John Wiley & Sons , London , 1979 , pp. 721–723F. Bernardi , I. G.Csizmadia and A.Mangini , Organic Sulfur Chemistry. Theoretical and Experimental Advances , Elsevier , Amsterdam , 1985R. J. Cremlyn , An Introduction to Organosulfur Chemistry , John Wiley & Sons , New York , 1996Kondo, T., & Mitsudo, T. (2000). Metal-Catalyzed Carbon−Sulfur Bond Formation. Chemical Reviews, 100(8), 3205-3220. doi:10.1021/cr9902749Liu, H., & Jiang, X. (2013). Transfer of Sulfur: From Simple to Diverse. Chemistry - An Asian Journal, 8(11), 2546-2563. doi:10.1002/asia.201300636Artico, M., Silvestri, R., Pagnozzi, E., Bruno, B., Novellino, E., Greco, G., … La Colla, P. (2000). Structure-Based Design, Synthesis, and Biological Evaluation of Novel Pyrrolyl Aryl Sulfones:  HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors Active at Nanomolar Concentrations. Journal of Medicinal Chemistry, 43(9), 1886-1891. doi:10.1021/jm9901125Sun, Z.-Y., Botros, E., Su, A.-D., Kim, Y., Wang, E., Baturay, N. Z., & Kwon, C.-H. (2000). Sulfoxide-Containing Aromatic Nitrogen Mustards as Hypoxia-Directed Bioreductive Cytotoxins. Journal of Medicinal Chemistry, 43(22), 4160-4168. doi:10.1021/jm9904957Wang, Y., Chackalamannil, S., Chang, W., Greenlee, W., Ruperto, V., Duffy, R. A., … Lachowicz, J. E. (2001). Design and synthesis of ether analogues as potent and selective M2 muscarinic receptor antagonists. Bioorganic & Medicinal Chemistry Letters, 11(7), 891-894. doi:10.1016/s0960-894x(01)00100-7Clader, J. W., Billard, W., Binch, H., Chen, L.-Y., Crosby, G., Duffy, R. A., … Greenlee, W. J. (2004). Muscarinic M2 antagonists: anthranilamide derivatives with exceptional selectivity and in vivo activity. Bioorganic & Medicinal Chemistry, 12(2), 319-326. doi:10.1016/j.bmc.2003.11.005Kharasch, N., Potempa, S. J., & Wehrmeister, H. L. (1946). The Sulfenic Acids and their Derivatives. Chemical Reviews, 39(2), 269-332. doi:10.1021/cr60123a004S. Patai , The Chemistry of the Functional Groups – The Chemistry of the Thiol Group , Wiley , London , 1974Herriott, A. W., & Picker, D. (1975). Phase transfer catalysis. Evaluation of catalysis. Journal of the American Chemical Society, 97(9), 2345-2349. doi:10.1021/ja00842a006SULFIDE SYNTHESIS IN PREPARATION OF DIALKYL AND ALKYL ARYL SULFIDES: NEOPENTYL PHENYL SULFIDE. (1978). Organic Syntheses, 58, 143. doi:10.15227/orgsyn.058.0143Boscato, J. F., Catala, J. M., Franta, E., & Brossas, J. (1980). Action of elementary sulfur onto carbanions : a new route to dialkylpolysulfides. Tetrahedron Letters, 21(16), 1519-1520. doi:10.1016/s0040-4039(00)92762-xKosugi, M., Ogata, T., Terada, M., Sano, H., & Migita, T. (1985). Palladium-catalyzed Reaction of Stannyl Sulfide with Aryl Bromide. Preparation of Aryl Sulfide. Bulletin of the Chemical Society of Japan, 58(12), 3657-3658. doi:10.1246/bcsj.58.3657Hundscheid, F. J. A., Tandon, V. K., Rouwette, P. H. F. M., & van Leusen, A. M. (1987). Synthesis of chiral sulfonylmethyl isocyanides, and comparison of their propensities in asymmetric induction reactions with acetophenones1. Tetrahedron, 43(21), 5073-5088. doi:10.1016/s0040-4020(01)87684-5Harpp, D. N., & Gingras, M. (1988). Organosulfur chemistry. Part 55. Fluorodestannylation. A powerful technique to liberate anions of oxygen, sulfur, selenium, and carbon. Journal of the American Chemical Society, 110(23), 7737-7745. doi:10.1021/ja00231a025Gingras, M., Chan, T. H., & Harpp, D. N. (1990). New methodologies: fluorodemetalation of organogermanium, -tin, and -lead compounds. Applications with organometallic sulfides to produce highly active anions and spectroscopic evidence for pentavalent intermediates in substitution at tin. The Journal of Organic Chemistry, 55(7), 2078-2090. doi:10.1021/jo00294a021Li, C.