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Alzheimer’s disease is the most common form of dementia, it is estimated to affect

over 40 million people worldwide. Classically, the disease has been characterized by

the neuropathological hallmarks of aggregated extracellular amyloid-β and intracellular

paired helical filaments of hyperphosphorylated tau. A wealth of evidence indicates a

pivotal role for the innate immune system, such as microglia, and inflammation in the

pathology of Alzheimer’s disease. The over production and aggregation of Alzheimer’s

associated proteins results in chronic inflammation and disrupts microglial clearance of

these depositions. Despite being non-excitable, microglia express a diverse array of ion

channels which shape their physiological functions. In support of this, there is a growing

body of evidence pointing to the involvement of microglial ion channels contributing

to neurodegenerative diseases such as Alzheimer’s disease. In this review, we discuss

the evidence for an array of microglia ion channels and their importance in modulating

microglial homeostasis and how this process could be disrupted in Alzheimer’s disease.

One promising avenue for assessing the role that microglia play in the initiation and

progression of Alzheimer’s disease is through using induced pluripotent stem cell derived

microglia. Here, we examine what is already understood in terms of the molecular

underpinnings of inflammation in Alzheimer’s disease, and the utility that inducible

pluripotent stem cell derived microglia may have to advance this knowledge. We outline

the variability that occurs between the use of animal and human models with regards

to the importance of microglial ion channels in generating a relevant functional model

of brain inflammation. Overcoming these hurdles will be pivotal in order to develop new

drug targets and progress our understanding of the pathological mechanisms involved

in Alzheimer’s disease.
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INTRODUCTION

Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder and accounts for
approximately 60–80% of all dementia cases worldwide (Alzheimer’sstatistics, 2016). Initial studies
focussed on trying to identify a genetic basis to the disease (Gatz et al., 2006). Although some
AD cases are caused by defined mutations in one of three genes (APP, PSEN1 and PSEN2) these
account for fewer than 10% of all cases and occur before 65 years of age. The majority of cases
are sporadic, have no defined etiology and occurs at or after a mean age of 65. Our understanding
has progressed through evidence obtained from large cohort studies identifying genetic variants
which are associated with and potentially result in the late onset form of AD (LOAD). These
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genome wide association studies (GWAS) have demonstrated
that LOAD is a multifactorial disease with many different genes
and single nucleotide polymorphisms contributing to disease
onset (Gatz et al., 2006). The most strongly associated gene
with LOAD is Apolipoprotein E (APOE), which encodes a
polymorphic glycoprotein that is involved in cholesterol and
other lipid transport (Poirier, 2005) alongside tissue repair
(Huang, 2010) and neuronal growth (Nathan et al., 1994).
There are three isoforms of APOE, ε2, ε3, and ε4 that all
correspond to cysteine to arginine substitutions at the amino acid
positions 112 and 158 (Zlokovic, 2013). The ε4 variant confers
increased risk of developing LOAD, and each additional copy
of the ε4 allele lowers the mean age of onset (Corder et al.,
1993). Neurodegenerative diseases such as AD were traditionally
considered to be ‘’neurocentric,” however recent findings are
challenging this view, implicating glia as primary targets. GWAS
studies reveal there have been a number of single nucleotide
polymorphisms that are associated with AD which reside in
genes involved in microglial biology. These include common
variants such as CR1 (complement receptor 1), CD33 (sialic
acid binding Ig-like lectin 3), CLU (clusterin), ABCA7 (ATP-
binding cassette, sub family A, member 7), MS4A (membrane-
spanning 4-domain family, subfamily A) and EPHA1 (ephrin
type-A receptor 1) (Bertram et al., 2008; Harold et al., 2009;
Hollingworth et al., 2011; Naj et al., 2011; Lambert et al., 2013;
Zhang et al., 2013), and also more rare coding variants in genes
such as TREM2 (triggering receptor expressed on myeloid cells
2) (Guerreiro et al., 2013; Jonsson et al., 2013). TREM2 is a
cell surface receptor of the immunoglobulin superfamily that
is expressed on microglia (reviewed by Colonna and Wang,
2016). Several variants within TREM2 appear to significantly
increase the risk of developing AD (Jin et al., 2014; Song
et al., 2017), in particular rs75932628, an SNP that confers
an arginine to histidine change at amino acid 47 (R47H)
(Guerreiro et al., 2013; Jonsson et al., 2013). Although TREM2
polymorphisms are associated with a risk of late-onset AD
(Guerreiro et al., 2013), their role in neurodegenerative diseases is
controversial. Indeed, recent evidence proposes that the TREM2-
APOE pathway induces a microglia phenotypic switch from a
homeostatic to neurodegenerative phenotype (Krasemann et al.,
2017). One of the main functions of TREM2 is regulating
microglial phagocytosis (Hsieh et al., 2009), and as a ligand for
TREM2 in microglia, APOE binds to dead neurons and increases
Trem2-mediated phagocytosis (Atagi et al., 2015). Interestingly,
Kleinberger et al. (2014) showed that missense mutations in
TREM2 resulted in impaired phagocytic activity with a reduced
level of soluble TREM2 in cerebrospinal fluid (CSF) of AD
patients. Indeed TREM2 deficiency has been shown to alter
microglial function in both primary microglial cultures and in
mouse models of AD where a decrease in plaque-associated
microglia are observed alongside an increase in apoptosis of both
resting and activated microglia and reduced phagocytosis (Ulrich
et al., 2014; Jay et al., 2015, 2017). These findings suggest that
the role of TREM2 in modulating inflammation may be more
complex than previously appreciated and may be dependent on
the cell type in which it is expressed and the inflammatory context
in which it is studied. For a more in depth discussion we refer

the reader to the following very comprehensive review articles
(Colonna and Wang, 2016; Ulrich et al., 2017; Li and Zhang,
2018).

Microglia are thought to regulate the degree of Aβ deposition
by phagocytosis with potentially protective impact on AD
progression (Lee and Landreth, 2010). One striking feature of
the behavior of microglia in the AD brain is their marked
clustering around fibrillar Aβ deposits and they adopt a polarized
morphology with hypertrophic processes extending toward
plaques (Condello et al., 2015). This aids as a protective physical
barrier mechanism through which the Aβ fibrils cannot extend,
promoting the formation of highly compact plaquemicro regions
that have minimal affinity for soluble Aβ1−42 (Condello et al.,
2015; Yuan et al., 2016). Conversely, areas not covered by
microglia processes display “hotspots” with very high soluble
Aβ1−42 affinity, leading to markedly concentrated protofibrillar
Aβ42 plaque regions (Condello et al., 2015). These “hotspots” are
neurotoxic given that adjacent axons develop a greater extent of
dystrophy compared to those covered by microglia (Yuan et al.,
2016).

On the other hand, most studies in TREM2- deficient AD-
like mice have shown reduced number of microglia around Aβ

plaques (Jay et al., 2015; Wang et al., 2015). Similar reports
suggest that in R47H human mutants, microglial processes were
also unable to form a robust barrier, resulting in a decreased
Aβ fibril compaction (Yuan et al., 2016). With the decrease
in microglial number, there are less compact Aβ fibrils and a
higher ratio of Aβ1−42 plaques (Yuan et al., 2016; Ulland et al.,
2017), therefore a deficient rather than an exacerbated microglial
response could give rise to the development of sporadic AD.Once
activated by pathological triggers, like neuronal death or protein
aggregates, microglia extend their processes to the site of injury,
migrate to the lesion and initiate an innate immune response
(Heneka et al., 2015). Mounting evidence from polymorphisms
linking microglial dysfunction to AD could have a causal role in
disease onset and progression and are not just a consequence of
neuropathological hallmarks that are characteristic of AD.

THE INNATE IMMUNE SYSTEM IN AD

Of increasing interest is the involvement of the innate immune
system in AD, particularly the role of microglia. Microglia are
the resident immune cells in the brain and spinal cord, and
play important roles in neurodevelopment, immune surveillance,
disease and homeostasis (Nayak et al., 2014). Unlike neurons and
other glial cell types, microglia are of haematopoietic lineage,
arise early during development (Hutchins et al., 1990), and are
derived from erythromyeloid progenitors (EMPs) in the yolk sac
(Ginhoux et al., 2010).

Microglia can exist in several morphological/phenotypic states
depending on the environment they are in or the factors they
are stimulated by. From a highly processed state, the microglia
become more amoeboid with increased numbers of intracellular
vesicles in preparation for engulfment of foreign particles. These
differential states have been termed accordingly as “classical
activation,” “alternative activation,” and “acquired deactivation”
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(Colton, 2009; Colton and Wilcock, 2010). Previous studies
defined these states as separate from one another, a profiling
index of M1 or M2 phenotyping suggesting a pro- or anti-
inflammatory state respectively. More recently it has become
more apparent that this is derived from the idea that microglia
are central macrophages and so must follow by the same “kill
or cure” switch seen in these cell types. However, microglia can
exist in multiple phases with the same cell producing markers
of both pro- and anti- inflammatory components depending on
stimulus. Usage ofM1/M2 profile terminology fails to capture the
heterogeneity of microglia which is a vital to their local and global
physiological responses (Mosser et al., 2017).

