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Abstract

The production of K∗(892)0 and φ(1020) mesons in proton-proton (pp) and lead-lead (Pb–Pb) col-
lisions at

√
sNN = 2.76 TeV has been analyzed using a high luminosity data sample accumulated

in 2011 with the ALICE detector at the Large Hadron Collider (LHC). Transverse momentum (pT)
spectra have been measured for K∗(892)0 and φ(1020) mesons via their hadronic decay channels for
pT up to 20 GeV/c. The measurements in pp collisions have been compared to model calculations
and used to determine the nuclear modification factor and particle ratios. The K∗(892)0/K ratio ex-
hibits significant reduction from pp to central Pb–Pb collisions, consistent with the suppression of the
K∗(892)0 yield at low pT due to rescattering of its decay products in the hadronic phase. In central
Pb–Pb collisions the pT dependent φ(1020)/π and K∗(892)0/π ratios show an enhancement over pp
collisions for pT ∼3 GeV/c, consistent with previous observations of strong radial flow. At high pT,
particle ratios in Pb–Pb collisions are similar to those measured in pp collisions. In central Pb–Pb
collisions, the production of K∗(892)0 and φ(1020) mesons is suppressed for pT > 8 GeV/c. This
suppression is similar to that of charged pions, kaons and protons, indicating that the suppression
does not depend on particle mass or flavor in the light quark sector.
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1 Introduction

It has been established that hot and dense strongly interacting matter, often described as a strongly-
coupled quark-gluon plasma (sQGP) [1–3], is produced in heavy-ion collisions at ultrarelativistic en-
ergies. The properties of this matter are characterized, among others, by the energy loss of partons
traversing the dense color-charged medium, which manifests itself via suppression of hadrons with
high transverse momentum in central Pb–Pb collisions. The hadrons that contain light (up, down and
strange) valence quarks exhibit a similar suppression as particles containing heavy quarks (charm) both
at RHIC [4, 5] and at the LHC [6, 7]. The apparent particle species independence of high-pT hadron sup-
pression is a challenge for models [8–10]. Since K∗(892)0 (ds̄), K∗(892)0 (d̄s) and φ(1020) (ss̄) contain
strange (or anti-strange) quarks, they are used here for a systematic study of the particle species depen-
dence of the partonic energy loss in the medium. Moreover, the measurements of high-pT differential
yields can be used to test perturbative QCD inspired model calculations.

The system produced in heavy-ion collisions evolves through different stages, with a transition from
partonic to hadronic matter around a temperature Tc ≈ 156 MeV [11–13]. The K∗(892)0 and φ(1020) life
times in vacuum are 4.16± 0.05 fm/c and 46.3± 0.4 fm/c, respectively [14]. Due to their short life times,
resonances can be used to probe the system at different timescales during its evolution and have been
proven to be very useful in exploring various aspects of heavy-ion collisions [15]. Yields of resonances
measured via hadronic decay channels can be affected by particle rescattering and regeneration in the
hadron gas phase. The momentum dependence of rescattering and regeneration may also modify the
observed momentum distributions of the reconstructed resonances.

Resonances like K∗(892)0 and φ(1020) can also contribute to a systematic study of the enhancement of
baryon-to-meson ratios (e.g., p/π and Λ/K0

S [16, 17]) at intermediate pT. Recombination models suggest
that the number of constituent quarks of the hadrons determine the enhancement, while hydrodynamic
models explain this on the basis of differences in the hadron masses leading to different radial flow
patterns. The K∗(892)0 and φ(1020) mesons, which have masses very close to that of a proton, are well
suited for testing the underlying hadron production mechanisms.

In this paper, K∗(892)0 and φ(1020) meson production in pp and Pb–Pb collisions at
√

sNN = 2.76 TeV
is studied. We have previously published measurements of K∗(892)0 and φ(1020) meson production
for pT < 5 GeV/c in Pb–Pb collisions at

√
sNN = 2.76 TeV [18] using data recorded in 2010. The high

luminosity data taken by ALICE in 2011 allow statistically improved signal measurements. The spectra
have been measured in the range 0 < pT < 15 GeV/c (0.4 < pT < 21 GeV/c) in minimum bias pp
collisions and 0.3 < pT < 20 GeV/c (0.5 < pT < 21 GeV/c) in Pb–Pb collisions in six (seven) centrality
classes for K∗(892)0 (φ(1020)). This new data set also allowed the measurement of K∗(892)0 in finer
centrality intervals in central and semi-central Pb–Pb collisions to study hadron production mechanisms
at low, intermediate and high pT. The new measurements of K∗(892)0 and φ(1020) meson production
in pp collisions at

√
s = 2.76 TeV are used to calculate particle ratios and also to test various perturbative

QCD inspired event generators.

The nuclear modification factor (RAA) is defined as the yield of particles in heavy-ion collisions relative
to that in elementary pp collisions, scaled with the average nuclear overlap function.

RAA =
1
〈TAA〉

× (d2N/dydpT )AA

(d2σ/dydpT )pp
, (1)

where 〈TAA〉 = 〈Ncoll〉 / σinel is the average nuclear overlap function, 〈Ncoll〉 is the average number of
binary nucleon-nucleon collisions calculated using MC Glauber [19] simulations and σinel is the inelastic
pp cross section [20].