-J., & Harpp, D. N. (1992). A convenient preparation of arylthiostannanes. Tetrahedron Letters, 33(48), 7293-7294. doi:10.1016/s0040-4039(00)60169-7Yin, J., & Pidgeon, C. (1997). A simple and efficient method for preparation of unsymmetrical sulfides. Tetrahedron Letters, 38(34), 5953-5954. doi:10.1016/s0040-4039(97)01352-xMalmström, J., Gupta, V., & Engman, L. (1998). Novel Antioxidants:  Unexpected Rearrangements in the Radical Cyclization Approach to 2,3-Dihydrobenzo[b]thiophene-5-ol Derivatives. The Journal of Organic Chemistry, 63(10), 3318-3323. doi:10.1021/jo972087lIchiishi, N., Malapit, C. A., Woźniak, Ł., & Sanford, M. S. (2017). Palladium- and Nickel-Catalyzed Decarbonylative C–S Coupling to Convert Thioesters to Thioethers. Organic Letters, 20(1), 44-47. doi:10.1021/acs.orglett.7b03305Shen, C., Zhang, P., Sun, Q., Bai, S., Hor, T. S. A., & Liu, X. (2015). Recent advances in C–S bond formation via C–H bond functionalization and decarboxylation. Chemical Society Reviews, 44(1), 291-314. doi:10.1039/c4cs00239cQiao, Z., & Jiang, X. (2017). Recent developments in sulfur–carbon bond formation reaction involving thiosulfates. Organic & Biomolecular Chemistry, 15(9), 1942-1946. doi:10.1039/c6ob02833kPage, P. C. B., Klair, S. S., Brown, M. P., Harding, M. M., Smith, C. S., Maginn, S. J., & Mulley, S. (1988). Carbon—sulphur bond formation catalysed by bis(diphenylphosphino)-methane complexes of platinum (II). Tetrahedron Letters, 29(35), 4477-4480. doi:10.1016/s0040-4039(00)80527-4Beletskaya, I. P., & Cheprakov, A. V. (2004). Copper in cross-coupling reactions. Coordination Chemistry Reviews, 248(21-24), 2337-2364. doi:10.1016/j.ccr.2004.09.014Fernández-Rodríguez, M. A., Shen, Q., & Hartwig, J. F. (2006). A General and Long-Lived Catalyst for the Palladium-Catalyzed Coupling of Aryl Halides with Thiols. Journal of the American Chemical Society, 128(7), 2180-2181. doi:10.1021/ja0580340Arisawa, M., Suzuki, T., Ishikawa, T., & Yamaguchi, M. (2008). Rhodium-Catalyzed Substitution Reaction of Aryl Fluorides with Disulfides:p-Orientation in the Polyarylthiolation of Polyfluorobenzenes. Journal of the American Chemical Society, 130(37), 12214-12215. doi:10.1021/ja8049996Correa, A., Carril, M., & Bolm, C. (2008). Iron-Catalyzed S-Arylation of Thiols with Aryl Iodides. Angewandte Chemie International Edition, 47(15), 2880-2883. doi:10.1002/anie.200705668Wu, J.-R., Lin, C.-H., & Lee, C.-F. (2009). Iron-catalyzed thioetherification of thiols with aryl iodides. Chemical Communications, (29), 4450. doi:10.1039/b907362kFernández-Rodríguez, M. A., & Hartwig, J. F. (2010). One-Pot Synthesis of Unsymmetrical Diaryl Thioethers by Palladium-Catalyzed Coupling of Two Aryl Bromides and a Thiol Surrogate. Chemistry - A European Journal, 16(8), 2355-2359. doi:10.1002/chem.200902313Beletskaya, I. P., & Ananikov, V. P. (2011). Transition-Metal-Catalyzed C−S, C−Se, and C−Te Bond Formation via Cross-Coupling and Atom-Economic Addition Reactions. Chemical Reviews, 111(3), 1596-1636. doi:10.1021/cr100347kSayah, M., & Organ, M. G. (2011). Carbon-Sulfur Bond Formation of Challenging Substrates at Low Temperature by Using Pd-PEPPSI-IPent. Chemistry - A European Journal, 17(42), 11719-11722. doi:10.1002/chem.201102158Lan, M.