Classical activation, considered to be pro-inflammatory, is
stimulated by IFN-γ and is associated with the production of
cytokines such as TNF-α and IL-1β and nitric oxide production
(Li et al., 2004; Block et al., 2007). On the other hand, alternative
activation, is defined by the release of anti-inflammatory
cytokines IL-4 and IL-13 and arginase 2. This results in gene
expression to promote tissue repair and extracellular matrix
reconstruction (Ponomarev et al., 2007; Colton, 2009). Acquired
deactivation, is mainly seen in the presence of apoptotic cells and
is characterized by the release of IL-10, TGF-β, IL-6, and CSF1
and the production of scavenger receptors (Sawada et al., 1999;
Colton, 2009; Colton and Wilcock, 2010; Saijo and Glass, 2011).
Microglial phagocytosis relies on specific receptors expressed
on the cell surface and their downstream signaling pathways to
instigate engulfment of harmful particulates (Figure 1).

Microglia mediate the innate immune response of the brain
and are involved in the phagocytosis and clearance of debris,
pathogens, and toxins. Their dysfunction and increased Aβ

accumulation is universal to AD patients and not just those
with familial APP mutations. This suggests that Aβ build-up
is due to poor clearance and not APP proteolysis. Microglia
will secrete both pro- and anti-inflammatory factors, which can
either be beneficial or detrimental in neurodegenerative diseases.
Here exists extensive literature showing that inflammation
is integral to AD progression, facilitating Aβ deposition,
neuronal loss and cognitive deficits. Brains from AD patients
and those from murine models of Aβ pathology uniformly
display high expression of pro-inflammatory cyto- and chemo-
kines including TNFα, IFNγ, IL-1β, and IL-6 (Zheng et al.,
2016). IL-1β and TNFα can impair neuronal function by
suppression of long-term potentiation of synaptic transmission
(LTP) (Rowan et al., 2007). Multiple interactions as well as
elevated expression of additional cytokines/chemokines and
innate immune receptors favor a pro-inflammatory activation
state in AD.

Accumulating evidence demonstrates that inflammasomes,
which cleave precursors of interleukin-1β (IL-1β) and IL-18
to generate their active forms, play an important role in the
inflammatory response in the CNS and in AD pathogenesis. The
inflammasome is an inducible, high molecular weight, protein
complex consisting of the antigen sensor protein NLRP3, adaptor
protein ASC, and pro-caspase 1 (Heneka et al., 2015). The
complexing of these three components results in cleavage of
caspase 1 and instigates a cascade of pro-inflammatory cytokine
activation of the IL-1b family. Inmurinemutants where APP/PS1

was crossed with NLRP3-/- mice, a decrease in cC1 and IL-1β is
observed (Heneka et al., 2013).

Conversely an anti-inflammatory profile of microglia also
contributes to Aβ pathology. In murine models where IL-10
was either knocked down or knocked out in the APP/PS1
model, a decrease in Aβ load, increases phagocytosis and
reduces microglial APOE expression was observed (Chakrabarty
et al., 2015). Further studies showed that this was due to
preventing downstream pathways involving Jak1/Stat3 and
consequential transcription factor activity (Guillot-Sestier et al.,
2015). Additionally, primary microglia treated with fibrillar
Aβ1−42 and recombinant IL-10 showed that fibrillar Aβ1−42

is prevented from inducing a pro-inflammatory response of
cytokine release including CCL5, CXC10, and TNFα, suggesting
a push to an anti-inflammatory profile (Chakrabarty et al., 2015).

Therefore, it is pertinent to think that the Aβ activates
microglia and results in an innate immune response. Indeed, it
has been shown that exposure of microglia to fibrillar Aβ by
CD36, a class B scavenger receptor (Coraci et al., 2002), causes
the formation of a heterodimer of the TLR4 and TLR6 through
NF-κB signaling (Stewart et al., 2010). However, on deletion
of MyD88, an adaptor protein essential for downstream TLR
signaling, there was a significant decrease in both Aβ load and
microglial activation in APP/PS1 mice (Lim et al., 2011). Despite
this the MyD88 deletion only resulted in minor improvements in
cognitive functions (Lim et al., 2012).

Microglial activation by Aβ does not necessarily only occur
after Aβ deposition but can also occur before plaques are even
formed. Maezawa and colleagues have shown that nanomolar
concentrations of Aβ oligomers activated microglia and that
they required another scavenger receptor, SR-A, and the Ca2+-
activated potassium channel KCa3.1 (Maezawa et al., 2011).
Another group has also shown microglial activation precedes
Aβ aggregation in APP[V717I] transgenic mice and that this
coincides with increased BACE1 activation (Heneka et al., 2005).

Intracellular neurofibrillary tangles of hyperphosphorylated
tau are another pathological hallmark of AD. However, the
exact mechanisms which lead to the hyperphosphorylation of
tau are still unclear. Previously, it has been demonstrated that
neuro-inflammation positively correlates with tau aggregation,
hyperphosphorylation and neurodegeneration in several models
(Sheng et al., 1997; Sheffield et al., 2000; Bellucci et al., 2004, 2011;
Ikeda et al., 2005; Yoshiyama et al., 2007).

Microglial activation also precedes tau pathology in the
P301S tauopathy model (Yoshiyama et al., 2007). In the triple
transgenic model of AD, lipopolysaccharide administration
significantly increased tau phosphorylation through toll like
receptor 4 signaling (Kitazawa et al., 2005). Interestingly,
one paper has demonstrated that microglia may be involved
in the propagation of tau pathology through non-synaptic
transmission in mammals (Asai et al., 2015). Asai et al.
(2015) used two different tau mouse models to show that tau
propagation is mediated through microglia which phagocytose
tau-positive neurons or synapses and secrete tau protein in
exosomes, efficiently transmitting tau to neurons. They also
demonstrated that this propagation is sensitive to microglial
depletion and inhibition of nSMase2 activity. On the other
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FIGURE 1 | Morphological phenotype of Microglia. An illustration depicting the different phenotypic states. These are “classical activation,” “alternative activation,”

and “acquired deactivation.” Classical activation, otherwise considered to be the M1 phenotype and so is pro-inflammatory, is stimulated by IFN-γ and is associated

with the production of cytokines such as TNF-α and IL-1β. Subsequently the alternative activation, or M2 phenotype, defined by the release of anti-inflammatory

cytokines IL-4 and IL-13. The third activation phenotype, acquired deactivation, is thought to be a subtype of the M2 phenotype, releases IL-10 and TGF-β. Activation

does not inclusively mean a phagocytic phenotype in microglia. For this to occur, antigen sensing receptors are made available on the cell surface to allow pathogen

recognition. In Alzheimer’s disease, the best known of these is TREM2 but others include Toll-like receptors and members of the complement system.

hand, significant ablation of microglia in a mouse model of
amyloidopathy indicated that Aβ formation, maintenance and
associated neuritic dystrophy was not depended on microglia
(Grathwohl et al., 2009). Interestingly, (Krabbe et al., 2013)
reported that Aβ may directly affect microglial function. This
in vivo study detected a significant inverse correlation between
Aβ plaque burden and microglial phagocytic activity (Krabbe
et al., 2013). They found that microglial dysfunction develops
early during AD in an Aβ-dependent fashion and can be restored
by interventional anti-Aβ approaches, such as Aβ vaccination
(Krabbe et al., 2013).

MICROGLIA PHYSIOLOGY AND ION
CHANNELS

Studies have highlighted the importance of microglia in brain
ionic homeostasis (Annunziato et al., 2013; Szalay et al.,
2016; Shibata and Suzuki, 2017). For example, depletion of
microglia results in the loss of potassium chloride induced
neuronal depolarisation (Szalay et al., 2016) and the microglia
KCa3.1 channel has been proposed as a valid therapeutic
target for modulating cortical spreading depression (Shibata
and Suzuki, 2017). Therefore ion channels and transporters,
regulating ionic flux, are essential regulators of a variety
of microglial functions, including proliferation, morphological
changes, migration, cytokine release and reactive oxygen species
production (Schilling and Eder, 2015). Ion channel expression in
microglial cells is tightly regulated, with the expression of most
ion channel types noticeably depending on the cells’ functional

state (Eder, 1998, 2005, 2010; Kettenmann et al., 2011). Despite
being non-excitable cells, the plethora of voltage-gated ion
channels present in microglia suggests they play a prominent
role in both physiological as well as pathological states. Brain
inflammation is a characteristic of AD and numerous studies
have demonstrated that microglia can directly interact with
neurons to induce inflammation (Hashioka et al., 2012). Due to
this interaction, the study of microglial ion channels may shed
light on brain inflammation seen in neurodegenerative diseases
such as AD (Silei et al., 1999). In this review, we have summarized
the most prominent ion channels involved in microglial cells
which may contribute to AD pathology, as demonstrated in
Figure 2.