Throughout this paper, the results for K∗(892)0 and K∗(892)0 are averaged and denoted by the symbol
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Centrality Events Year Data Set
0–10% 2.0 × 107 2011 Pb–Pb
10–50% 1.8 × 107 2011 Pb–Pb
0–80% 6.0 × 105 2011 Pb–Pb

MB 3.0 × 107 2011 pp

Table 1: Summary of different trigger selected data sets and number of events analyzed in pp and Pb–Pb
collisions at

√
sNN = 2.76 TeV.

K∗0 and φ(1020) is denoted by φ unless specified otherwise. The paper is organized as follows: Section 2
describes the data analysis techniques. Section 3 presents results including K∗0 and φ meson pT spectra,
ratios to different hadrons and nuclear modification factors. A summary is given in Section 4.

2 Data analysis

New measurements of K∗0 and φ meson production have been performed on data taken with the ALICE
detector in the year 2011. The resonances are reconstructed via hadronic decay channels with large
branching ratios (BR): K∗0 → π±K∓ with BR 66.6% and φ → K+K− with BR 48.9% [14]. For both
K∗0 and φ , the measurements are performed in six common centrality classes, 0–5%, 5–10%, 10–20%,
20–30%, 30–40%, 40–50%. The peripheral centrality class 60–80% is also measured for φ only.

2.1 Event and track selection

The data in pp collisions were collected in 2011 using a minimum bias (MB) trigger, requiring at least
one hit in any of V0-A, V0-C, and Silicon Pixel Detectors (SPD), in coincidence with the presence of
an LHC bunch crossing [21, 22]. The ALICE V0 are small-angle plastic scintillator detectors placed on
either side of the collision vertex, covering the pseudorapidity ranges 2.8 < η < 5.1 (V0-A) and –3.7 <
η < –1.7 (V0-C). The two SPD layers , which cover |η | < 2.0, are the innermost part of the the Inner
Tracking System (ITS), composed of six layers of silicon detector placed radially between 3.9 and 43
cm around the beam pipe. During the high luminosity Pb–Pb run in 2011, V0 online triggers are used
to enhance central 0–10%, semicentral 10–50% and select MB (0–80%) events. The trigger was 100%
efficient for the 0–8% most central Pb–Pb collisions and 80% efficient for centrality 8–10% [23]. The
inefficiency for the 8–10% range has a negligible (<1%) effect on the results presented in this paper. The
numbers of events after event selections is summarized in Table 1.

A detailed description of the ALICE detector is given in Refs. [24–26]. The ALICE Inner Tracking
System (ITS) and the Time Projection Chamber (TPC), are used for tracking and reconstruction of the
primary vertex. Events are required to have the primary vertex coordinate along the beam axis (vz)
within 10 cm from the nominal interaction point. Tracks in the TPC are selected for both K∗0 and
φ reconstruction with the requirement of at least 70 TPC pad rows measured along the track out of
a maximum possible 159. The TPC covers the pseudorapidity range |η | < 0.9 with full azimuthal
acceptance. To ensure a uniform acceptance, the tracks are selected within |η | < 0.8. The data sample
for the pp analysis is chosen to have minimal pileup; Pb–Pb collisions have negligible pileup. In order to
reduce contamination from beam-background events and secondary particles coming from weak decays,
cuts on the distance of closest approach to the primary vertex in the xy plane (DCAxy) and z direction
(DCAz) are applied. The value of DCAxy is required to be less than 7 times its resolution: (DCAxy(pT)<
0.0105 + 0.035p−1.1

T ) cm (pT in GeV/c) and DCAz, is required to be less than 2 cm. The pT of each track
is restricted to be greater than 0.15 GeV/c for K∗0 in pp and Pb–Pb collisions and for φ in pp collisions.
For φ in Pb–Pb collisions the track pT was required to be > 0.75 GeV/c for the 0–5% centrality class
and > 0.5 GeV/c otherwise. The higher pT cut for the φ analysis without particle identification (PID)
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was needed to improve the signal-to-background ratio at low momentum.

The TPC has been used to identify charged particles by measuring the specific ionization energy loss
(dE/dx). For K∗0 reconstruction, both in pp and Pb–Pb collisions, pion and kaon candidates are required
to have mean values of the specific energy loss in the TPC (〈dE/dx〉) within two standard deviations
(2σTPC) of the expected dE/dx values for each particle species over all momenta. In the case of φ meson
reconstruction, two PID selection criteria depending on the pT of the φ meson are used. In both pp
and Pb–Pb collisions the narrow φ signal is extracted from the unidentified two-particle invariant-mass
distribution for pT > 1 GeV/c. In pp collisions the production of the φ meson is additionally measured
with a 2σTPC restriction on 〈dE/dx〉 for 0.4 < pT < 5 GeV/c. The spectra measured without PID in
Pb–Pb collisions are comparable with the published 2010 results [18] obtained with PID. Measurements
with and without PID are found to be in good agreement for both collision systems in the overlap region
(1 < pT < 5 GeV/c). The pT spectra in this paper are combinations of results obtained with PID at
low momentum (pT < 3 GeV/c) and results obtained without PID for higher pT in both pp and Pb–Pb
collisions.