-T., Wu, W.-Y., Huang, S.-H., Luo, K.-L., & Tsai, F.-Y. (2011). Reusable and efficient CoCl2·6H2O/cationic 2,2’-bipyridyl system-catalyzed S-arylation of aryl halides with thiols in water under air. RSC Advances, 1(9), 1751. doi:10.1039/c1ra00406aCabrero-Antonino, J. R., García, T., Rubio-Marqués, P., Vidal-Moya, J. A., Leyva-Pérez, A., Al-Deyab, S. S., … Corma, A. (2011). Synthesis of Organic−Inorganic Hybrid Solids with Copper Complex Framework and Their Catalytic Activity for the S-Arylation and the Azide−Alkyne Cycloaddition Reactions. ACS Catalysis, 1(2), 147-158. doi:10.1021/cs100086yBaig, R. B. N., & Varma, R. S. (2012). A highly active and magnetically retrievable nanoferrite–DOPA–copper catalyst for the coupling of thiophenols with aryl halides. Chemical Communications, 48(20), 2582. doi:10.1039/c2cc17283fLiao, Y., Jiang, P., Chen, S., Qi, H., & Deng, G.-J. (2013). Iodine-catalyzed efficient 2-arylsulfanylphenol formation from thiols and cyclohexanones. Green Chemistry, 15(12), 3302. doi:10.1039/c3gc41671bKamal, A., Srinivasulu, V., Murty, J. N. S. R. C., Shankaraiah, N., Nagesh, N., Srinivasa Reddy, T., & Subba Rao, A. V. (2013). Copper Oxide Nanoparticles Supported on Graphene Oxide- Catalyzed S-Arylation: An Efficient and Ligand-Free Synthesis of Aryl Sulfides. Advanced Synthesis & Catalysis, 355(11-12), 2297-2307. doi:10.1002/adsc.201300416Timpa, S. D., Pell, C. J., & Ozerov, O. V. (2014). A Well-Defined (POCOP)Rh Catalyst for the Coupling of Aryl Halides with Thiols. Journal of the American Chemical Society, 136(42), 14772-14779. doi:10.1021/ja505576gLee, C.-F., Liu, Y.-C., & Badsara, S. S. (2014). Transition-Metal-Catalyzed CS Bond Coupling Reaction. Chemistry - An Asian Journal, 9(3), 706-722. doi:10.1002/asia.201301500Thomas, A. M., Asha, S., Sindhu, K. S., & Anilkumar, G. (2015). A general and inexpensive protocol for the Cu-catalyzed C–S cross-coupling reaction between aryl halides and thiols. Tetrahedron Letters, 56(47), 6560-6564. doi:10.1016/j.tetlet.2015.10.014Oderinde, M. S., Frenette, M., Robbins, D. W., Aquila, B., & Johannes, J. W. (2016). Photoredox Mediated Nickel Catalyzed Cross-Coupling of Thiols With Aryl and Heteroaryl Iodides via Thiyl Radicals. Journal of the American Chemical Society, 138(6), 1760-1763. doi:10.1021/jacs.5b11244Kanemoto, K., Sugimura, Y., Shimizu, S., Yoshida, S., & Hosoya, T. (2017). Rhodium-catalyzed odorless synthesis of diaryl sulfides from borylarenes and S-aryl thiosulfonates. Chemical Communications, 53(77), 10640-10643. doi:10.1039/c7cc05868cChen, C.-W., Chen, Y.-L., Reddy, D. M., Du, K., Li, C.-E., Shih, B.-H., … Lee, C.-F. (2017). CuI/Oxalic Diamide-Catalyzed Cross-Coupling of Thiols with Aryl Bromides and Chlorides. Chemistry - A European Journal, 23(42), 10087-10091. doi:10.1002/chem.201701671Lian, Z., Bhawal, B. N., Yu, P., & Morandi, B. (2017). Palladium-catalyzed carbon-sulfur or carbon-phosphorus bond metathesis by reversible arylation. Science, 356(6342), 1059-1063. doi:10.1126/science.aam9041Fang, Y., Rogge, T., Ackermann, L., Wang, S.-Y., & Ji, S.