POTASSIUM CHANNELS

Potassium channels are present in all cells within the body and
have many diverse functions. In particular, they are capable
of regulating cell excitability and influence action potential
waveform. To identify therapeutic targets to modulate microglial
activation, numerous studies are addressing the contributions
of several K+ channels. Based on both their structural and
functional properties, K+ channels have been subdivided into
specific families. They have transmembrane helices (TMs)
spanning the lipid bilayer (Kuang et al., 2015). The largest of
these consist of K+ channels that are activated by membrane
depolarisation, with subsequent families consisting of channels
that are activated by altered intracellular Ca2+ ions and others
that are constitutively active. Based on the structure and function,
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FIGURE 2 | Illustration depicting presence of ion channels observed in microglial models and which of these have confirmed activity in Alzheimer’s disease associated

microglia. Strength of evidence is depicted in bold to un-bold text. In addition each channel is pre-fixed with the species in which they have been investigated:

h, human; m, mouse; r, rat.

the channels are categorized into three major classes: the voltage-
gated (Kv) (six TMs), inwardly rectifying (Kir) (two TMs), and
tandem pore domain (K2P) (four TMs) channels (Kuang et al.,
2015). K+ channels are particularly important in microglia since
their activation can induce membrane hyperpolarisations, which
are essential for driving Ca2+ influx through inward rectifying
Ca2+-Release-Activated-Ca2+ channels (CRAC) (Kraft, 2015;
Nguyen et al., 2017a) ATP-activated P2X receptors (Burnstock,
2015) and other Ca2+-permeable cation channels (Kettenmann
et al., 2011).

Voltage-Gated Potassium Channels
Kv channels form an exceedingly diverse group, their structure
consists of six TMs, of which the first four helices (S1–S4) form
the voltage sensor domain (VSD) (Jiang Y. et al., 2003; Long et al.,
2007). The last two helices (S5–S6, corresponding to the outer
and inner helices in KcsA, respectively) form the pore-forming
domain. The VSD senses the membrane potential alteration, and
is followed by a conformational change that is coupled to gate the
pore-forming domain (Long et al., 2005). In more general terms
Kv currents can be classified into showing A-type (inactivating)
or delayed rectifier behavior (non-inactivating). The Kv channels
present inmicroglia to date have been summarized inTable 1 and
mainly comprises of delayed rectifier Kv channels.

Kv1.2, Kv1.3, and Kv1.5 transcripts and protein have been
detected in both primary rat and mouse microglia (Kotecha
and Schlichter, 1999; Khanna et al., 2001; Fordyce et al., 2005;
Pannasch et al., 2006; Li et al., 2011). Microglia are widely
distributed throughout the brain; however some regions express
much higher levels than others (Lawson et al., 1990). The
hippocampus, an area particularly affected by AD, is rich with
microglia and is especially sensitive to cerebrovascular insults
which have been shown to rapidly activate microglia (Wu and
Ling, 1998). The reasons for the highly variable expression

of Kv channels and the role this plays in non-excitable cells
such as microglia are not well understood. It is now known
that microglia in culture can express different proteins when
compared to microglia in situ in brain slices or in vivo (Boucsein
et al., 2003; Butovsky et al., 2014; Yamasaki et al., 2014; Gosselin
et al., 2017). Earlier studies mostly used cultured microglia from
enzymatically dissociated tissue, thus removing cell– cell contacts
and key secretory products such as growth factors affecting Kv
channel expression itself (Kettenmann et al., 1990; Ganter et al.,
1992; Draheim et al., 1999). In vitro studies are currently the
only way to stimulate microglia in isolation in order to elucidate
similarities and differences in how different species respond (Lam
et al., 2017).

It is becoming more apparent that altered expression of Kv
channels could trigger the mechanisms underlying microglial
polarity and could characterize these microglial states (Saijo and
Glass, 2011; Maezawa et al., 2012). In a study on freshly isolated
microglial cells, Kotecha and Schlichter (1999) found both
Kv1.3 and Kv1.5, the former being associated with proliferating
cells and the latter with non-proliferating cells. This shift in
microglial activation also results in changes in the physiological
properties of the cells (Kotecha and Schlichter, 1999). Resting
microglia express Kv1.5 channels and upon activation and
proliferation they upregulate Kv1.3 and down-regulate Kv1.5
channels (Pannasch et al., 2006). Kv1.3 channels migrate to the
cell surface while Kv1.5 channels are internalized, making Kv1.3
channels not only functionally relevant but highly susceptible
to pharmacological manipulation through selective channel
blockers. As we have highlighted, majority of microglial studies
use animal models, in particular rodents. Lam et al. (2017)
found distinct variability between the different rodent models
in expressing different Kv channels. It is also apparent that
Kv channel expression of microglial cells in brain slices from
juvenile mice (P5-P9) differs to some extent from that of cells
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in adult mice (Boucsein et al., 2003; Schilling and Eder, 2007;
Menteyne et al., 2009; Arnoux et al., 2013, 2014). The passive
membrane properties and Kv channel expression of microglial
cells undergo substantial changes upon aging (Schilling and
Eder, 2015). In comparison with microglia of young adult mice,
microglial cells of aged mice are characterized by more negative
resting membrane potentials, decreased input resistances and
upregulated expression of inward rectifier and outward rectifier
Kv channels. Interestingly, the outward rectifier Kv channel
current is strongly age-dependent both in vitro and in vivo
(Schilling and Eder, 2015). It is clear from the literature that the
way in which we study Kv channel physiology in microglia varies
dramatically and depends on the methodology used (Lam et al.,
2017).

Further complications include the potential for strain
differences in rodents (Becker, 2016), and genetic polymorphisms
and epigenetic changes in humans (Boche and Nicoll, 2010).
There is considerable debate as to how closely mouse models
resemble human responses in inflammatory diseases (Seok et al.,
2013; Takao and Miyakawa, 2015). A better understanding
of microglial K+ channel regulation and expression patterns
in neurodegenerative states could also yield targets for drug
development using K+ channel blockers.

Voltage-Gated Potassium Channels and AD
Microglia are the key inflammatory cells in AD that mediate
neuro-inflammation, and Kv channels are key regulators of
microglial function, in particular Kv1.3 (Rangaraju et al., 2015).
In animal models of AD, Aβ-induced priming of microglial
NADPH oxidative activity depends on Kv1.3 channels, however
the exact mechanisms that contribute to this priming is still
poorly explored (Kotecha and Schlichter, 1999; Schilling and
Eder, 2011). It is thought that the activity of Kv channels
lead to membrane hyperpolarization, this Kv1.3 channel-induced
membrane hyperpolarisation could enhance Ca2+ influx through
Transient receptor potential (TRP) channels (see section Calcium
Channels; Schilling and Eder, 2011) aiding in the translocation
of PKC and therefore leading to NADPH oxidative priming.
Franciosi et al. (2006) demonstrated that the broad spectrum Kv
channel inhibitor 4-aminopyridine (4-AP) suppressed microglial
activation in vivo and reduced microglia-induced neuronal death
(Franciosi et al., 2006). This inhibition using 4-AP, which also
blocks Kv1.3 channels, could attribute to inhibition of microglial
priming and subsequent reduction ofmicroglial ROS production,
supporting a role for Kv1.3 channels as a therapeutic target in AD
(Schilling and Eder, 2011). More recently immunohistochemistry
experiments on human brain cortices revealed the presence
of Kv1.3 channels in cortical microglia at levels higher than
non-AD controls (Rangaraju et al., 2015). This particular study
also revealed a “plaque-like” pattern of Kv1.3, suggesting that
it may be possible for Aβ to interact with Kv1.3. Interestingly,
Aβ1−42 oligomers, but not soluble Aβ, accelerate the activation
and inactivation kinetics of Kv1.3 channels in lipid bilayers
without altering channel conductance (Lioudyno et al., 2012). It
is possible that altered channel conductance of Kv1.3 channels
could affect calcium fluxes in neurons and microglia, however
the relevance of this potential Aβ-Kv1.3-interaction remains to

be clarified. Another study by Chung et al. (2001) also confirmed
that Aβ was capable of upregulating Kv1.3 as well as the Kv1.5
channel current density. More recently, low levels of soluble
oligomeric Aβ have been reported to upregulate primary cultured
microglial activity as well as Kv1.3 at transcript and as protein
levels (Maezawa et al., 2017). Electrophysiological studies using
whole-cell patch clamp also revealed enhanced outward rectifier
current, characteristic of homotetrameric Kv1.3 channels.
Pharmacological characterization revealed that the currents were
sensitive to the Kv1.3 specific blockers ShK-186 (Tarcha et al.,
2012), margatoxin (Garcia-Calvo et al., 1993) and the selective
Kv1.3 blocker PAP-1 [5-(4-phenoxybutoxy) psoralen (Schmitz
et al., 2005). Oligomeric Aβ further induced a significant increase
in Kv1.3 current density compared to unstimulated microglia
(Maezawa et al., 2017). Following long-term treatment of an
APP/PS1 mouse model, the selective Kv1.3 blocker PAP-1
mitigated some key AD-like phenotypes such as reducing Aβ

deposition as well as restoring hippocampal synaptic plasticity.
The observation that pharmacological targeting of Kv1.3
channels in microglia with the selective inhibitor PAP-1 supports
PAP-1 as a promising potential for neuro-immunomodulation
therapy and the treatment of neurodegenerative diseases such
as AD.