2.2 Yield extraction

The K∗0 (φ ) is reconstructed through its dominant hadronic decay channel by calculating the invariant-
mass of its daughters at the primary vertex. The invariant-mass distribution of the daughter pairs is
constructed using all unlike-sign pairs of charged K candidates with oppositely charged π (K) candidates
for K∗0 (φ ). The rapidity of πK and KK pairs is required to lie within the range |ypair| < 0.5.
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Fig. 1: (Color online) Invariant-mass distributions of πK pairs for pp and the 0–5% most central Pb–Pb
collisions at

√
sNN = 2.76 TeV for the momentum ranges 0.6 < pT < 0.9 GeV/c (upper panel) and 10 <

pT < 15 GeV/c (lower panel), respectively. Panels (a) and (c) show the unlike charge πK invariant-mass
distribution from the same event and normalized mixed event background. Panels (b) and (d) report
the invariant-mass distribution after subtraction of the combinatorial background for K∗0. The statistical
uncertainties are shown by bars. The solid curves represent fits to the distributions and the red dashed
curves are the components of those fits that describe the residual background.
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The signal extraction follows the procedure of the already published analysis [18]. The combinatorial
background is estimated using the event mixing technique by pairing decay daughter candidates from two
different events with similar primary vertex positions (vz) and centrality percentiles in Pb–Pb collisions.
For the K∗0 analysis, the difference in the event plane angles between two events is required to be less
than 30◦. The Pb–Pb data sample is divided into 10 bins in centrality percentiles and 20 bins in vz.
Each event is mixed with 5 other similar events for both πK and KK. For event mixing in pp collisions,
the binning takes into account the multiplicity of charged particles measured using the TPC. The total
multiplicity and vz are divided in 10 bins each for both πK and KK. These requirements ensure that the
mixed events have similar features, so the invariant-mass distribution from the event mixing can better
reproduce the combinatorial background.
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Fig. 2: (Color online) Invariant-mass distributions of KK pairs for pp and the 0–5% most central Pb–Pb
collisions at

√
sNN = 2.76 TeV for the momentum ranges 0.5 < pT < 0.8 GeV/c (upper panel) and 10 <

pT < 13 GeV/c (lower panel), respectively. In panels (a) and (c) the unlike charge KK invariant-mass
distribution from the same event and normalized mixed event background are shown. In panels (b) and
(d) the invariant-mass distribution after subtraction of the combinatorial background for φ is shown. The
statistical uncertainties are shown by bars. The solid curves are the fits to the distributions and the red
dashed curves are the components of those fits that describe the residual background.

In Fig. 1 (Fig. 2), panels (a) and (c) show the π∓K± (K+K−) invariant-mass distributions from the
same event and mixed events for 0.6 < pT < 0.9 GeV/c (0.5 < pT < 0.8 GeV/c) in minimum bias pp
collisions and 10 < pT < 15 GeV/c (10 < pT < 13 GeV/c) in 0–5% central Pb–Pb collisions at

√
sNN =

2.76 TeV. The mixed event distribution is normalized to the same event distribution in the invariant-mass
region of 1.1 to 1.3 GeV/c2 (1.04 to 1.06 GeV/c2), which is away from the signal peaks. The π∓K±

(K+K−) invariant-mass distributions after mixed event background subtraction are shown in panels (b)
and (d) of Fig. 1 (Fig. 2), where the signals are observed on top of a residual background. The residual
background is due to correlated πK or KK pairs emitted within jets and from mis-reconstructed hadronic
decays [18]. The shape of the residual background is studied by means of Monte Carlo simulations. It
exhibits a smooth dependence on mass and a second order polynomial is found to be a suitable function
to describe the residual background for both K∗0 and φ .
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For each pT interval and collision centrality class, the invariant-mass distribution is fitted with the sum
of a peak fit function and a second-order polynomial to account for the residual background. The πK
distribution signal peak is parametrized with a Breit-Wigner function. The fit function for K∗0 is

dN
dmπK

=
Y
2π
× Γ0

(mπK−M0)2 +
Γ2

0
4

+(Am2
πK +BmπK +C), (2)

where M0 is the reconstructed mass of K∗0, Γ0 is the resonance width fixed to the value in vacuum [14]
and Y is yield of the K∗0 meson. The mass resolution of the K∗0 is negligible compared to its width (47.4
± 0.6 MeV/c2) and is therefore not included in the K∗0 fitting function. A, B and C are the polynomial fit
parameters. Similarly, for the KK signal peak is fitted with a Voigtian function (a Breit-Wigner function
convoluted with a Gaussian function) is used, which accounts for the resonance width and the detector
mass resolution. The fit function for φ is

dN
dmKK

=
Y Γ0

(2π3/2)σ
×
∫ +∞

−∞

exp

(
(mKK−m′)2

2σ2

)
1

(m′−M0)2 +
Γ2

0
4

dm′+(Am2
KK +BmKK +C), (3)

where the parameter σ is the pT-dependent mass resolution, which is found to be independent of collision
centrality. For Pb–Pb (pp) collisions, the mass resolution parameter has been extracted by using HIJING
(PYTHIA) [27, 28] simulations, where the decay products of φ are propagated through the ALICE
detector, by using GEANT3 [29].

