46 research outputs found

    A systematic review of maternal smoking during pregnancy and fetal measurements with meta-analysis

    Get PDF
    Funding: The study was supported by the European Cooperation in Science and Technology, who provided funds for publication. KMG is supported by the National Institute for Health Research through the NIHR Southampton Biomedical Research Centre and by the European Union's Seventh Framework Programme (FP7/2007-2013), projects Early Nutrition and ODIN under grant agreement numbers 289346 and 613977.Peer reviewedPublisher PD

    Mother's education and offspring asthma risk in 10 European cohort studies

    Get PDF
    Highly prevalent and typically beginning in childhood, asthma is a burdensome disease, yet the risk factors for this condition are not clarified. To enhance understanding, this study assessed the cohort-specific and pooled risk of maternal education on asthma in children aged 3-8 across 10 European countries. Data on 47,099 children were obtained from prospective birth cohort studies across 10 European countries. We calculated cohort-specific prevalence difference in asthma outcomes using the relative index of inequality (RII) and slope index of inequality (SII). Results from all countries were pooled using random-effects meta-analysis procedures to obtain mean RII and SII scores at the European level. Final models were adjusted for child sex, smoking during pregnancy, parity, mother's age and ethnicity. The higher the score the greater the magnitude of relative (RII, reference 1) and absolute (SII, reference 0) inequity. The pooled RII estimate for asthma risk across all cohorts was 1.46 (95% CI 1.26, 1.71) and the pooled SII estimate was 1.90 (95% CI 0.26, 3.54). Of the countries examined, France, the United Kingdom and the Netherlands had the highest prevalence's of childhood asthma and the largest inequity in asthma risk. Smaller inverse associations were noted for all other countries except Italy, which presented contradictory scores, but with small effect sizes. Tests for heterogeneity yielded significant results for SII scores. Overall, offspring of mothers with a low level of education had an increased relative and absolute risk of asthma compared to offspring of high-educated mothers

    How urban characteristics affect vulnerability to heat and cold: a multi-country analysis.

    Get PDF
    BACKGROUND: The health burden associated with temperature is expected to increase due to a warming climate. Populations living in cities are likely to be particularly at risk, but the role of urban characteristics in modifying the direct effects of temperature on health is still unclear. In this contribution, we used a multi-country dataset to study effect modification of temperature-mortality relationships by a range of city-specific indicators. METHODS: We collected ambient temperature and mortality daily time-series data for 340 cities in 22 countries, in periods between 1985 and 2014. Standardized measures of demographic, socio-economic, infrastructural and environmental indicators were derived from the Organisation for Economic Co-operation and Development (OECD) Regional and Metropolitan Database. We used distributed lag non-linear and multivariate meta-regression models to estimate fractions of mortality attributable to heat and cold (AF%) in each city, and to evaluate the effect modification of each indicator across cities. RESULTS: Heat- and cold-related deaths amounted to 0.54% (95% confidence interval: 0.49 to 0.58%) and 6.05% (5.59 to 6.36%) of total deaths, respectively. Several city indicators modify the effect of heat, with a higher mortality impact associated with increases in population density, fine particles (PM2.5), gross domestic product (GDP) and Gini index (a measure of income inequality), whereas higher levels of green spaces were linked with a decreased effect of heat. CONCLUSIONS: This represents the largest study to date assessing the effect modification of temperature-mortality relationships. Evidence from this study can inform public-health interventions and urban planning under various climate-change and urban-development scenarios

    Projections of Temperature-related Excess Mortality Under Climate Change Scenarios

    Get PDF
    Summary Background Climate change can directly affect human health by varying exposure to non-optimal outdoor temperature. However, evidence on this direct impact at a global scale is limited, mainly due to issues in modelling and projecting complex and highly heterogeneous epidemiological relationships across different populations and climates. Methods We collected observed daily time series of mean temperature and mortality counts for all causes or non-external causes only, in periods ranging from Jan 1, 1984, to Dec 31, 2015, from various locations across the globe through the Multi-Country Multi-City Collaborative Research Network. We estimated temperature–mortality relationships through a two-stage time series design. We generated current and future daily mean temperature series under four scenarios of climate change, determined by varying trajectories of greenhouse gas emissions, using five general circulation models. We projected excess mortality for cold and heat and their net change in 1990–2099 under each scenario of climate change, assuming no adaptation or population changes. Findings Our dataset comprised 451 locations in 23 countries across nine regions of the world, including 85 879 895 deaths. Results indicate, on average, a net increase in temperature-related excess mortality under high-emission scenarios, although with important geographical differences. In temperate areas such as northern Europe, east Asia, and Australia, the less intense warming and large decrease in cold-related excess would induce a null or marginally negative net effect, with the net change in 2090–99 compared with 2010–19 ranging from −1·2% (empirical 95% CI −3·6 to 1·4) in Australia to −0·1% (−2·1 to 1·6) in east Asia under the highest emission scenario, although the decreasing trends would reverse during the course of the century. Conversely, warmer regions, such as the central and southern parts of America or Europe, and especially southeast Asia, would experience a sharp surge in heat-related impacts and extremely large net increases, with the net change at the end of the century ranging from 3·0% (−3·0 to 9·3) in Central America to 12·7% (−4·7 to 28·1) in southeast Asia under the highest emission scenario. Most of the health effects directly due to temperature increase could be avoided under scenarios involving mitigation strategies to limit emissions and further warming of the planet. Interpretation This study shows the negative health impacts of climate change that, under high-emission scenarios, would disproportionately affect warmer and poorer regions of the world. Comparison with lower emission scenarios emphasises the importance of mitigation policies for limiting global warming and reducing the associated health risks

    Ambient Particulate Air Pollution and Daily Mortality in 652 Cities.