The age-dependent changes in microglial Kv1.3 noted in
5xFADmice followed a similar trend—initially an age-dependent
increase, then a substantial decrease between 10 and 15 months
of age. We suspect that these changes in K+ channel expression
form part of the age-related changes in microglial function,
documented by several lines of investigation, such as altered
responses to Aβ aggregates or downregulation of “sensome”
genes (Hickman et al., 2008; Cameron et al., 2012; Heneka et al.,
2013; Hickman and El Khoury, 2013; Johansson et al., 2015)
ever, this downregulation is not reflected in a human study in
which Kv1.3 expression remains robust in microglia, particularly
in the later stages of AD (Rangaraju et al., 2015). More recently
transcriptomic data from Rangaraju et al. (2018), revealed that
Kv1.3 plays a distinct role in disease-associated-microglia in the
5XFAD mouse model (Rangaraju et al., 2018). It is pertinent to
say that the evidence presented here from the existing human and
rodent studies, show Kv1.3 could be a therapeutic target even at
the late stage of the disease. Similar to what we have previously
discussed, it appears that the current transgenic models of AD
do not replicate the patterns of microglia activation in human
AD. Many potential treatments identified in rodents have failed
in human clinical trials. To narrow this translational gap, it is
essential to investigate and acknowledge species similarities and
differences. With the promises of stem cell therapy and use of
iPSCs to model diseases in a dish, pharmacological manipulation
on a more directly available human source may reveal further
species differences.

Other Potassium Channels
Recent evidence has suggested that two-pore domain K+

(K2P) channels may play a role in microglia physiology
(Madry et al., 2018). Functional investigations provide data to
support the involvement of THIK-1 in the cytokine release
of microglia in situ. This study revealed two functionally and
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mechanistically distinct modes of microglial motility. THIK-1
regulates microglial ramification, surveillance and interleukin-
1β release (Madry et al., 2018). This is the first study of its kind
to implicate K2P channels in microglia physiology. Future work
will provide a better understanding of its role in vivo as well as
neuro-inflammatory responses. The impairment of motility of
microglial processes that occurs in some pathological conditions,
e.g., in models of Alzheimer’s disease with Aβ plaque deposition
(Koenigsknecht-Talboo et al., 2008; Krabbe et al., 2013; Condello
et al., 2015) raises the question of whether the dependence of
surveillance on THIK-1 activity can be employed therapeutically
for the treatment of AD (Madry et al., 2018). Currently there has
been no direct experimental evidence linking THIK-1 to AD.

Another important K+ channel that has been shown to
play a key role in microglia activation by modulating Ca2+

signaling and membrane potential is calcium-activated KCa3.1
(also known as IK1, SK4 or KCNN4) channels (Maezawa et al.,
2012). This channel is predominantly expressed in microglia and
has been a potential target for both industry and academia as
a potential drug target for AD (as reviewed by Maezawa et al.,
2012).

The strong inwardly rectifying K+ (Kir) channel belong to a
family of K+ channels that have only two membrane-spanning
domains and are responsible for stabilization of the resting
membrane potential (Vrest) near to the K

+ equilibrium potential
(EK) (Kettenmann et al., 1990; Tsai et al., 2013). Blocking Kir
channels depolarizes the cell and decreases the driving force for
inwardly transported Ca2+ in microglia. In a study by (Tsai et al.,
2013), addition of the AD drug memantine suppressed Kir as
well as depolarized the membrane potential of BV-2 cells. This
block of Kir2.1 channels could represent one of the important
mechanisms underlying its actions on the functional activities of
microglial cells. It remains unclear what the in vivo function of
Kir are, an area showing significant promise for AD.

Interestingly, in the transgenic mouse model of AD (5xFAD)
(Wendt et al., 2017) reported that the impairment in phagocytic
function of microglia was due to altered purinergic signaling.
They found evidence of altered physiological phenotype
only of microglia in 5xFAD mice that were located close to
Aβ plaques (Wendt et al., 2017). Supporting the idea that
functional and pathological alterations of microglia in AD
may be a consequence of their association with Aβ plaques.
Their detailed study on the 5xFAD model revealed an initial
induction of Kir current, followed by subsequent activation
of outwardly rectifying currents at a later age. Therefore
the induction of Kir current could be considered a first
response followed up with outward K+ current developing at
a later stage of microglial activation, similar to their previous
studies (Boucsein et al., 2000; Kettenmann et al., 2011). This
data supports the fact that microglia can undergo chronic
changes in physiological properties in a disease model over
a prolonged period. It appears from the literature that Kv1.3,
KCa3.1, and Kir 2.1 inhibitors seem to constitute relatively
general anti-inflammatory effects and it could therefore be
useful to preferentially target detrimental pro-inflammatory
microglia functions associated with neuro-inflammation,
such as AD (Nguyen et al., 2017b). A more recent study

investigated the effects of Aβ plaque-dependent morphological
and electrophysiological heterogeneity of microglia in the
AD mouse model, TgCRND8. Plescher et al. (2018) revealed
increased K+ currents in plaque-associated but not plaque
distant microglia. They believe that this electrophysiological
heterogeneity is likely to reflect the different functional states of
the microglia in TgCRND8 (Plescher et al., 2018). Their finding
that outwardly rectifying currents (Kv 1.3) were confined to
a subset of plaque associated microglial cells emphasizes the
potential of specific ion channel inhibitors to target only specific
(i.e., detrimental) subtypes of microglia in AD (Plescher et al.,
2018).

VOLTAGE-GATED SODIUM CHANNELS

Sodium voltage channels (NaV) are formed of one pore-α-
subunit associated with one/more β-subunits. The α-subunit
acts as the “voltage sensor” being activated by changes in
membrane potential (Payandeh et al., 2011). The β-subunits have
multiple roles, from modulating channel gating and regulating
channel expression, to interacting with the cytoskeleton and the
extracellular matrix, as cell adhesion molecules (Brackenbury
and Isom, 2008). It is now known that there are nine pore
forming α-subunits of sodium channels, Nav1.1-Nav1.9, encoded
by genes SCN1A-SCN11A (Catterall et al., 2005), which associate
with one or more non-pore-forming β- subunits encoded by
SCN1B-SCN4B (Brackenbury and Isom, 2011). In addition to
being expressed in cells capable of generating action potentials,
sodium channels have also been identified in cells that have not
traditionally been considered to be electrically excitable (“non-
excitable cells”), leading to speculation as to their functional
role (Pappalardo et al., 2016). Sodium channels contribute
to multiple, varied cellular functions in these cells including
phagocytosis (Carrithers et al., 2007), migration (Kis-Toth et al.,
2011), and proliferation (Wu et al., 2006). Voltage-gated sodium
channels have been documented in immune cells such as
macrophages (Schmidtmayer et al., 1994; Carrithers et al., 2007,
2009, 2011; Black et al., 2013).

Patch-clamp recordings have since confirmed the expression
of functional sodium channels in microglia (Korotzer and
Cotman, 1992; Nicholson and Randall, 2009; Persson et al., 2014).
A number of voltage-gated ion channels have been identified in
microglia, in particularly, voltage-gated Na+ channels isoforms
(VGSC): Nav1.1, Nav1.5, and Nav1.6 (Craner et al., 2005; Black
and Waxman, 2012).

In vitro, microglia derived from mixed glial cultures from
neonatal rats, exhibit immunolabeling for Nav1.1, Nav1.5, and
Nav1.6, which is most prominent, while Nav1.2, Nav1.3, Nav1.7,
Nav1.8, and Nav1.9 are not detectable above background levels
(Black et al., 2009). Whole-cell voltage clamp experiments on
cultured rat microglia revealed that, depolarization-induced
sodium currents were elicited and then completely blocked
by 0.3µM TTX, consistent with the presence of functional
TTX-S sodium channels (Persson et al., 2014). Similarly,
microglia within normal CNS tissues exhibit low levels of Nav1.6
immunolabeling in situ (Black and Waxman, 2012).
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There is a handful of electrophysiological studies of cultures
of human microglia derived from native tissue which reports the
presence of Na+ currents (Nörenberg et al., 1994b; Nicholson
and Randall, 2009), however, these are not observed in every
laboratory (McLarnon et al., 1997). Na+ currents have also been
reported in rat microglia (Korotzer and Cotman, 1992). A study
in mice provides evidence that Nav1.6, plays a central role in
the infiltration and phagocytosis of microglia in experimental
autoimmune encephalomyelitis. Furthermore, the same channel
is reported to be up-regulated in macrophages and microglia in
the lesions of multiple sclerosis patients (Craner et al., 2005).
To date there is no direct evidence for the involvement of
microglial VGSC in AD. This same group, however, also report
the presence of Nav1.1 and Nav1.5 in cultured rat microglia
and demonstrate their function in many key microglial processes
(Black et al., 2009). Although Aβ is a known activator for
microglia, treatment of the human microglial cell line with
Aβ (12 h, 10µM) there was no significant change in Na+

current or Nav1.5 expression (Nicholson and Randall, 2009).
Although there is clear involvement for VGSC in microglial
function its role in AD remain less well defined. This could
be due to a number of different contributing factors such as
species variation, individual laboratory protocols, as well as
non-standardized preparation of exogenous Aβ and Aβ species
selection.