The π∓K± (K+K−) invariant-mass distribution is fitted in the range 0.75 < mπK < 1.05 GeV/c2 (0.99
< mKK < 1.06 GeV/c2). The yield of K∗0 (φ ) is extracted in each pT interval and centrality class by
integrating the mixed-event background subtracted invariant-mass distribution in the range 0.77 < mπK
< 1.02 GeV/c2 (1 < mKK < 1.03 GeV/c2), subtracting the integral of the residual background function
in the same range and correcting the result to account for the yields outside this range. This correction to
the total yield is about 9% (13%) for K∗0 (φ ) [18].

2.3 Yield correction

The raw yields of K∗0 and φ mesons are normalized to the number of events and corrected for the
branching ratio (BR) [14], the detector acceptance (A) and the reconstruction efficiency (εrec).

2.3.1 Acceptance and reconstruction efficiency

A Monte Carlo simulation based on the HIJING (PYTHIA) event generator is used for the estimation of
the acceptance × efficiency (A× εrec) in Pb–Pb (pp) collisions. Figure 3 shows A× εrec for minimum
bias pp collisions and 0-5% centrality Pb–Pb collisions at

√
sNN = 2.76 TeV for both K∗0 and φ . In

these simulations, the decay products of the generated K∗0 and φ are propagated through the ALICE
detector material using GEANT3 [29]. The A× εrec is defined as the fraction of generated K∗0 and φ

that is reconstructed after passing through the detector simulation, the event reconstruction and being
subjected to the track quality, PID and pair rapidity cuts. In this calculation, only those K∗0 (φ ) mesons
that decay to K±π∓ (K+K−) are used. The correction for the branching ratio is therefore not included
in A× εrec and is applied separately (Eq. 4). The differences in A× εrec for K∗0 and φ are due to the
different kinematics and track selection criteria. In Pb–Pb collisions, A× εrec has a very mild centrality
dependence.
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2.3.2 Normalization

The yields are normalized to the number of minimum bias events and corrected for the trigger (εtrigger)
and vertex reconstruction efficiencies (εvertex) to obtain the absolute resonance yields per inelastic pp
collision. The εvertex correction was estimated to be equal to 89% and takes into account K∗0 and φ

meson losses after imposing the vertex cut. The trigger efficiency correction factor εtrigger is 88.1%
with relative uncertainty of +5.9% and -3.5% for pp collisions [30]. The effects of trigger and vertex
reconstruction efficiency corrections are negligible in Pb–Pb collisions and, hence, not considered. The
invariant yield for pp and Pb–Pb collisions is

1
2π pT

d2N
dydpT

=
1

2π pT
× 1

Nev
× Nraw

dydpT
×

εtrigger

A× εrec×BR× εvertex
(4)

where Nev is the number of events used in the analysis and Nraw is the K∗0 or φ raw yield.
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Fig. 3: (Color online) The acceptance and efficiency (A× εrec) correction as a function of pT for K∗0

(red marker) and φ (blue marker) mesons in pp (left panel) and 0-5% centrality in Pb–Pb (right panel)
collisions at

√
sNN = 2.76 TeV.

2.4 Systematic uncertainties

The sources of systematic uncertainties in the measurement of K∗0 and φ production in pp and Pb–Pb
collisions are the global tracking (performed using ITS and TPC clusters) efficiency, track selection cuts,
PID, yield extraction method and material budget. In Pb–Pb (pp) collisions, the uncertainty contribution
due to the global tracking efficiency has been estimated to be 5% (4%) for charged particles [31], which
results in a 10% (8%) effect for the track pairs used for the invariant-mass analysis of K∗0 and φ . The
systematic uncertainty in the global tracking efficiency of the charged decay daughters is pT and central-
ity independent and it cancels out partially in particle yield ratios for both K∗0 and φ . The uncertainty
due to the PID cuts is 3.7% (4%) in pp and 4% (6.2%) in Pb–Pb collisions for K∗0 (φ ). Systematic
uncertainties of 3% to 6% on the raw yield have been assigned due to variation of the track selection
cuts, depending on the particle species and collision system. The uncertainty due to the raw yield ex-
traction includes variations of the fit range, fit function, mass resolution and mixed event background
normalization range. The πK (KK) invariant-mass fitting ranges were varied by 10–30 (5–10) MeV/c2

on each side of the peak. The residual background is fitted with a 3rd-order polynomial and the resulting
variations in the raw yield are also incorporated into the systematic uncertainties. Due to the uncertainty
in the material budget of the ALICE detectors, a systematic uncertainty of ∼1% (derived from the study
for π± and K± in [31]) is added to the yield of K∗0 and φ at low pT < 2 GeV/c, the contribution is
negligible at higher pT. For φ the change in the yield due to a variation of the mass resolution is included
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Pb–Pb pp
Systematic variation K∗0 φ K∗0 φ

Global tracking efficiency 10 10 8 8
Track selection 3-6 3-5 3 3

Particle identification 4.0 6.2 3.7 1-4
Material budget <1 <1 0-3.3 0-3.3
Yield extraction 4-15 3.5-13 2.5-14 2-13

Total 12-19 13-18 10-18 9-16

Table 2: Systematic uncertainties in the measurement of K∗0 and φ yields in pp and Pb–Pb collisions
at
√

sNN = 2.76 TeV. The global tracking uncertainty is pT-independent, while the other single valued
systematic uncertainties are averaged over pT. The values given in ranges are minimum and maximum
uncertainties depending on pT and centrality class. The normalization uncertainty, which is due to un-
certainties in the boundaries of the centrality percentiles, are taken from [32].

in the systematic uncertainties of the raw yield extraction. The systematic uncertainties due to yield ex-
traction are 2.5–14% (2–13%) for K∗0 (φ ) in pp collisions and 4–15% (3.5–13%) for K∗0 (φ ) in Pb–Pb
collisions. Raw yield extraction dominates total uncertainties in the lowest and highest pT intervals. All
other systematic uncertainties have weak pT and centrality dependence, with the exception of the yield
extraction uncertainty. The total systematic uncertainties amount to 10–18% (9–16%) for K∗0 (φ ) in pp
collisions and 12–19% (13–18%) for K∗0 (φ ) in Pb–Pb collisions. The contributions are summarized in
Table 2.