-J. (2018). Nickel-catalyzed reductive thiolation and selenylation of unactivated alkyl bromides. Nature Communications, 9(1). doi:10.1038/s41467-018-04646-2Jones, K. D., Power, D. J., Bierer, D., Gericke, K. M., & Stewart, S. G. (2017). Nickel Phosphite/Phosphine-Catalyzed C–S Cross-Coupling of Aryl Chlorides and Thiols. Organic Letters, 20(1), 208-211. doi:10.1021/acs.orglett.7b03560Kumar, P., Pandey, R. K., & Hegde, V. R. (1999). Anti-Markovnikov Addition of Thiols Across Double Bonds Catalyzed by H-Rho-Zeolite. Synlett, 1999(12), 1921-1922. doi:10.1055/s-1999-2976Kanagasabapathy, S., Sudalai, A., & Benicewicz, B. C. (2001). Montmorillonite K 10-catalyzed regioselective addition of thiols and thiobenzoic acids onto olefins: an efficient synthesis of dithiocarboxylic esters. Tetrahedron Letters, 42(23), 3791-3794. doi:10.1016/s0040-4039(01)00570-6Morita, N., & Krause, N. (2006). The First Gold-Catalyzed CS Bond Formation: Cycloisomerization of α-Thioallenes to 2,5-Dihydrothiophenes. Angewandte Chemie International Edition, 45(12), 1897-1899. doi:10.1002/anie.200503846Kawatsura, M., Komatsu, Y., Yamamoto, M., Hayase, S., & Itoh, T. (2007). Enantioselective C–S bond formation by iron/Pybox catalyzed Michael addition of thiols to (E)-3-crotonoyloxazolidin-2-one. Tetrahedron Letters, 48(37), 6480-6482. doi:10.1016/j.tetlet.2007.07.053Banerjee, S., Das, J., Alvarez, R. P., & Santra, S. (2010). Silicananoparticles as a reusable catalyst: a straightforward route for the synthesis of thioethers, thioesters, vinyl thioethers and thio-Michael adducts under neutral reaction conditions. New J. Chem., 34(2), 302-306. doi:10.1039/b9nj00399aCabrero-Antonino, J. R., Leyva-Pérez, A., & Corma, A. (2012). Iron-Catalysed Markovnikov Hydrothiolation of Styrenes. Advanced Synthesis & Catalysis, 354(4), 678-687. doi:10.1002/adsc.201100731Cabrero-Antonino, J. R., Leyva-Pérez, A., & Corma, A. (2013). Iron(III) Triflimide as a Catalytic Substitute for Gold(I) in Hydroaddition Reactions to Unsaturated Carbon-Carbon Bonds. Chemistry - A European Journal, 19(26), 8627-8633. doi:10.1002/chem.201300386Zeng, X. (2013). Recent Advances in Catalytic Sequential Reactions Involving Hydroelement Addition to Carbon–Carbon Multiple Bonds. Chemical Reviews, 113(8), 6864-6900. doi:10.1021/cr400082nKuciński, K., Pawluć, P., & Hreczycho, G. (2015). Scandium(III) Triflate-Catalyzedanti-Markovnikov Hydrothiolation of Functionalized Olefins. Advanced Synthesis & Catalysis, 357(18), 3936-3942. doi:10.1002/adsc.201500720Kumar, R., Saima, Shard, A., Andhare, N. H., Richa, & Sinha, A. K. (2014). Thiol-Ene «Click» Reaction Triggered by Neutral Ionic Liquid: The «Ambiphilic» Character of [hmim]Br in the Regioselective Nucleophilic Hydrothiolation. Angewandte Chemie International Edition, 54(3), 828-832. doi:10.1002/anie.201408721Pérez, M., Mahdi, T., Hounjet, L. J., & Stephan, D. W. (2015). Electrophilic phosphonium cations catalyze hydroarylation and hydrothiolation of olefins. Chemical Communications, 51(56), 11301-11304. doi:10.1039/c5cc03572dPalacios, L., Di Giuseppe, A., Artigas, M. J., Polo, V., Lahoz, F. J., Castarlenas, R., … Oro, L. A. (2016). Mechanistic insight into the pyridine enhanced α-selectivity in alkyne hydrothiolation catalysed by quinolinolate–rhodium(i)–N-heterocyclic carbene complexes. Catalysis Science & Technology, 6(24), 8548-8561. doi:10.1039/c6cy01884jKennemur, J. L., Kortman, G. D., & Hull, K. L. (2016). Rhodium-Catalyzed Regiodivergent Hydrothiolation of Allyl Amines and Imines. Journal of the American Chemical Society, 138(36), 11914-11919. doi:10.1021/jacs.6b07142Palacios, L., Meheut, Y., Galiana-Cameo, M., Artigas, M. J., Di Giuseppe, A., Lahoz, F. J., … Oro, L. A. (2017). Design of Highly Selective Alkyne Hydrothiolation RhI-NHC Catalysts: Carbonyl-Triggered Nonoxidative Mechanism. Organometallics, 36(11), 