TRANSIENT RECEPTOR POTENTIAL
CHANNELS

Transient receptor potential (TRP) channels are non-selective,
non-voltage gated cation channels, ubiquitously expressed
in mammalian cells. The TRP gene was initially discovered
in Drosophilla where mutant gene expressing animals
showed impaired vision due to dysregulated Ca2+ influx into
photoreceptor cells. TRP channels play important physiological
role in cells by their regulation of temperature, chemoception,
mechanoception, and nocioception. There are 30 known
members of the mammalian superfamily, which can be
divided up into six subfamilies, based on amino acid sequence
homology. These are: TRPA (Ankyrin); TRPC (Canonical);
TRPM (Melastatin); TRPML (Mucolipin); TRPP (Polycystin);
and TRPV (Vanilloid). TRP channels are tetramers made of
monomeric subunits that include a six trans-membrane (TM)
domain with a pore-forming loop between TM 5 and 6. In
addition, their C- and N-termini are intracellular. Functionally,
they act by changing cytoplasmic free Ca2+ concentrations via
Ca2+ permeable pore or by modulating ionic movement via
changes to the membrane potential. Microglia are evidenced to
express some TRP subfamily members, including those of the
TRPC, TRPM, and TRPV families.

TRPA
The smallest of the TRP subfamilies. Its only mammalian
member is TRPA1, a mechano- and chemo-sensor. Its name
is derived from the 14 N-terminal ankyrin repeats. To date
there is no evidence that it is present in microglia, although it’s

silencing in dorsal root ganglion results in reduced microglia
activation following hyperalgesia (Meotti et al., 2017). Similarly,
there is no evidence of the presence of TRPML nor TRPP
channels being expressed in nor influencing function of
microglia.

TRPC
The TRPC subfamily consists of seven homologs (C1-7), with
TRPC2 being exclusively expressed in mouse. TRPC members
share a structural motif in the COOH-terminal tail, TRP box,
located close to the intracellular border of TM6. In addition, they
contain three or four N-terminal ankyrin repeats.

TRPC channels are activated via the stimulation of GPCRs
and receptor tyrosine kinases, leading to phospholipase C,
inositol 1,4,5-triphosphate, and diacylglycerol production. This
stimulation results in a biphasic Ca2+ release with a first phase ER
release, followed by sustained Ca2+ influx across the membrane.
TRPC channels are known mostly as store operated Ca2+ entry
(SOCE) mediators.

In microglia, all seven members have shown RNA expression
in in vitro cell line models, although only C1 and C3 have been
reported in vivo. TRPC1 is a non-selective Na+/Ca2+ permeable
channel with known function in cell survival and proliferation.
Their expression is commonly on organelle membranes such
as ER and intracellular vesicles. TRPC1 negatively regulates the
ORAI1 Ca2+ channel resulting in suppression of NKkB, JNK and
ERK1/2 signaling from microglia (Sun et al., 2014).

TRPC3 is widely expressed in the CNS where it has
modulation via the growth factor BDNF to induce axonal
guidance, neuronal survival, and postsynaptic glutamate
transmission. In microglia, pre-treatment with BDNF inhibits
NO and TNF-α upregulation, via sustained Ca2+ influx through
upregulated TRPC3 channels at the plasma membrane. Effects
were reversed using the siRNA against TRPC3 (Mizoguchi et al.,
2014).

TRPM
The TRPM subfamily has eight mammalian members. Unlike
TRPA/C there are no N-terminus anykin repeats, instead having
functional protein domains, in addition to the TRP box, in the C-
terminus. TRPM’s are non-selective cation channels with a verity
of cellular functions including temperature sensing, osmolarity,
redox, Mg2+ homeostasis, proliferation, and cell death. These
channels can be subdivided further into four groups: M1/3;M4/5;
M6/7; M2/8. M1, 2, 4, and 7 have all been reported as present in
microglia.

TRPM1 was the first to be cloned, in 1998 (Harteneck,
2005), however its function and activation remains unknown.
TRPM1 has a high capacitance for splice variance, similarly so
with TRPM3-with whom M1 shares strong sequence homology.
In murine models of AD (5XFAD/MHCII+) high levels of
Aβ plaque burden correlated to an increase in TRPM1 gene
expression compared to age matched control animals (Yin et al.,
2017).

M2 contains an adapted adenosine 5′-diphosphoribose ribose
(ADPR)-recognizing Nudix box domain at its c-terminus. It
is a redox modulator, activated by reactive oxygen species,
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ADP ribose, NAD+ and Ca2+. M2 will mediate the release of
lysosomal Zn2+ stores in response to reactive oxygen species,
leading to increased cytosolic Zn2+ levels, leading to regulation
of cell motility and actin remodeling. Additionally, Ca2+ influx
via TRPM2 leads to increased intracellular insulin release in
pancreatic β-cells (Uchida et al., 2011). A number of studies, both
in vitro and in vivo confirm TRPM2 expression and activity in
microglia.

In a TRPM2 KO mouse model, microglia show an
abolishment of Ca2+ influx after LPS or IFNγ stimulation.
Activation by these stimuli results in Pyk2-mediated activation
of p38 MAPK and JNK signaling as well as an increase in
nitric oxide production (Miyake et al., 2014). Similarly studies
of MCAO-induced hypoxia in TRPM2 KO mice saw reduced
MG activation, reduced cytokine expression and increased brain
volume after damage (Huang et al., 2017). Lastly, TRPM2
channels are functionally expressed in the murine microglia cell
line BV2. Here these channels have been shown to be involved
in LPC-induced p38 MAPK phosphorylation. LPC-induced
intracellular Ca2+ increase and inward currents dependent on
TRPM2 channels (Jeong et al., 2017).

TRPM4 are non-selective cation channels with a greater
affinity for Na2+ over Ca2+. TRPM4 are activated by increased
intracellular Ca2+ due to changes in cell membrane potential,
ATP, PKC-dependent phosphorylation and calmodulin (CaM)
binding to the channels C-terminal CaM domain (Nilius et al.,
2005). Functional channels were detected in the mouse primary
microglia, both quiescent and active. Here they are thought to
mediate membrane depolarisation, in correlation to Ca2+ influx
(Beck et al., 2008). Sulfonylurea receptor 1 activates TRPM4
channels inmouse primarymicroglia. Receptor binding regulates
NOS andNO transcription onmicroglia activation via LPS action
at TLR4 (Kurland et al., 2016).

TRPM7, like TRPM6, is a channel-enzyme. It is Mg2+, Zn2+,
and Ca2+ permeable with a strong outward rectifying current-
voltage relationship. In addition to its ionic pore, it contains a
tyrosine kinase domain on its N-terminal. Activity at both pore
region and kinase domain are implemented to be involved in the
channels activity. For example, in rat brain microglia there is a
strong increase of intracellular Mg2+ via the channel, however
the currents generated were kinase activity-dependant and not
due to pore, nor cell, activation (Jiang X. et al., 2003). TRPM7
also plays a role in cell motility. Migration and invasion of M1
(pro-apoptotic) microglia was observed in rat primary and MLS-
9 microglia after priming with LPS (Siddiqui et al., 2014). In
addition, flow cytometry and Ca2+ imaging studies in neonatal
mouse microglia saw an increase in intracellular Ca2+ with cell
activation by Polyl:C. Increased Ca2+ led to a correlated increase
in TNFα and P38, in a TRPM7-dependent manner.

TRPV
The final sub-family are the vanilloids, the largest (1-6) and most
in depth studies of the TRP channel families. All TRPVs are
highly selective to Ca2+. The most well-known is TRPV1 for its
actions as a thermosensor (temperatures >43C). V1 mediates
heat response and inflammation in addition to nociceptive
responses to capsaicin, the main “heat” compound of chili

peppers. In addition, application of compounds with a pH <5.9
will shift the temperature gated threshold of these channels
to 20–23C. Heat-mediated activation is shared quality with
other TRPV members, specifically 2, 3, and 4. However, these
channels are insensitive to capsaicin and pH. V5 and V6
are not thermosensors but have enhanced selectivity to Ca2+

over other monovalent cations. Lastly, all TRPV channels are
functionally regulated by their insertion, or retention to the
plasma membrane.

TRPV1 has a high protein expression in microglia, with
the majority of these channels showing co-localisation to
organelles including the golgi, ER, lysosomes, and mitochondria.
Interestingly, at resting state there is very little expression
at the plasma membrane (Miyake et al., 2015). In a model
of rat spinal cord injury, activation of TRPV1 channels,
via I.V injection of capsaicin, gave increased expression of
SOD1 and pro-inflammatory cytokines from spinal microglia
(Talbot et al., 2012). Similar influence on pro-inflammatory
markers were observed in retinal microglia where activation
of TRPV1 resulted in increased IL-6 and NFkB expression
(Sappington and Calkins, 2008). Expression of TRPV1 protein
and function was confirmed in HMO6 human microglial
cell line. Application of capsaicin resulted in increased
intracellular Ca2+, and subsequently cytochrome C and
cleaved caspase 3 release (Kim et al., 2006). Together this
suggests a strong role of TRPV1 in the pro-inflammatory profile
of microglia.

Little is known about the other TRPV channels in microglia,
although an RNA-based analysis by Raboune et al. (2014).
showed upregulation of TRPV1-4 in BV2 cells following cell
activation by N-acyl amide.

Microglial TRP Channels in AD
Aβ accumulation, one of the major hallmarks of AD, commonly
results in excitotoxicity and cell death via the disruption of
normal Ca2+ homeostasis and release of pro-inflammatory
factors such as ROS, NO, and cytokine release. The previous
section highlights the role of TRP channels in intracellular Ca2+

regulation as well as differentially switching the phenotype of
microglia between M1 (pro-apoptotic) and M2 (pro-survival).
Despite this there is little research into glial TRP channel activity
in AD, with most of the focus being on neuronal responses.