3 Results

3.1 pT spectra in pp collisions

The first measurement of K∗0 (φ ) meson production in pp collisions at
√

s = 2.76 TeV up to pT = 15
(21) GeV/c is reported here. Figure 4 shows the transverse momentum spectra of K∗0 and φ mesons
in pp collisions at

√
s = 2.76 TeV, which are compared with the values given by perturbative QCD

inspired Monte Carlo event generators PYTHIA [28, 33] and PHOJET [34, 35]. In both event generators
hadronization is simulated using the Lund String fragmentation model [36]. Different PYTHIA tunes
were developed by different groups through extensive comparison of Monte Carlo distributions with the
minimum bias data from various experiments. The PYTHIA D6T tune [37] is adjusted to CDF Run 2
data, whereas the ATLAS-CSC tune [38] is adjusted using UA5, E375 and CDF data from

√
s = 0.2

to 1.8 TeV. The Perugia tune [39] uses the minimum bias and underlying event data from the LHC at
0.9 and 7 TeV. The bottom panels in Fig. 4 shows the ratio of the model calculations to the data. For
the K∗0 meson, at low pT (< 1 GeV/c): all models overpredict the data. In the intermediate pT range
(∼2–8 GeV/c): the Perugia, ATLAS-CSC and PYTHIA 8.14 tunes underestimate the data, the D6T tune
overestimates the data while PHOJET has good agreement with the data. For the φ meson, at low pT (<
1 GeV/c): PHOJET and ATLAS-CSC tune overpredict; the Perugia tune and PYTHIA 8.14 underpredict
the data. In the intermediate pT range (∼2–8 GeV/c): the Perugia tune, PYTHIA 8.14, and PHOJET
underestimate the data, while the D6T and ATLAS-CSC tunes are in good agreement with the data. In
the high pT range (> 8 GeV/c) all models agree with the data within the uncertainties for both K∗0 and
φ . For both K∗0 and φ mesons, the deviations of these models from ALICE measurements are similar at
both

√
s = 2.76 and 7 TeV [40].

3.2 pT spectra in Pb–Pb collisions

Figure 5 shows the pT spectra for K∗0 and φ mesons for different centrality classes in Pb–Pb collisions
at
√

sNN = 2.76 TeV. The new measurements extend the previous results [18] from pT = 5 GeV/c to 20
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Fig. 4: (Color online) Invariant yields for (a) K∗0 and (b) φ mesons normalized to the number of inelastic
pp collisions at

√
s = 2.76 TeV. Invariant yield is calculated by taking the value of pT at the corresponding

bin center. The statistical uncertainties on the data are shown by bars and the systematic uncertainties by
boxes. The results are compared with model calculations from PYTHIA 8.14 [33], PHOJET [34, 35],
PYTHIA D6T [37], PYTHIA ATLAS-CSC [38] and PYTHIA PERUGIA [39] as shown by different
dashed lines. The lower panel for both K∗0 and φ shows the model to data ratio.

(21) GeV/c for K∗0 (φ ). The production of K∗0 has been measured in finer centrality bins and compared
to previously published results [18]. When centrality bins are combined, the 2011 results are consistent
with the 2010 data.

3.3 Particle ratios

The measurements of K∗0 and φ spectra over a wide pT range are used to probe particle production
mechanisms at different pT scales. The pT-integrated particle yield (dN/dy) and the mean transverse
momentum (〈pT〉) have been extracted using the procedure described in Ref. [18]. The pT distributions
are fitted with a Lévy-Tsallis function [41, 42] in pp and a Boltzmann-Gibbs blast-wave function [43]
in Pb–Pb collisions. The dN/dy and 〈pT〉 have been extracted from the data in the measured pT region
and the fit functions have been used to extrapolate into the unmeasured (low pT) region. The low-pT
extrapolation covers pT < 0.3 (0.5) GeV/c for K∗0 (φ ) and accounts for 5% (14%) of the total yield. The
yield is negligible at high-pT (> 20 GeV/c). These values for K∗0 in pp and Pb–Pb collisions and the
values for φ in pp collisions are listed in Table 3.

Figure 6 shows the ratios K∗0/K− and φ /K− [18] as a function of 〈dNch/dη〉1/3 (a proxy for the system
size [44]) in Pb–Pb collisions at

√
sNN = 2.76 TeV and pp collisions at

√
s = 2.76 TeV and 7 TeV [40].