2198-2207. doi:10.1021/acs.organomet.7b00251Cabrero-Antonino, J. R., Tejeda-Serrano, M., Quesada, M., Vidal-Moya, J. A., Leyva-Pérez, A., & Corma, A. (2017). Bimetallic nanosized solids with acid and redox properties for catalytic activation of C–C and C–H bonds. Chemical Science, 8(1), 689-696. doi:10.1039/c6sc03335kMartin, M. T., Thomas, A. M., & York, D. G. (2002). Direct synthesis of thioethers from sulfonyl chlorides and activated alcohols. Tetrahedron Letters, 43(12), 2145-2147. doi:10.1016/s0040-4039(02)00218-6Saxena, A., Kumar, A., & Mozumdar, S. (2007). Ni-nanoparticles: An efficient green catalyst for chemo-selective oxidative coupling of thiols. Journal of Molecular Catalysis A: Chemical, 269(1-2), 35-40. doi:10.1016/j.molcata.2006.12.042Bandgar, B. P., Gawande, S. S., & Muley, D. B. (2010). Silica supported perchloric acid (HClO4-SiO2): a green, reusable, and highly efficient heterogeneous catalyst for the synthesis of thioethers under solvent-free conditions at room temperature. Green Chemistry Letters and Reviews, 3(1), 49-54. doi:10.1080/17518250903447118Bahrami, K., Khodaei, M., & Khodadoustan, N. (2011). TAPC-Catalyzed Synthesis of Thioethers from Thiols and Alcohols. Synlett, 2011(15), 2206-2210. doi:10.1055/s-0030-1261206Basu, B., Kundu, S., & Sengupta, D. (2013). Graphene oxide as a carbocatalyst: the first example of a one-pot sequential dehydration–hydrothiolation of secondary aryl alcohols. RSC Advances, 3(44), 22130. doi:10.1039/c3ra44712jHikawa, H., Toyomoto, M., Kikkawa, S., & Azumaya, I. (2015). Direct substitution of benzylic alcohols with electron-deficient benzenethiols via π-benzylpalladium(ii) in water. Organic & Biomolecular Chemistry, 13(47), 11459-11465. doi:10.1039/c5ob01717cHikawa, H., Machino, Y., Toyomoto, M., Kikkawa, S., & Azumaya, I. (2016). Cationic palladium(ii)-catalyzed dehydrative nucleophilic substitutions of benzhydryl alcohols with electron-deficient benzenethiols in water. Organic & Biomolecular Chemistry, 14(29), 7038-7045. doi:10.1039/c6ob01140cSantoro, F., Mariani, M., Zaccheria, F., Psaro, R., & Ravasio, N. (2016). Selective synthesis of thioethers in the presence of a transition-metal-free solid Lewis acid. Beilstein Journal of Organic Chemistry, 12, 2627-2635. doi:10.3762/bjoc.12.259Hamid, M. H. S. A., Slatford, P. A., & Williams, J. M. J. (2007). Borrowing Hydrogen in the Activation of Alcohols. Advanced Synthesis & Catalysis, 349(10), 1555-1575. doi:10.1002/adsc.200600638Nixon, T. D., Whittlesey, M. K., & Williams, J. M. J. (2009). Transition metal catalysed reactions of alcohols using borrowing hydrogen methodology. Dalton Trans., (5), 753-762. doi:10.1039/b813383bHollmann, D. (2014). Advances in Asymmetric Borrowing Hydrogen Catalysis. ChemSusChem, 7(9), 2411-2413. doi:10.1002/cssc.201402320Muzart, J. (2015). Pd-Catalyzed Hydrogen-Transfer Reactions from Alcohols to C=C, C=O, and C=N Bonds. European Journal of Organic Chemistry, 2015(26), 5693-5707. doi:10.1002/ejoc.201500401Corma, A., Navas, J., & Sabater, M. J. (2018). Advances in One-Pot Synthesis through Borrowing Hydrogen Catalysis. Chemical Reviews, 118(4), 1410-1459. doi:10.1021/acs.chemrev.7b00340Guillena, G., Ramón, D. J., & Yus, M. (2009). Hydrogen Autotransfer in theN-Alkylation of Amines and Related Compounds using Alcohols and Amines as Electrophiles. Chemical Reviews, 110(3), 1611-1641. doi:10.1021/cr9002159Bähn, S., Imm, S., Neubert, L., Zhang, M., Neumann, H., & Beller, M. (2011). The Catalytic Amination of Alcohols. ChemCatChem, 