Aβ treatment of BV-2 cells gave an upregulation of protein
and mRNA for TRPC6 that is dependent on NFkB activity.
When these cells had TRPC6 knocked down via siRNA, the
condition media was neuroprotective to cultured hippocampal
cells compared to sham BV2 cells. Neuronal influence of
TRPC6 activates via an upregulation of COX2 downstream
(Liu et al., 2017). By using familial AD mouse models- APP23
and 5XFAD, plaque associated microglia from these animals
were homogenized and run through flow cytometry to observe
upregulated genes. From these TRPM1 was pulled out, however
its role in AD remains unclear (Yin et al., 2017). BV2 cells
treated with either fibrillary or soluble Aβ saw high levels of ROS
which was attenuated with simultaneous application of TRPV1
via I-RTX (Schilling and Eder, 2011).
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CALCIUM CHANNELS

Plasma membrane calcium channels are subdivided into three
main groups according to their manner of activation; the voltage-
gated calcium channels (VGCCs), the store-operating calcium
channels (SOCs) and the receptor-operated calcium channels
(ROCs). VGCCs specifically, play a vital role in maintaining
calcium homeostasis, with important roles in cellular processes
such as neurotransmission, control of gene expression, hormone
secretion and cell apoptosis (Ertel et al., 2000; Valerie et al.,
2013). Therefore, developing therapeutics that target these
channels may be of benefit in treating various diseases of
the CNS, such as AD. Structurally VGCCs consists of the
α1 pore-forming subunit consisting of four transmembrane
domains, the cytoplasmic β subunit, the peripheral α2δ and
occasionally the γ accessory subunit (Ertel et al., 2000).
VGCCs are divided into subfamilies according to their pore-
forming subunit; the high voltage-activated channels known
as Cav1 (Cav1.1-1.4) and Cav2 (Cav2.1-2.3), and the low
voltage-activated Cav3 channels (Cav3.1-3.3) (Ertel et al.,
2000).

Voltage-Gated Calcium Channels
To date, evidence suggesting the existence of microglial VGCCs
and their involvement in AD is limited. Although numerous
studies, mainly via electrophysiology and Fura-2 calcium
imaging, have proven that various agents such as Aβ, ATP, and
K+, cause an increase in intracellular Ca2+, the mechanism by
which this phenomenon occurs is still under debate (Korotzer
et al., 1995;McLarnon et al., 1999; Valerie et al., 2013). Thus, there
is no clear indication of the existence of microglial VGCCs or
whether the increase in intracellular Ca2+ is due to other factors
such as ion exchange transporters or opening of intracellular
stores (Korotzer et al., 1995; McLarnon et al., 1999; Valerie et al.,
2013).

The majority of human studies, have investigated the presence
and functionality of VGCCs in human glioblastoma cell lines,
consisting of a mixed culture of glial cells, including astrocytes
and microglia. Therefore, a major limitation of human in vitro
studies, is that identifying VGCCs in glioblastoma cells does
not necessarily indicate the presence of these channels in
microglia. For instance, Valerie et al. (2013), demonstrated that
pharmacological inhibition via the calcium channel blocker
(CCB)mibefradil, or siRNA-induced downregulation of the Cav3
channel (T-type current) in human glioblastoma cell lines, led to
cell apoptosis. Additionally, Nicoletti et al. (2017) demonstrated
that Cav2.1 and Cav2.2 are involved in glial proliferation,
through using of pharmacological tools (Nicoletti et al., 2017).
Furthermore, via the use of an Iba-1 antibody, a marker of
inflammation, and immunohistochemistry, in an in vivo rodent
glioblastoma model (GL261 glioma cells), it was revealed that the
degree of Iba-1 positive microglia had increased following N-type
inhibition. This highlights a role of microglial VGCCs not only
in cell proliferation and microglial survival, but also in inducing
their pro-inflammatory action (Nicoletti et al., 2017). Evidence
from human glial cells, demonstrates that VGCCs are expressed
in human microglia, and that microglia VGCCs may also have

a role in neurotoxicity (Hashioka et al., 2012). Prior to 48-h
treatment with LPS and IFN-γ to induce inflammation, primary
human microglial cells were treated with the L-type blocker
nimodipine, significantly reducing neuronal toxicity induced by
the microglia (Hashioka et al., 2012). In contrast to other studies,
Hashioka et al. (2012) provided more conclusive evidence in
indicating the presence of microglial VGCCs due to the use
of primary human microglia and not a cell line consisting of
a mixed glial population. A 1999 study demonstrated a more
direct involvement of microglia VGCCs with progression of AD
by investigating how Aβ25−35 alters Ca2+ signaling in human
microglia (Silei et al., 1999). Incubation with Aβ caused an
increase in microglia proliferation and additionally an increase
in intracellular Ca2+ levels (Silei et al., 1999). As no significant
increase in microglial intracellular Ca2+ levels were observed
when microglia were incubated in Ca2+ -free media, it was
suggested that this change was due to VGCC-mediated Ca2+

influx (Silei et al., 1999). This was verified via co-incubation
of microglia with Aβ and the CCBs verapamil, nifedipine and
diltiazem which lead to a half-reduction in intracellular levels
(Silei et al., 1999). Moreover, incubation of peptide-treated
microglia with nifedipine not only lead to a reduction in
intracellular Ca2+, but also significantly prevented the increase
in microglia proliferation induced by the peptide. Therefore,
this study proposes that Aβ has the ability to increase microglia
number and also induce their activation and consequently
inflammatory action, through a VGCC manner (Silei et al.,
1999).

In contrast to human studies, the majority of studies using
animal models, have not provided conclusive evidence to indicate
the existence and activity of VGCCs in microglia (Toescu et al.,
1998; Silei et al., 1999).

A possible explanation for this, could be that microglial
VGCC expression and activity is species-dependent. For instance,
studies have shown that rodent microglia can express very low
levels of VGCC activity which may even remain undetected
(Toescu et al., 1998). Toescu et al. (1998), demonstrated that
adding ATP to microglia isolated from murine cortex lead to a
significant increase in intracellular Ca2+ levels. In contrast, KCl
induced microglial depolarisation, did not lead to an increase
in intracellular Ca2+ thus it was proposed that increased Ca2+

levels involved VGCC independent pathway (Toescu et al.,
1998). Prolonged elevation in intracellular Ca2+ levels can
activate pathways involved in regulation of gene expression
such as the Ca2+-calmodulin pathway, and therefore altered
Ca2+ signaling in microglia may occur as a pathway for
microglia activation and may even induce the progression of
various pathological conditions such as AD (Toescu et al.,
1998).

Although the majority of animal model studies have not
definitively proven the existence of the channels in microglia,
a few were able to provide some evidence indicating their
existence. In a study carried out in 2014 by Saeugusa and
Tanabe, where rodent lines were created where expression of
Cav2.2 was suppressed, they indicated dynamic modulation of
microglia Cav2.2 in regulation of pain related behavior. (Saegusa
and Tanabe, 2014). Saeugusa and Tanabe also highlight neuronal
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and microglial crosstalk, in controlling response to pathology
(Saegusa and Tanabe, 2014). A more recent study investigated
how microglial activation, verified by immunostaining and
morphological changes, alters the activity of the L-type currents
in an in vivo animal model for neurodegeneration, and in
the in vitro BV2 cell line (Espinosa-Parrilla et al., 2015).
Comparison of microglia before and after LPS and IFNγ

stimulation revealed differences as seen via immunostaining
and molecular approaches such as western blotting and PCR
(Espinosa-Parrilla et al., 2015). Additionally, as depolarisation
of LPS/IFNγ treated microglia demonstrated changes in
intracellular Ca2+ by treatment with either nifedipine or Bay
K8644 (agonist), it was suggested that VGCCs, may form part
of the mechanism involved in the activation of microglia,
inducing their pro-inflammatory action (Espinosa-Parrilla et al.,
2015).

To summarize, even though human microglia studies have
proposed the existence of functional VGCCs, the majority of the
studies were carried out in mixed glial cell lines. Additionally,
animal studies have either demonstrated very low expression of
VGCCs in microglia or were not able to prove their existence,
either at a functional or expression level (protein and mRNA).
Thus, due to the limited and contradicting evidence on human
and rodent microglial VGCC existence, the use of human
induced pluripotent stem cells (iPSCs) may allow amore effective
study of microglial ion channel role in neuro-inflammation
observed in neurodegenerative diseases such as AD.