The yield extraction dominates the systematic uncertainties at low pT, and therefore in the integrated
yield; it has been assumed to be fully uncorrelated between different centrality classes. The values of
the K∗0/K− ratio in Pb–Pb collisions at

√
sNN = 2.76 TeV and pp collisions at

√
s = 2.76 TeV, along with

φ /K− ratio in pp collisions at
√

s = 2.76 TeV, are listed in Table 3. The K∗0/K− ratio from the present
data is consistent with the trend observed in the previous measurement [18], also shown in Fig. 6 for
completeness. A smooth dependence on 〈dNch/dη〉1/3 is observed and the K∗0/K− ratio is suppressed in
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sNN = 2.76 TeV. Invariant yield is calculated by taking the value of pT at the corresponding

bin center. The statistical and systematic uncertainties are shown as bars and boxes, respectively. The
normalization uncertainty is not shown here, but is given in Table 3.
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K∗0 (Pb–Pb
√

sNN = 2.76 TeV
Centrality (%) dN/dy K∗0/K− 〈pT〉 (GeV/c)

0–5 19.56 ± 0.93 ± 2.48 ± 0.097 0.180 ± 0.008 ± 0.026 (0.023) 1.310 ± 0.023 ± 0.055
5–10 16.71 ± 0.65 ± 2.08 ± 0.083 0.186 ± 0.007 ± 0.026 (0.024) 1.252 ± 0.023 ± 0.055

10–20 13.65 ± 0.63 ± 1.84 ± 0.009 0.200 ± 0.009 ± 0.026 (0.023) 1.360 ± 0.026 ± 0.053
20–30 10.37 ± 0.50 ± 1.38 ± 0.010 0.225 ± 0.011 ± 0.025 (0.023) 1.322 ± 0.028 ± 0.053
30–40 7.35 ± 0.28 ± 0.97 ± 0.146 0.245 ± 0.009 ± 0.025 (0.021) 1.254 ± 0.023 ± 0.050
40–50 4.66 ± 0.20 ± 0.65 ± 0.111 0.258 ± 0.011 ± 0.025 (0.022) 1.220 ± 0.025 ± 0.050

K∗0 (pp
√

s = 2.76 TeV)
Inelastic (INEL) 0.0705 ± 0.0007 ± 0.009 0.307± 0.003 ± 0.043 0.950 ± 0.005 ± 0.026

φ (pp
√

s = 2.76 TeV)
dN/dy φ /K− 〈pT〉 (GeV/c)

Inelastic (INEL) 0.0260 ± 0.0004 ± 0.003 0.113 ± 0.001 ± 0.013 1.04 ± 0.01 ± 0.09

Table 3: The values of dN/dy, ratio to K− [32] and 〈pT〉 are presented for different centrality classes
in Pb–Pb collisions and inelastic pp collisions. In each entry, the first uncertainty is statistical and the
second is systematic, excluding the normalization uncertainty. Where a third uncertainty is given, it is
the normalization uncertainty and the value in the parentheses corresponds to uncorrelated part of the
systematic uncertainty.

the most central Pb–Pb collisions with respect to pp and peripheral Pb–Pb collisions. On the other hand,
the φ /K− ratio (previously reported in [18]) has weak centrality dependence without any suppression.
Energy independence of the φ /K− ratio in pp collisions is observed. The suppression of the integrated
yield of the short lived K∗0 resonance suggests that the rescattering of its decay daughters in the hadronic
medium reduces the measurable yield of K∗0. This aspect is further illustrated by comparison of the
ratios to a thermal model calculations with a chemical freeze-out temperature of 156 MeV [45]. The
measurements of φ /K for the most central collisions agrees with the thermal model expectation, while
the measured K∗0/K ratio lies significantly below the model value as this thermal model does not include
rescattering effects. The K∗0/K and φ /K ratios in Pb–Pb collisions are also compared to EPOS3 calcu-
lations [46]. EPOS3 is an event generator that describes the full evolution of heavy-ion collisions. The
initial conditions are modeled using the Gribov-Regge multiple-scattering framework, based on strings
and Pomerons. The collision volume is divided into two parts: a “core” (modeled as a QGP described by
3+1 dimensional viscous hydrodynamics) and a “corona” (where decaying strings are hadronized). The
core is allowed to hadronize and the further evolution of the complete system (including re-scattering and
regeneration) is modeled using UrQMD [47, 48]. EPOS3 with hadronic cascade modeled by UrQMD re-
produces the observed trends for K∗0/K and φ /K ratios in Pb–Pb collisions, suggesting that the observed
suppression of K∗0/K ratio is from rescattering of the daughter particles in the hadronic phase.
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Fig. 7: (Color online) Ratios of particle yields K∗0/K and φ/K in panel (a) and K∗0/π and φ/π in
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√
sNN = 2.76 TeV are shown. Here,

(K∗0+K∗0), (K++K−) and (π++π−) are denoted as K∗0, K, π , respectively. The statistical and systematic
uncertainties are shown as bars and caps respectively.

