12 research outputs found

    Silicon solar cell–integrated stress and temperature sensors for photovoltaic modules

    Get PDF
    We propose silicon solar cell–integrated stress and temperature sensors as a new approach for the stress and temperature measurement in photovoltaic (PV) modules. The solar cell–integrated sensors enable a direct and continuous in situ measurement of mechanical stress and temperature of solar cells within PV modules. In this work, we present a proof of concept for stress and temperature sensors on a silicon solar cell wafer. Both sensors were tested in a conventional PV module setup. For the stress sensor, a sensitivity of (−47.41 ± 0.14)%/GPa has been reached, and for the temperature sensor, a sensitivity of (3.557 ± 0.008) × 10−3^{-3} K−1^{-1} has been reached. These sensors can already be used in research for increased measurement accuracy of the temperature and the mechanical stress in PV modules because of the implementation at the precise location of the solar cells within a laminate stack, for process evaluation, in‐situ measurements in reliability tests, and the correlation with real exposure to climates

    Wisconsin’s Environmental Public Health Tracking Network: Information Systems Design for Childhood Cancer Surveillance

    Get PDF
    In this article we describe the development of an information system for environmental childhood cancer surveillance. The Wisconsin Cancer Registry annually receives more than 25,000 incident case reports. Approximately 269 cases per year involve children. Over time, there has been considerable community interest in understanding the role the environment plays as a cause of these cancer cases. Wisconsin’s Public Health Information Network (WI-PHIN) is a robust web portal integrating both Health Alert Network and National Electronic Disease Surveillance System components. WI-PHIN is the information technology platform for all public health surveillance programs. Functions include the secure, automated exchange of cancer case data between public health–based and hospital-based cancer registrars; web-based supplemental data entry for environmental exposure confirmation and hypothesis testing; automated data analysis, visualization, and exposure–outcome record linkage; directories of public health and clinical personnel for role-based access control of sensitive surveillance information; public health information dissemination and alerting; and information technology security and critical infrastructure protection. For hypothesis generation, cancer case data are sent electronically to WI-PHIN and populate the integrated data repository. Environmental data are linked and the exposure–disease relationships are explored using statistical tools for ecologic exposure risk assessment. For hypothesis testing, case–control interviews collect exposure histories, including parental employment and residential histories. This information technology approach can thus serve as the basis for building a comprehensive system to assess environmental cancer etiology

    Single DermaVir Immunization: Dose-Dependent Expansion of Precursor/Memory T Cells against All HIV Antigens in HIV-1 Infected Individuals

    Get PDF
    BACKGROUND: The GIHU004 study was designed to evaluate the safety and immunogenicity of three doses of DermaVir immunization in HIV-infected subjects on fully suppressive combination antiretroviral therapy (cART). METHODOLOGY/PRINCIPAL FINDINGS: This first-in-human dose escalation study was conducted with three topical DermaVir doses targeted to epidermal Langerhans cells to express fifteen HIV antigens in draining lymph nodes: 0.1 mg DNA targeted to two, 0.4 mg and 0.8 mg DNA targeted to four lymph nodes. Particularly, in the medium dose cohort 0.1 mg DNA was targeted per draining lymph node via ∌8 million Langerhans cells located in 80 cm(2) epidermis area. The 28-days study with 48-week safety follow-up evaluated HIV-specific T cell responses against Gag p17, Gag p24 and Gag p15, Tat and Rev antigens. DermaVir-associated side effects were mild, transient and not dose-dependent. Boosting of HIV-specific effector CD4(+) and CD8(+) T cells expressing IFN-gamma and IL-2 was detected against several antigens in every subject of the medium dose cohort. The striking result was the dose-dependent expansion of HIV-specific precursor/memory T cells with high proliferation capacity. In low, medium and high dose cohorts this HIV-specific T cell population increased by 325-, 136,202 and 50,759 counts after 4 weeks, and by 3,899, 9,878 and 18,382 counts after one year, respectively, compared to baseline. CONCLUSIONS/SIGNIFICANCE: Single immunization with the DermaVir candidate therapeutic vaccine was safe and immunogenic in HIV-infected individuals. Based on the potent induction of Gag, Tat and Rev-specific memory T cells, especially in the medium dose cohort, we speculate that DermaVir boost T cell responses specific to all the 15 HIV antigens expressed from the single DNA. For durable immune reactivity repeated DermaVir immunization might be required since the frequency of DermaVir-boosted HIV-specific memory T cells decreased during the 48-week follow up. TRIAL REGISTRATION: ClinicalTrial.gov NCT00712530

    A two-dimensional model of the colonic crypt accounting for the role of the basement membrane and pericryptal fibroblast sheath

    Get PDF
    The role of the basement membrane is vital in maintaining the integrity and structure of an epithelial layer, acting as both a mechanical support and forming the physical interface between epithelial cells and the surrounding connective tissue. The function of this membrane is explored here in the context of the epithelial monolayer that lines the colonic crypt, test-tube shaped invaginations that punctuate the lining of the intestine and coordinate a regular turnover of cells to replenish the epithelial layer every few days. To investigate the consequence of genetic mutations that perturb the system dynamics and can lead to colorectal cancer, it must be possible to track the emerging tissue level changes that arise in the crypt. To that end, a theoretical crypt model with a realistic, deformable geometry is required. A new discrete crypt model is presented, which focuses on the interaction between cell- and tissue-level behaviour, while incorporating key subcellular components. The model contains a novel description of the role of the surrounding tissue and musculature, based upon experimental observations of the tissue structure of the crypt, which are also reported. A two-dimensional (2D) cross-sectional geometry is considered, and the shape of the crypt is allowed to evolve and deform. Simulation results reveal how the shape of the crypt may contribute mechanically to the asymmetric division events typically associated with the stem cells at the base. The model predicts that epithelial cell migration may arise due to feedback between cell loss at the crypt collar and density-dependent cell division, an hypothesis which can be investigated in a wet lab. This work forms the basis for investigation of the deformation of the crypt structure that can occur due to proliferation of cells exhibiting mutant phenotypes, experiments that would not be possible in vivo or in vitro

    Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers

    No full text
    corecore