CHLORIDE CHANNELS

Chloride channels are a diverse superfamily of channels proteins,
incorporating the volume regulated chloride channels, the ClC
proteins, Ca2+ activated chloride channels, CFTR and maxi
chloride channels (Alexander et al., 2017). Studies have identified
Cl− channels in rat (Visentin et al., 1995; Schlichter et al., 1996),
bovine (McLarnon et al., 1995) and human microglia (McLarnon
et al., 1997). These have mainly been based on pharmacological
studies using a range of Cl− channel blockers (e.g. nifluemic
acid). Pharmacological modulation of Cl- channels indicates a
role for in the regulation of microglia process outgrowth (Hines
et al., 2009). However, the lack of specific pharmacological tools
has hindered our progress in identifying specific channel entities,
and indeed their contribution to microglia physiology. This
is backed up with a lack of experimental evidence as to the
molecular identity of the channels that have been suggested to be
responsible for experimental observations. While the molecular
identity remains to be resolved, evidence indicates that is a
similar fashion to Cl− currents within lymphocytes, microglia
Cl− conductance are responsive to stretch (Lewis et al., 1993;
Steinert andGrissmer, 1997). Interestingly CLIC1 an intracellular
chloride channel has received some attention with relation to
amyloid pathology (Novarino et al., 2004; Milton et al., 2008;
Paradisi et al., 2008). This suggests a role for modulation
of chloride conductances in microglial generation of reactive
oxygen species, but robust evidence for this is lacking in relevant
in situmodels of microglia.

VOLTAGE GATED PROTON CHANNELS
(HV1)

Voltage-gated proton channels (Hv1; Alexander et al., 2017)
reportedly consist of 4 proton sensitive transmembrane domains
which are sensitive to both membrane depolarisation and
transmembrane pH gradient (DeCoursey, 2008; Capasso et al.,
2011). There is widespread expression of these channels within
the central nervous system, highlighting both regional and
cellular variation (Eder et al., 1995; McLarnon et al., 1997).
Functional evidence comes from both studies carried out on
murine microglia (Eder et al., 1995; Klee et al., 1998, 1999), rat
(Visentin et al., 1995), and human microglia (McLarnon et al.,
1997). There is also evidence to link Hv1 to both microglia
polarity and brain responses to stroke (Wu et al., 2012; Tian et al.,
2016). This could be pertinent given the link between hypoxia
and Alzheimer’s disease (Peers et al., 2007). However, one
drawback from these studies is the use of culture preparations.
This is pertinent given that work on brain slices was unable to
detect any H+ conductance in situ (De Simoni et al., 2008). This
again raises the question about membrane properties in cultured
preparations in contrast to in situ set ups. In addition there
are questions around the physiological role of these channels
when present in microglia (Eder and Decoursey, 2001) It is well
established that microglial reactive oxygen species contribute to
neuronal cell death in AD (see review Block et al., 2007). This
process likely involved the build-up of protons within microglia,
which will impact on the flux through Hv1 channels. However, a
direct demonstration of the involvement of HV1 in this process is
lacking. There is greater evidence to indicate the involvement of
other channels (e.g., Kv1.3) which are discussed elsewhere in this
article.

MODELING MICROGLIAL INVOLVEMENT

To fully understand a disease and its etiology it is necessary
that extensive modeling takes place. By tradition this has
been through the use of a number of different model systems
including both animal (murine) models and primary patient
cell lines. Currently in AD research there is a large focus
on the use of animal models, particularly transgenic mice
(McGowan et al., 2006), as a lot is understood about their genetics
and the availability of well-characterized genetic manipulation
techniques in this organism. Not only this, mice are more closely
phylo-genetically related to humans than other model systems
such as Caenorhabiditis elegans or Drosophila melanogaster. The
genetic similarities between humans and mice means that they
have utility in studying the familial aspect of AD by using
transgenic mice that contain mutations in the APP and PSEN
genes. There are over 100 different transgenic mouse models
available to study the familial aspect of AD, with some models
containing five different mutations in the APP and PSEN genes
(Oakley et al., 2006).

As it is widely accepted that Aβ plaques and neurofibrillary
tangles cause neuro-inflammation, models which overexpress
mutant human versions of APP have been shown to present
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microglial activation (Bornemann et al., 2001; Wright et al.,
2013). In addition to this it was shown that there were significant
increases in CD38-positive microglia before Aβ deposition which
also correlated with neuronal cell death in the CA1 region
of the hippocampus (Wright et al., 2013). The inflammatory
processes of in another APP mouse model, Tg2576, were
investigated by looking at individual microglial cells using in vivo
multiphoton imaging. Meyer-Luehmann and his colleagues
showed that Aβ plaques can form within days and once formed
it only takes 1–2 days before microglial cells begin to aggregate
around the depositions. Alongside this accumulation ofmicroglia
is accompanied by changes to neurite morphology (Meyer-
Luehmann et al., 2008). Whilst these have their advantages, they
also have a number of limitations. These types of models do not
accurately recapitulate human pathology as they do not develop
the robust tauopathy or neuronal cell death that is seen in human
disease without the addition of extra transgenes such as tau (Ribé
et al., 2005).

The triple-transgenic model of AD, which contains the
APPSWE, Presenilin-1 (PSENM146V) and tau mutations (tauP301L)
offers the advantage that they develop Aβ plaques, tau tangles,
synaptic dysfunction and LTP deficits which all manifest in
an age-related manner (Oddo et al., 2003). Janelsins et al.
demonstrated that this model shows a 14.8 fold increase of TNF-
α and 10.8 fold increase in MCP-1 mRNA in 6 month old triple
transgenic mice when compared to 2 month old mice. However
these increases were only seen in the entorhinal cortex and could
not be replicated in the hippocampus, suggesting that different
cell types or environments may be responsible for the differential
transcript levels and inflammatory responses in these disease
relevant brain regions (Janelsins et al., 2005).

Mouse models containing just tau mutations have also been
investigated in terms of neuro-inflammatory response and they
too also display microglial changes (Wes et al., 2014; Cook
et al., 2015). For example, the P301S tau model whose neurons
develop bundles of hyperphosphorylated tau also have significant
increases in inflammatory molecules such as IL-1β and COX-
2 within the tau-positive neurons. Alongside this they also
demonstrated that there were activated microglia throughout
the brain and spinal cord, but that these microglia could
be predominantly found surrounding the tau-positive neurons
(Bellucci et al., 2004). Interestingly, this microglial activation
was shown to begin before neurofibrillary tangle formation,
but could be ameliorated using an immunosuppressive drug,
FK506, early in life increasing life span and attenuating tau
pathology (Yoshiyama et al., 2007). One important thing to bear
in mind that mutations in tau do not cause AD but instead
cause frontotemporal dementia. So whilst these models can
provide useful information about how mutations in tau can
cause cellular dysfunction and neurodegeneration they do not
completely replicate AD in terms of other pathological markers
(Wolfe, 2012).

Whilst proven useful for modeling autosomal disease, such as
the familial form of AD, as previously mentioned, these murine
models do not accurately recapitulate AD. A more promising
avenue for modeling complex diseases, such as sporadic AD, is
through the use of stem cell technology. Embryonic stem cells

(ESCs) are derived from the inner cell mass, or blastocyst, of an
embryo and can differentiate into any cell in the body (Evans and
Kaufman, 1981). Despite their many potential uses, the ethical
issues surrounding the use of embryo-derived cells are numerous.
However, recent advances in stem cell technology have meant
that it is now possible to derive stem cells from differentiated
adult cells/tissue. Takahashi et al. showed it was possible to use
ectopic transcription factors to induce pluripotency and ESC
properties (Takahashi and Yamanaka, 2006). These transcription
factors were known for being important in the long term
maintenance of ES cell phenotype (Oct3/4 and Sox2) and
pluripotency (c-myc and Klf4) (Takahashi and Yamanaka, 2006).
These iPSCs are almost identical to ESCs in terms of their
characteristics. They are able to differentiate into any cell type
in the body, have infinite potential to grow, share the same
morphology and have the same expression pattern of genes
(Yamanaka, 2009); making them a potentially very powerful tool
for complex disease research.

Primary microglia cultures are often used to study neuro-
inflammation, they can be derived from rat ormouse brain before
birth or early on in development. In addition, human microglia
cultures have also been established from fetal brain (McLarnon
et al., 1997). One method of generating these cells was developed
by Giulian and Baker (1986) and involving a specific process of
adhesion and agitation. These cells are often used as they show
similarities to microglial cells in vitro, however, the process of
extraction and culture itself alters microglial phenotype (Caldeira
et al., 2014). Given the degree of variability in ion channel
distribution during development and aging (Harry, 2013), using
this type of model for investigating neurodegeneration is less
than ideal. Another method to study microglia is through the
use of retroviral-immortalized cell lines, such as the mouse and
rat microglial cell lines N9 and BV-2 respectively (Righi et al.,
1989; Blasi et al., 1990). These cell lines offer an advantage in
the fact that they are fast to grow, and large numbers of cells can
be generated quickly. However, as they have been immortalized
using oncogenes whichmeans they differ from primary microglia
as they have increased adhesion and proliferation and can vary in
terms of their morphology (Horvath et al., 2008).