The effects of hadronic rescattering can be investigated with the pT-differential K∗0/K and φ /K ratios.
Figure 7a shows the K∗0/K and φ /K ratios as a function of pT in pp and 0–5% central Pb–Pb collisions
at
√

sNN = 2.76 TeV. For pT < 2 GeV/c, the K∗0/K ratio is smaller in central Pb–Pb collisions than in
pp collisions, while the φ /K ratio is the same for both collision systems. This is consistent with the
suppression of the K∗0 yield due to rescattering in the hadronic phase. In Fig. 7b, the K∗0/π and φ/π

ratios are shown as a function of pT in pp and 0–5% central Pb–Pb collisions at
√

sNN = 2.76 TeV. For pp
collisions, these ratios saturate at pT ∼4 GeV/c, but in Pb–Pb collisions, it increases up to 4 GeV/c then
shows a decreasing trend up to 8 GeV/c, finally it saturates. Both ratios in central Pb–Pb collisions show
an enhancement with respect to pp collisions at pT ∼3 GeV/c. Similar meson-to-meson enhancement
has been observed for the K/π ratio [31], and is understood in terms of radial flow. The ratios K∗0/K,
φ/K, K∗0/π and φ/π are similar at high pT (> 8 GeV/c) in Pb–Pb and pp collisions. This suggests that
fragmentation is the dominant mechanism of hadron production in this pT regime. This observation is
consistent with our previous measurements of the p/π and K/π ratios [31].

In Fig. 8, the pT-differential p/K∗0 and p/φ ratios measured in pp and Pb–Pb collisions at
√

sNN = 2.76
TeV are shown in panels (a) and (b), respectively. The particle ratios evolve from pp to central Pb–Pb
collisions, indicating a change of the spectral shapes. In central Pb–Pb collisions, the p/K∗0 ratio shows
weak transverse momentum dependence and the p/φ ratio is consistent with previous observations for
pT . 4 GeV/c. The similarity of the shapes of spectra for K∗0, p, φ , which have similar masses but
different numbers of valence quarks, suggests that the shapes are mostly defined by hadron masses as
expected from hydrodynamic models [49]. At higher pT, the difference between particle ratios measured
in different collision systems becomes smaller. Eventually the p/K∗0 and p/φ ratios for pT > 8 GeV/c
have similar values in both pp and central Pb–Pb collisions within uncertainties as expected if parton
fragmentation in vacuum dominates.
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3.4 Nuclear modification factor (RAA)

The pT spectrum of K∗0 (φ ) in pp collisions is used for the calculation of the nuclear modification
factor (RAA). The K∗0 spectra is measured up to pT = 15 GeV/c (Fig. 4) and pT = 20 GeV/c (Fig. 5),
in pp and Pb–Pb collisions, respectively. In pp collisions, the K∗0 pT distribution for 15 < pT <20
GeV/c is extrapolated from the measured data using a Lévy-Tsallis function [41, 42]. For the systematic
uncertainty on this extrapolated data point, a power-law function is used in the range 2 < pT < 20 GeV/c.
In addition, maximally hard and maximally soft pT spectra are generated by shifting the measured data
points within their uncertainties. The extrapolation procedure is performed on these hard and soft spectra
and the changes in the high-pT yield are incorporated into the systematic uncertainty estimate of the
extrapolated data point.

The RAA is used to study the effect of the medium formed in heavy-ion collisions and is sensitive to
the system size and the density of the medium. The RAA measurement is also sensitive to the dynamics
of particle production, in-medium effects and the energy loss mechanism of partons in the medium. If
a nuclear collision were simply a superposition of nucleon-nucleon collisions, the nuclear modification
factor would be equal to unity at high pT. Deviations of RAA from unity may indicate the presence of
in-medium effects.

Figure 9 shows the RAA of K∗0 and φ in the 0–5% to 40–50% centrality classes for Pb–Pb collisions at√
sNN = 2.76 TeV. These results are compared to the RAA of charged hadrons measured by the ALICE

Collaboration [50]. The RAA of K∗0 and φ is lower than unity at high pT (> 8 GeV/c) for all centrality
classes. It is also observed that for pT < 2 GeV/c, the K∗0 RAA is smaller than the φ and the charged
hadron RAA. This additional suppression of K∗0 at low pT with respect to φ is reduced as one goes from
central to peripheral collisions, consistent with the expectation of more rescattering in central Pb–Pb
collisions [18]. At high pT, the RAA of both K∗0 and φ mesons are similar to that of charged hadrons and
the RAA values increase from central to peripheral collisions.
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Fig. 9: (Color online) The nuclear modification factor, RAA, as a function of pT for K∗0 and φ mesons
in Pb–Pb collisions for different centrality classes. The results are compared with the RAA of charged
hadrons measured by ALICE [50]. The statistical and systematic uncertainties are shown as bars and
boxes, respectively. The boxes around unity indicate the uncertainty on the normalization of RAA, in-
cluding the uncertainty on the nuclear overlap function 〈TAA〉 and the normalization uncertainty given in
Table 3.

