106 research outputs found

    The complex behaviour of the microquasar GRS 1915+105 in the rho class observed with BeppoSAX. I: Timing analysis

    Full text link
    GRS 1915+105 was observed by BeppoSAX for about 10 days in October 2000. For about 80% of the time, the source was in the variability class ρ\rho, characterised by a series of recurrent bursts. We describe the results of the timing analysis performed on the MECS (1.6--10 keV) and PDS (15--100 keV) data. The X-ray count rate from \grss showed an increasing trend with different characteristics in the various energy bands. Fourier and wavelet analyses detect a variation in the recurrence time of the bursts, from 45--50 s to about 75 s, which appear well correlated with the count rate. From the power distribution of peaks in Fourier periodograms and wavelet spectra, we distinguished between the {\it regular} and {\it irregular} variability modes of the ρ\rho class, which are related to variations in the count rate in the 3--10 keV range. We identified two components in the burst structure: the slow leading trail, and the pulse, superimposed on a rather stable level. We found that the change in the recurrence time of the regular mode is caused by the slow leading trails, while the duration of the pulse phase remains far more stable. The evolution in the mean count rates shows that the time behaviour of both the leading trail and the baseline level are very similar to those observed in the 1.6--3 and 15--100 keV ranges, while that of the pulse follows the peak number. These differences in the time behaviour and count rates at different energies indicate that the process responsible for the pulses must produce the strongest emission between 3 and 10 keV, while that associated with both the leading trail and the baseline dominates at lower and higher energiesComment: Astronomy and Astrophysics, in pres

    Bose-Einstein Correlations of Three Charged Pions in Hadronic Z^0 Decays

    Get PDF
    Bose-Einstein Correlations (BEC) of three identical charged pions were studied in 4 x 10^6 hadronic Z^0 decays recorded with the OPAL detector at LEP. The genuine three-pion correlations, corrected for the Coulomb effect, were separated from the known two-pion correlations by a new subtraction procedure. A significant genuine three-pion BEC enhancement near threshold was observed having an emitter source radius of r_3 = 0.580 +/- 0.004 (stat.) +/- 0.029 (syst.) fm and a strength of \lambda_3 = 0.504 +/- 0.010 (stat.) +/- 0.041 (syst.). The Coulomb correction was found to increase the \lambda_3 value by \~9% and to reduce r_3 by ~6%. The measured \lambda_3 corresponds to a value of 0.707 +/- 0.014 (stat.) +/- 0.078 (syst.) when one takes into account the three-pion sample purity. A relation between the two-pion and the three-pion source parameters is discussed.Comment: 19 pages, LaTeX, 5 eps figures included, accepted by Eur. Phys. J.

    Search for the standard model Higgs boson at LEP

    Get PDF

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Genome-wide fine-scale recombination rate variation in Drosophila melanogaster

    Get PDF
    Estimating fine-scale recombination maps of Drosophila from population genomic data is a challenging problem, in particular because of the high background recombination rate. In this paper, a new computational method is developed to address this challenge. Through an extensive simulation study, it is demonstrated that the method allows more accurate inference, and exhibits greater robustness to the effects of natural selection and noise, compared to a well-used previous method developed for studying fine-scale recombination rate variation in the human genome. As an application, a genome-wide analysis of genetic variation data is performed for two Drosophila melanogaster populations, one from North America (Raleigh, USA) and the other from Africa (Gikongoro, Rwanda). It is shown that fine-scale recombination rate variation is widespread throughout the D. melanogaster genome, across all chromosomes and in both populations. At the fine-scale, a conservative, systematic search for evidence of recombination hotspots suggests the existence of a handful of putative hotspots each with at least a tenfold increase in intensity over the background rate. A wavelet analysis is carried out to compare the estimated recombination maps in the two populations and to quantify the extent to which recombination rates are conserved. In general, similarity is observed at very broad scales, but substantial differences are seen at fine scales. The average recombination rate of the X chromosome appears to be higher than that of the autosomes in both populations, and this pattern is much more pronounced in the African population than the North American population. The correlation between various genomic features—including recombination rates, diversity, divergence, GC content, gene content, and sequence quality—is examined using the wavelet analysis, and it is shown that the most notable difference between D. melanogaster and humans is in the correlation between recombination and diversity

    Measurement of the Production Rate of Charm Quark Pairs from Gluons in Hadronic Z0Z^{0} Decays

    Get PDF
    The rate of secondary charm-quark-pair production has been measured in 4.4 million hadronic Z0 decays collected by OPAL. By selecting events with three jets and tagging charmed hadrons in the gluon jet candidate using leptons and charged D* mesons, the average number of secondary charm-quark pairs per hadronic event is found to be (3.20+-0.21+-0.38)x10-2

    Aligning the CMS Muon Chambers with the Muon Alignment System during an Extended Cosmic Ray Run

    Get PDF
    Peer reviewe

    The Forward Physics Facility at the High-Luminosity LHC

    Get PDF
    • …
    corecore