169 research outputs found
Mid-infrared frequency comb spanning an octave based on an Er fiber laser and difference-frequency generation
We describe a coherent mid-infrared continuum source with 700 cm-1 usable
bandwidth, readily tuned within 600 - 2500 cm-1 (4 - 17 \mum) and thus covering
much of the infrared "fingerprint" molecular vibration region. It is based on
nonlinear frequency conversion in GaSe using a compact commercial 100-fs-pulsed
Er fiber laser system providing two amplified near-infrared beams, one of them
broadened by a nonlinear optical fiber. The resulting collimated mid-infrared
continuum beam of 1 mW quasi-cw power represents a coherent infrared frequency
comb with zero carrier-envelope phase, containing about 500,000 modes that are
exact multiples of the pulse repetition rate of 40 MHz. The beam's
diffraction-limited performance enables long-distance spectroscopic probing as
well as maximal focusability for classical and ultraresolving near-field
microscopies. Applications are foreseen also in studies of transient chemical
phenomena even at ultrafast pump-probe scale, and in high-resolution gas
spectroscopy for e.g. breath analysis.Comment: 8 pages, 2 figures revised version, added reference
Semiconductor nanostructure quantum ratchet for high efficiency solar cells
Conventional solar cell efficiencies are capped by the ~31% Shockley–Queisser limit because, even with an optimally chosen bandgap, some red photons will go unabsorbed and the excess energy of the blue photons is wasted as heat. Here we demonstrate a “quantum ratchet” device that avoids this limitation by inserting a pair of linked states that form a metastable photoelectron trap in the bandgap. It is designed both to reduce non-radiative recombination, and to break the Shockley–Queisser limit by introducing an additional “sequential two photon absorption” (STPA) excitation channel across the bandgap. We realise the quantum ratchet concept with a semiconductor nanostructure. It raises the electron lifetime in the metastable trap by ~104, and gives a STPA channel that increases the photocurrent by a factor of ~50%. This result illustrates a new paradigm for designing ultra-efficient photovoltaic devices
Effect of Composition on Electrical and Optical Properties of Thin Films of Amorphous GaxSe100−x Nanorods
We report the electrical and optical studies of thin films of a-GaxSe100−x nanorods (x = 3, 6, 9 and 12). Thin films of a-GaxSe100−x nanorods have been synthesized thermal evaporation technique. DC electrical conductivity of deposited thin films of a-GaxSe100−x nanorods is measured as a function of temperature range from 298 to 383 K. An exponential increase in the dc conductivity is observed with the increase in temperature, suggesting thereby a semiconducting behavior. The estimated value of activation energy decreases on incorporation of dopant (Ga) content in the Se system. The calculated value of pre-exponential factor (σ0) is of the order of 101 Ω−1 cm−1, which suggests that the conduction takes place in the band tails of localized states. It is suggested that the conduction is due to thermally assisted tunneling of the carriers in the localized states near the band edges. On the basis of the optical absorption measurements, an indirect optical band gap is observed in this system, and the value of optical band gap decreases on increasing Ga concentration
First measurement of the |t|-dependence of coherent J/ψ photonuclear production
The first measurement of the cross section for coherent J/ψ photoproduction as a function of |t|, the square of the momentum transferred between the incoming and outgoing target nucleus, is presented. The data were measured with the ALICE detector in ultra-peripheral Pb–Pb collisions at a centre-of-mass energy per nucleon pair sNN=5.02TeV with the J/ψ produced in the central rapidity region |y|<0.8, which corresponds to the small Bjorken-x range (0.3−1.4)×10−3.
The measured |t|-dependence is not described by computations based only on the Pb nuclear form factor, while the photonuclear cross section is better reproduced by models including shadowing according to the leading-twist approximation, or gluon-saturation effects from the impact-parameter dependent Balitsky–Kovchegov equation. These new results are therefore a valid tool to constrain the relevant model parameters and to investigate the transverse gluonic structure at very low Bjorken-x.publishedVersio
Resolving the strange behavior of extraterrestrial potassium in the upper atmosphere
It has been known since the 1960s that the layers of Na and K atoms, which occur between 80 and 105 km in the Earth's atmosphere as a result of meteoric ablation, exhibit completely different seasonal behavior. In the extratropics Na varies annually, with a pronounced wintertime maximum and summertime minimum. However, K varies semiannually with a small summertime maximum and minima at the equinoxes. This contrasting behavior has never been satisfactorily explained. Here we use a combination of electronic structure and chemical kinetic rate theory to determine two key differences in the chemistries of K and Na. First, the neutralization of K+ ions is only favored at low temperatures during summer. Second, cycling between K and its major neutral reservoir KHCO3 is essentially temperature independent. A whole atmosphere model incorporating this new chemistry, together with a meteor input function, now correctly predicts the seasonal behavior of the K layer
Flow Dominance and Factorization of Transverse Momentum Correlations in Pb-Pb Collisions at the LHC
We present the first measurement of the two-particle transverse momentum differential correlation function, P2≡ ΔpTΔpT/ pT2, in Pb-Pb collisions at sNN=2.76 TeV. Results for P2 are reported as a function of the relative pseudorapidity (Δη) and azimuthal angle (Δφ) between two particles for different collision centralities. The Δφ dependence is found to be largely independent of Δη for |Δη|≥0.9. In the 5% most central Pb-Pb collisions, the two-particle transverse momentum correlation function exhibits a clear double-hump structure around Δφ=π (i.e., on the away side), which is not observed in number correlations in the same centrality range, and thus provides an indication of the dominance of triangular flow in this collision centrality. Fourier decompositions of P2, studied as a function of the collision centrality, show that correlations at |Δη|≥0.9 can be well reproduced by a flow ansatz based on the notion that measured transverse momentum correlations are strictly determined by the collective motion of the system
K*(892)(0) and phi(1020)meson production at high transverse momentum in pp and Pb-Pb collisions at root sNN=2.76 TeV
The production of K∗(892)0 and φ(1020) mesons in proton-proton (pp) and lead-lead (Pb-Pb) collisions
at √sNN = 2.76 TeV has been analyzed using a high luminosity data sample accumulated in 2011 with the
ALICE detector at the Large Hadron Collider (LHC). Transverse momentum (pT) spectra have been measured
for K∗(892)0 and φ(1020) mesons via their hadronic decay channels for pT up to 20 GeV/c. The measurements
in pp collisions have been compared to model calculations and used to determine the nuclear modification factor
and particle ratios. The K∗(892)0/K ratio exhibits significant reduction from pp to central Pb-Pb collisions,
consistent with the suppression of the K∗(892)0 yield at low pT due to rescattering of its decay products in
the hadronic phase. In central Pb-Pb collisions the pT dependent φ(1020)/π and K∗(892)0/π ratios show an
enhancement over pp collisions for pT ≈ 3 GeV/c, consistent with previous observations of strong radial flow.
At high pT, particle ratios in Pb-Pb collisions are similar to those measured in pp collisions. In central Pb-Pb
collisions, the production of K∗(892)0 and φ(1020) mesons is suppressed for pT > 8 GeV/c. This suppression is
similar to that of charged pions, kaons, and protons, indicating that the suppression does not depend on particle
mass or flavor in the light quark sector
- …