Figure 10 shows the comparison of RAA of K∗0 and φ in the 0–5% collision centrality class with that of
π , K and p [31]. In the intermediate pT range (2–6 GeV/c), K∗0 and φ RAA is similar to that of the K,
whereas p and φ exhibit a different trend despite similar masses. The difference of φ and p RAA at RHIC
was thought to be an effect of hadronization through parton recombination [51–53]. But the p/φ ratio
in most central Pb–Pb collisions at LHC is observed to be flat for pT < 4 GeV/c (see also Fig. 8b and
[18]) which suggests that particle masses determine the shapes of the pT spectra with no need to invoke
a recombination model. For pT > 8 GeV/c, all the light flavored species, π , K, p [31], K∗0 and φ , show
a similar suppression within uncertainties. This observation rules out models where the suppression of
different species containing light quarks are considered to be dependent on their mass and it can also put
a stringent constraint on the models dealing with fragmentation and energy loss mechanisms [8–10].
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4 Conclusions

The production of K∗0 and φ mesons in inelastic pp collisions and Pb–Pb collisions in various central-
ity classes at

√
sNN = 2.76 TeV using large data samples accumulated in 2011 has been measured. The

transverse momentum distributions for K∗0 (φ ) mesons measured in pp collisions up to 15 (21) GeV/c are
compared to predictions of the perturbative QCD inspired event generators PYTHIA and PHOJET. It is
observed that for pT > 8 GeV/c the models agree with the data within uncertainties. In Pb–Pb collisions
previously published results for K∗0 and φ [18] are extended from pT = 5 GeV/c to 20 GeV/c and the pro-
duction of K∗0 is studied in finer centrality bins. At high transverse momentum (pT > 8 GeV/c) nuclear
modification factors for different light hadrons (π , K, K∗0, p and φ ) are consistent within uncertainties
and particle ratios (K∗0/π , K∗0/K, φ /π and φ /K) are similar for pp and Pb–Pb collisions. This indicates
a particle species independence of partonic energy loss in the medium for light quark flavors (u, d, s)
and points to fragmentation in vacuum as the dominant particle production mechanism in this kinematic
regime. The K∗0/π , and φ/π ratios show a centrality dependent enhancement at pT ∼3 GeV/c in Pb–Pb
collisions compared to pp collisions. This is similar to the enhancement previously observed in the K/π
ratio [31] and attributed to the development of collective radial flow. At low momentum, the production
of K∗0 is significantly suppressed in Pb–Pb collisions and the K∗0/K ratio exhibits suppression at low
momentum, which increases with centrality. This observation is consistent with previous measurements
by the STAR [54, 55] and the ALICE [18] Collaborations and EPOS3 calculations [46], which confirms
the importance of rescattering in the hadronic phase.
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J. Adam38, D. Adamová87, M.M. Aggarwal91, G. Aglieri Rinella34, M. Agnello30,113, N. Agrawal47,
Z. Ahammed139, S. Ahmad17, S.U. Ahn69, S. Aiola143, A. Akindinov54, S.N. Alam139, D.S.D. Albuquerque124,
D. Aleksandrov83, B. Alessandro113, D. Alexandre104, R. Alfaro Molina64, A. Alici12,107, A. Alkin3,
J. Alme21,36, T. Alt41, S. Altinpinar21, I. Altsybeev138, C. Alves Garcia Prado123, M. An7, C. Andrei80,
H.A. Andrews104, A. Andronic100, V. Anguelov96, C. Anson90, T. Antičić101, F. Antinori110, P. Antonioli107,
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M. Mukherjee139, J.D. Mulligan143, M.G. Munhoz123, K. Münning44, R.H. Munzer35,97,60, H. Murakami131,
S. Murray66, L. Musa34, J. Musinsky55, C.J. Myers126, B. Naik47, R. Nair79, B.K. Nandi47, R. Nania107,
E. Nappi106, M.U. Naru15, H. Natal da Luz123, C. Nattrass129, S.R. Navarro2, K. Nayak81, R. Nayak47,
T.K. Nayak139, S. Nazarenko102, A. Nedosekin54, R.A. Negrao De Oliveira34, L. Nellen62, S.V. Nesbo36,
F. Ng126, M. Nicassio100, M. Niculescu58, J. Niedziela34, B.S. Nielsen84, S. Nikolaev83, S. Nikulin83,
V. Nikulin89, F. Noferini107,12, P. Nomokonov67, G. Nooren53, J.C.C. Noris2, J. Norman128, A. Nyanin83,
J. Nystrand21, H. Oeschler96, S. Oh143, A. Ohlson96,34, T. Okubo46, L. Olah142, J. Oleniacz140, A.C. Oliveira Da
Silva123, M.H. Oliver143, J. Onderwaater100, C. Oppedisano113, R. Orava45, M. Oravec118, A. Ortiz Velasquez62,
A. Oskarsson33, J. Otwinowski120, K. Oyama77, M. Ozdemir60, Y. Pachmayer96, V. Pacik84, D. Pagano137,
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France
73Laboratori Nazionali di Frascati, INFN, Frascati, Italy
74Laboratori Nazionali di Legnaro, INFN, Legnaro, Italy
75Lawrence Berkeley National Laboratory, Berkeley, California, United States
76Moscow Engineering Physics Institute, Moscow, Russia
77Nagasaki Institute of Applied Science, Nagasaki, Japan
78National and Kapodistrian University of Athens, Physics Department, Athens, Greece, Athens, Greece
79National Centre for Nuclear Studies, Warsaw, Poland
80National Institute for Physics and Nuclear Engineering, Bucharest, Romania
81National Institute of Science Education and Research, Bhubaneswar, India
82National Nuclear Research Center, Baku, Azerbaijan
83National Research Centre Kurchatov Institute, Moscow, Russia
84Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
85Nikhef, Nationaal instituut voor subatomaire fysica, Amsterdam, Netherlands
86Nuclear Physics Group, STFC Daresbury Laboratory, Daresbury, United Kingdom
87Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Řež u Prahy, Czech Republic
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