17 research outputs found

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Fgf3 and Fgf8 are required together for formation of the otic placode and vesicle

    No full text
    Fgf3 has long been implicated in otic placode induction and early development of the otocyst; however, the results of experiments in mouse and chick embryos to determine its function have proved to be conflicting. In this study, we determined fgf3 expression in relation to otic development in the zebrafish and used antisense morpholino oligonucleotides to inhibit Fgf3 translation. Successful knockdown of Fgf3 protein was demonstrated and this resulted in a reduction of otocyst size together with reduction in expression of early markers of the otic placode.fgf3 is co-expressed with fgf8 in the hindbrain prior to otic induction and, strikingly, when Fgf3 morpholinos were co-injected together with Fgf8 morpholinos, a significant number of embryos failed to form otocysts. These effects were made manifest at early stages of otic development by an absence of early placode markers (pax2.1 and dlx3) but were not accompanied by effects on cell division or death. The temporal requirement for Fgf signalling was established as being between 60% epiboly and tailbud stages using the Fgf receptor inhibitor SU5402. However, the earliest molecular event in induction of the otic territory, pax8 expression, did not require Fgf signalling, indicating an inductive event upstream of signalling by Fgf3 and Fgf8. We propose that Fgf3 and Fgf8 are required together for formation of the otic placode and act during the earliest stages of its induction

    Specific regions within the embryonic midbrain and cerebellum require different levels of FGF signaling during development

    Get PDF
    Prospective midbrain and cerebellum formation are coordinated by FGF ligands produced by the isthmic organizer. Previous studies have suggested that midbrain and cerebellum development require different levels of FGF signaling. However, little is known about the extent to which specific regions within these two parts of the brain differ in their requirement for FGF signaling during embryogenesis. Here, we have explored the effects of inhibiting FGF signaling within the embryonic mouse midbrain (mesencephalon) and cerebellum (rhombomere 1) by misexpressing sprouty2 (Spry2) from an early stage. We show that such Spry2 misexpression moderately reduces FGF signaling, and that this reduction causes cell death in the anterior mesencephalon, the region furthest from the source of FGF ligands. Interestingly, the remaining mesencephalon cells develop into anterior midbrain, indicating that a low level of FGF signaling is sufficient to promote only anterior midbrain development. Spry2 misexpression also affects development of the vermis, the part of the cerebellum that spans the midline. We found that, whereas misexpression of Spry2 alone caused loss of the anterior vermis, reducing FGF signaling further, by decreasing Fgf8 gene dose, resulted in loss of the entire vermis. Our data suggest that cell death is not responsible for vermis loss, but rather that it fails to develop because reducing FGF signaling perturbs the balance between vermis and roof plate development in rhombomere 1. We suggest a molecular explanation for this phenomenon by providing evidence that FGF signaling functions to inhibit the BMP signaling that promotes roof plate development.This work was supported by grants from the Wellcome Trust (080470) to M.A.B. and (072111) to M.A.B. and I.M., by the Medical Research Council and a Leverhulme Trust Fellowship to I.M., by the EU research program (LSHG-CT-2004-512003 and MEIF-CT-2006-025154), the Spanish Science Program (MEC BFU2005-09085, RD06/0011/0012), the ELA Foundation Research and TV3 LA (MARATO-062232) to D.E. and S.M., and by the National Institutes of Health (R01 HD050767) to A.L.J. and (R01 CA78711) to G.R.M.Peer Reviewe

    Branching morphogenesis of the ureteric epithelium during kidney development is coordinated by the opposing functions of GDNF and Sprouty1

    Get PDF
    AbstractBranching of ureteric bud-derived epithelial tubes is a key morphogenetic process that shapes development of the kidney. Glial cell line-derived neurotrophic factor (GDNF) initiates ureteric bud formation and promotes subsequent branching morphogenesis. Exactly how GDNF coordinates branching morphogenesis is unclear. Here we show that the absence of the receptor tyrosine kinase antagonist Sprouty1 (Spry1) results in irregular branching morphogenesis characterized by both increased number and size of ureteric bud tips. Deletion of Spry1 specifically in the epithelium is associated with increased epithelial Wnt11 expression as well as increased mesenchymal Gdnf expression. We propose that Spry1 regulates a Gdnf/Ret/Wnt11-positive feedback loop that coordinates mesenchymal–epithelial dialogue during branching morphogenesis. Genetic experiments indicate that the positive (GDNF) and inhibitory (Sprouty1) signals have to be finely balanced throughout renal development to prevent hypoplasia or cystic hyperplasia. Epithelial cysts develop in Spry1-deficient kidneys that share several molecular characteristics with those observed in human disease, suggesting that Spry1 null mice may be useful animal models for cystic hyperplasia

    Non-dimensional scaling of tidal stream turbines

    No full text
    The impact of local depth-wise velocity profiles on tidal turbine performance is important. Although the use of standard power laws for predicting velocity profiles is common, these laws may underestimate the magnitude of the depth-wise velocity shear and power attenuation. Predicting the performance of a tidal turbine in a high velocity shear is crucial in terms of power extraction. This paper discusses the dimensional scaling of a turbine using CFD and experimental data. Key performance characteristics (power, torque and thrust coefficients) were studies with increasing diameters and velocities, by generating. a series of non-dimensional curves. This provides a first order approximation for matching turbine performance characteristics to site conditions. The paper also shows that the use of a volume-averaged velocity derived from the upstream velocity profile can be used to determine these key performance characteristics. These are within 2% of those determined assuming a uniform flow. The paper also shows that even changes in the blade pitch angle results in new turbine characteristics under uniform velocity conditions and it is expected that these can be used for profiled flow

    Sustainable reference points for multispecies coral reef fisheries

    Get PDF
    Abstract Sustainably managing fisheries requires regular and reliable evaluation of stock status. However, most multispecies reef fisheries around the globe tend to lack research and monitoring capacity, preventing the estimation of sustainable reference points against which stocks can be assessed. Here, combining fish biomass data for >2000 coral reefs, we estimate site-specific sustainable reference points for coral reef fisheries and use these and available catch estimates to assess the status of global coral reef fish stocks. We reveal that >50% of sites and jurisdictions with available information have stocks of conservation concern, having failed at least one fisheries sustainability benchmark. We quantify the trade-offs between biodiversity, fish length, and ecosystem functions relative to key benchmarks and highlight the ecological benefits of increasing sustainability. Our approach yields multispecies sustainable reference points for coral reef fisheries using environmental conditions, a promising means for enhancing the sustainability of the world’s coral reef fisheries

    Initation to end-point: multiple roles of fibroblast growth factors in neural development

    No full text
    corecore