    Get PDF
    BACKGROUND: The systematic evaluation of the results of time-series studies of air pollution is challenged by differences in model specification and publication bias. METHODS: We evaluated the associations of inhalable particulate matter (PM) with an aerodynamic diameter of 10 μm or less (PM10) and fine PM with an aerodynamic diameter of 2.5 μm or less (PM2.5) with daily all-cause, cardiovascular, and respiratory mortality across multiple countries or regions. Daily data on mortality and air pollution were collected from 652 cities in 24 countries or regions. We used overdispersed generalized additive models with random-effects meta-analysis to investigate the associations. Two-pollutant models were fitted to test the robustness of the associations. Concentration-response curves from each city were pooled to allow global estimates to be derived. RESULTS: On average, an increase of 10 μg per cubic meter in the 2-day moving average of PM10 concentration, which represents the average over the current and previous day, was associated with increases of 0.44% (95% confidence interval [CI], 0.39 to 0.50) in daily all-cause mortality, 0.36% (95% CI, 0.30 to 0.43) in daily cardiovascular mortality, and 0.47% (95% CI, 0.35 to 0.58) in daily respiratory mortality. The corresponding increases in daily mortality for the same change in PM2.5 concentration were 0.68% (95% CI, 0.59 to 0.77), 0.55% (95% CI, 0.45 to 0.66), and 0.74% (95% CI, 0.53 to 0.95). These associations remained significant after adjustment for gaseous pollutants. Associations were stronger in locations with lower annual mean PM concentrations and higher annual mean temperatures. The pooled concentration-response curves showed a consistent increase in daily mortality with increasing PM concentration, with steeper slopes at lower PM concentrations. CONCLUSIONS: Our data show independent associations between short-term exposure to PM10 and PM2.5 and daily all-cause, cardiovascular, and respiratory mortality in more than 600 cities across the globe. These data reinforce the evidence of a link between mortality and PM concentration established in regional and local studies. (Funded by the National Natural Science Foundation of China and others.)

    The Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia : design, results and future prospects

    Get PDF
    The impact of many unfavorable childhood traits or diseases, such as low birth weight and mental disorders, is not limited to childhood and adolescence, as they are also associated with poor outcomes in adulthood, such as cardiovascular disease. Insight into the genetic etiology of childhood and adolescent traits and disorders may therefore provide new perspectives, not only on how to improve wellbeing during childhood, but also how to prevent later adverse outcomes. To achieve the sample sizes required for genetic research, the Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia were established. The majority of the participating cohorts are longitudinal population-based samples, but other cohorts with data on early childhood phenotypes are also involved. Cohorts often have a broad focus and collect(ed) data on various somatic and psychiatric traits as well as environmental factors. Genetic variants have been successfully identified for multiple traits, for example, birth weight, atopic dermatitis, childhood BMI, allergic sensitization, and pubertal growth. Furthermore, the results have shown that genetic factors also partly underlie the association with adult traits. As sample sizes are still increasing, it is expected that future analyses will identify additional variants. This, in combination with the development of innovative statistical methods, will provide detailed insight on the mechanisms underlying the transition from childhood to adult disorders. Both consortia welcome new collaborations. Policies and contact details are available from the corresponding authors of this manuscript and/or the consortium websites.Peer reviewe

    The Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia:design, results and future prospects

    Get PDF

    Coarse particulate air pollution and daily mortality a global study in 205 cities

    Get PDF
    Please read abstract in the article.The National Natural Science Foundation of China; the Ministry of Science and Technology, Taiwan; the Medical Research Council-UK; Fundação para a Ciência e a Tecnologia; the Australian Research Council the European Union’s Horizon 2020 Project Exhaustion ; the Natural Environment Research Council UK; the Australian National Health and Medical Research Council; and an Emerging Leader Fellowship of the Australian National Health and Medical Research Council.http://www.atsjournals.org/journal/ajrccm2023-06-07hj2023Geography, Geoinformatics and Meteorolog

    Outdoor, indoor and personal distribution of BTEX in pregnant women from two areas in Spain – Preliminary results from the INMA project

    Get PDF
    AbstractVolatile organic compounds (VOCs), which are habitually found in both outdoor and indoor environments, may represent a significant health risk. In this context, pregnancy is a critical period since foetuses are more vulnerable than adults to exposure to toxic compounds. The objective of this study is to present the preliminary results of a series of measurements of outdoor (O), indoor (I) and personal exposure (P) to benzene, toluene, ethylbenzene, o-xylene and m,p-xylene (BTEX) in 107 pregnant women from two areas in Spain, namely Valencia and Sabadell. BTEX samplers were installed for 48 hours both inside and outside of the women’s homes, along with personal samplers. In addition, the test subjects filled out a questionnaire about the activities they carried out during the sampling period.BTEX levels were higher in Valencia than in Sabadell (median O, I and P benzene levels in Valencia were 1.40, 2.40 and 3.05μg/m3, respectively, while in Sabadell they were 0.01, 0.32 and 1.02μg/m3). In both locations, an O<I<P pattern was observed. In the multivariate analysis an association was found between personal levels of total BTEX and indoor and outdoor levels, environmental tobacco smoke (ETS), and use of deodorant, perfume or hairspray in Valencia whereas in Sabadell an association between personal levels of total BTEX and indoor levels, age and working status was observed.We found that, in comparison with other studies, our sample population’s exposure to these compounds was not excessively high. This is one of the few studies to determine the personal BTEX exposure levels of pregnant women, who comprise a vulnerable population. Still, due to the small sample size of the present study, further studies are needed to be carried out in this field
    corecore