3(12), 1853-1864. doi:10.1002/cctc.201100255Yang, Q., Wang, Q., & Yu, Z. (2015). Substitution of alcohols by N-nucleophiles via transition metal-catalyzed dehydrogenation. Chemical Society Reviews, 44(8), 2305-2329. doi:10.1039/c4cs00496eMa, X., Su, C., & Xu, Q. (2016). N-Alkylation by Hydrogen Autotransfer Reactions. Topics in Current Chemistry, 374(3). doi:10.1007/s41061-016-0027-1Guillena, G., Ramón, D. J., & Yus, M. (2007). Alcohols as Electrophiles in CC Bond-Forming Reactions: The Hydrogen Autotransfer Process. Angewandte Chemie International Edition, 46(14), 2358-2364. doi:10.1002/anie.200603794Huang, F., Liu, Z., & Yu, Z. (2015). C-Alkylation of Ketones and Related Compounds by Alcohols: Transition-Metal-Catalyzed Dehydrogenation. Angewandte Chemie International Edition, 55(3), 862-875. doi:10.1002/anie.201507521Obora, Y. (2016). C-Alkylation by Hydrogen Autotransfer Reactions. Topics in Current Chemistry, 374(2). doi:10.1007/s41061-016-0012-8Corma, A., Navas, J., Ródenas, T., & Sabater, M. J. (2013). One‐Pot Palladium‐Catalyzed Borrowing Hydrogen Synthesis of Thioethers. Chemistry – A European Journal, 19(51), 17464-17471. doi:10.1002/chem.201302226Glass, R. S. (1976). Reductive Sulfidation. Conversion of Aldehydes into Sulfides. Synthetic Communications, 6(1), 47-51. doi:10.1080/00397917608062132Kikugawa, Y. (1981). A NEW SYNTHESIS OF SULFIDES FROM THIOLS AND ALDEHYDES OR KETONES WITH PYRIDINE-BORANE IN TRIFLUOROACETIC ACID. Chemistry Letters, 10(8), 1157-1158. doi:10.1246/cl.1981.1157Olah, G. A., Wang, Q., Trivedi, N. J., & Surya Prakash, G. K. (1992). Boron Trifluoride Monohydrate Catalyzed One-Flask Preparation of Sulfides from Carbonyl Compounds with Thiols and Triethylsilane. Synthesis, 1992(05), 465-466. doi:10.1055/s-1992-26138Olah, G. A., Wang, Q., Li, X., & Surya Prakash, G. K. (1993). Boron Trifluoride Monohydrate Catalyzed One-Flask 2,2,2-Trifluoro-1-(ethylthio)ethylation of Aromatics with Trifluoroacetaldehyde Hydrate and Ethanethiol1. Synlett, 1993(01), 32-34. doi:10.1055/s-1993-22336Liu, L., Concepción, P., & Corma, A. (2016). Non-noble metal catalysts for hydrogenation: A facile method for preparing Co nanoparticles covered with thin layered carbon. Journal of Catalysis, 340, 1-9. doi:10.1016/j.jcat.2016.04.006Liu, L., Gao, F., Concepción, P., & Corma, A. (2017). A new strategy to transform mono and bimetallic non-noble metal nanoparticles into highly active and chemoselective hydrogenation catalysts. Journal of Catalysis, 350, 218-225. doi:10.1016/j.jcat.2017.03.014Millán, R., Liu, L., Boronat, M., & Corma, A. (2018). A

    Structural, Surface, and Catalytic Properties of Aluminas

    No full text
    The published data concerning the structural, surface, and catalytic properties of aluminas are reviewed, and these properties are related to the preparation procedures. The experimental and computational investigations of the structural characteristics of the polymorphs most useful for applications in catalysis, which are \u3b3-, \u3b7-, \u3b4-, and \u3b8-Al2O3, are critically analyzed. The thermodynamics of the various polymorphs and the kinetics of the phase transitions are considered. The available information on Br\uf8nsted sites (i.e., hydroxyl groups), Lewis acid sites, and acid\u2013base pairs othe surface of aluminas is discussed. Data regarding the application of aluminas as a catalyst and as a catalyst support are summarized. Suggestions for future research are proposed
    corecore