Until recently, being able to generate iPSC-derived microglia
has been elusive, with previous attempts being met with
skepticism as the microglia were made from induced
hematopoietic stem cells (HSCs). HSCs have the potential
to give rise to other cell types such as blood derived macrophages
and as already stated microglia arise from EMPs. In order
to generate EMPs from the iPSCs, Muffat and his colleagues
developed a serum free media that contains high levels of
IL-34 and colony stimulating factor 1 (CSF1) (Muffat and Li,
2016). These conditions were chosen as the media mimics the
brain cerebrospinal fluid and the factors have been shown to
be necessary for microglia differentiation and maintenance.
Under these conditions they found that the cells soon formed
rope-like structures that when plated onto low adherence plates
gave rise to highly adherent pluripotent stem cell–derived
microglia-like cells (pMGLs). These cells express many of
the markers that would be expected from microglia, such as
TMEM119, P2RY12/13, HEXB and GPR34. Alongside this they

Frontiers in Neuroscience | www.frontiersin.org 14 September 2018 | Volume 12 | Article 676

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Thei et al. Ion Channels, Alzheimer’s and Microglia

are also highly phagocytic and gene transcriptomic analysis
demonstrated they resemble human primary fetal and adult
microglia (Muffat and Li, 2016). This is not the only protocol that
has been published which describes the derivation of microglia
from iPSCs, subsequently there have been four more protocols
released. In fact the next two papers described the generation
of iPSC-derived microglia going through a hematopoietic
progenitor cell (HPC) stage. Both methodologies use defined
media systems that contain a number of growth factors including
IL-3, BMP4 and L-ascorbic acid to generate HPCs (Abud et al.,
2017; Pandya et al., 2017). Both protocols take about 10 days to
generate HPCs at which point they were checked for markers
of the hematopoietic lineage such as CD43 before differentiating
for a further 2 weeks using another media to form induced
microglia like cells (iMGLs). One way in which these protocols
differ is that Pandya et al. (2017) co-culture the HPCs with
astrocytes to enhance microglial differentiation. This is not the
only protocol that uses co-culture to generate iPSC-derived
microglia, a paper released by Walter Haenseler also uses
co-culture but neuronal microglial co-culture instead (Haenseler
et al., 2017).

Whilst iPSC-based models offer a number of advantages to
modeling complex diseases there are a number of limitations that
should also be considered. Firstly, the cells which are derived
from iPSCs have been found to display the functional and
epigenetic signatures of fetal neurons and do not maintain the
features, such as telomere length and mitochondrial metabolism,
of the cells from which they were originally derived (Lapasset

et al., 2011). One of the current major stumbling blocks for iPSC
research (control and those derived from patients with specific
neurodegenerative disorders), is the lack of standard culturing
or differentiation methods (Wen et al., 2016). Resulting in the
unavailability of established protocols to generate entirely pure
populations of a specific cell type, therefore making cross lab
comparisons particularly difficult. However, more recently the
availability of human tissue as well as iPSCs have provided new
opportunities for academic and industry-based researchers to
identify optimal cell types and culture conditions to efficiently
generate stable, defined and reproducible cell types for their
specific research–with limited variability. Whilst this may not be
an issue for some studies, when trying to investigate diseases of
aging such as AD it could pose more problems as cells may not
show age related phenotypes or degeneration. One way in which
it may be possible to overcome this is throughmaintain and aging
the cells in culture for as long as possible.

One of the challenges to date has been modeling sporadic
AD in both rodent and human models of disease, with familial
AD mutations accounting for only 5–10% of all AD cases (Kim
et al., 2017). Excitingly, Lin et al. (2018) describes the first
experiments in which CRISPR/Cas9 technology has been used
to generate isogenic APOE4 iPSC-derived microglia. In this
study the APOE4-like microglia exhibited altered morphology
correlating to the reduced Aβ phagocytosis seen in rodent
models. They found that consistently converting APOE4 to
APOE3 in brain cell types from sporadic AD iPSCs was sufficient
to diminish multiple AD-related pathologies (Lin et al., 2018).

TABLE 2 | Comparison of multiple transcriptome studies of regulated microglial genes, relating to ion channels, in models of aging or Alzheimer’s disease.

Species Sample

type

Potassium

channels

Sodium

channels

TRP channels Calcium

channels

Others Reference

Human iPSC KCNA5, KCNK13,

KCNN4

SCN5A TRPM2, TRPM4, TRPM8,

TRPV1, TRPV2

CACNA1S HVCN1, CLIC1 Haenseler et al.,

2017

Human Biopsy primary microglia

culture

KCNK13, KCNN1,

KCNN4

Not determined TRPC1, TRPC2, TRPM2,

TRPM3, TRPM4, TRPM7,

TRPMV1, TRPV2, TRPV4

Not determined HVCN1, CLIC1 Gosselin et al.,

2017

Human Purified from post-mortem

dorsal lateral pre-frontal

cortex

KCNN4 Not determined TRPM2, TRPV2 Not determined CLIC1 Olah et al., 2018

Human Purified from post-mortem

dorsal lateral pre-frontal

cortex

KCNJ2, KCNK13,

KCNN4

Not determined TRPM2, TRPM7, TRPV1,

TRPV2

CACNA1A,

CACNA1D

HVCN1, CLIC1 Olah et al., 2018

Human Purified from post-mortem

right parietal cortex

KCNK13, KCNN4 Not determined TRPC2, TRPV2, TRPV4 Not determined CLIC1 Galatro et al.,

2017

Human Purified from post-mortem

right parietal cortex

KCNN4 Not determined Not determined CACNA1F Not determined Galatro et al.,

2017

Mouse Primary microglia culture KCNA3, KCNK13,

KCNN4

Not determined TRPM4 CACNA1A,

CACNA1D

Not determined Gosselin et al.,

2017

Mouse Collated Meta-Analysis KCNA1, KCNA2,

KCNN1, KCNN3

Not determined TRPA1, TRPC1, TRPC3,

TRPC4, TRPC6, TRPC7,

TRPM3, TRPM8, TRPV1,

TRPV6

Not determined HVCN1 Olah et al., 2018

Rat Primary microglia culture KCNK13, KCNN4 Not determined TRPC4, TRPC6, TRPM2,

TRPM4, TRPV1

Not determined CLIC1 Bohlen et al., 2017

Regulation threshold was set at a 3-fold change over all studies. Anything below this is referred to as not determined.
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They also showed that in their iPSC-derived microglia, TREM2
was positively correlated to the APOE4 genotype. This data
is consistent with reports showing increased levels of soluble
TREM2 in cerebrospinal fluid of AD patients (Heslegrave et al.,
2016). Similarly, protocols for microglia differentiated from
patients carrying missense mutations in TREM2 (that are causal
for frontotemporal dementia-like syndrome and Nasu-Hakola
disease). These studies found subtle effects on microglia biology,
consistent with the adult onset of disease in individuals with
these mutations (Brownjohn et al., 2018). These particular
studies establish a reference for human cell-type-specific changes
associated with the risk of developing AD, providing critical
insight into potential treatments for sporadic AD.

As more is understood about the developmental origin and
unique identity of microglia, recent studies have attempted to
circumvent this issue by deriving microglia from iPSCs in order
to study human and cell-type-specific biology and disease (Muffat
et al., 2016; Abud et al., 2017; Douvaras et al., 2017; Haenseler
et al., 2017; Pandya et al., 2017; Takata et al., 2017; Brownjohn
et al., 2018; Lin et al., 2018). At the whole-transcriptome level,
microglia generated by the methods reported here most closely
resemble cultured primary microglia (Brownjohn et al., 2018).
Due to a lack of unique surface markers, it has historically
been difficult to distinguish microglia from other macrophages
and cells of myeloid lineage. It is only recently that a distinct
transcriptomic profile of microglia has emerged (Hickman et al.,
2013; Butovsky et al., 2014; Holtman et al., 2015; Bennett et al.,
2016; Gosselin et al., 2017; Keren-Shaul et al., 2017; Krasemann
et al., 2017). In this review we have highlighted the similarities
between rodent and human microglia transcriptomics and have
identified key ion channels prominent in human iPSC-derived
microglia, some of which we have already been highlighted earlier
in this review as prominent targets associated with AD (Table 2)
including KCNK13, KCNN4, TRPV2, HVCN1, and CLIC1.
Indeed, the ion channels found from iPSC-derived microglia to
date mirror those found in aged-human tissue (Olah et al., 2018).

Finally, the characterization of the electrophysiological
properties of neurons derived from iPSCs are extremely
limited and even fewer reports on the functional properties
of iPSC-derived glia (microglia and astrocytes). However, with
the development of standardized methods and differentiation
protocols and, importantly, broader functional characterization
of the complex collection of ion channels and receptors expressed

in defined glial and neuronal subtypes from iPSCs, their
significance in drug discovery and neuroscience will become
increasingly valuable.

CONCLUDING REMARKS

Microglial research has expanded dramatically in the last 5 years,
this combined with the lack of new therapeutic options for
treating complex neurological conditions highlights the potential
of these cells to provide a viable alternative. For this to be
realized a clearer picture of human microglial physiology needs
to be established. The development of iPSC technology has been
a great advance in these efforts, but robust protocols are still
in their infancy (Douvaras et al., 2017; Haenseler et al., 2017;
Brownjohn et al., 2018). With microglia being dependent in situ
environments the need to generate more complex 3D models is
even greater. While the development of 3D scaffolds continues
at pace (Saliba et al., 2018), some initial research indicates the
possibility of 3D microglia cultures (Cho et al., 2018). The
challenge will now be to incorporate the diverse range of cells into
these cultures with the ability to provided measurable outcomes
(e.g. electrophysiology). Establishing robust and reproducible
protocols will also allow us to progress into addressing the
role of microglia in pathological states. This is vital if we are
to achieve a therapeutic purpose for targeting microglia ion
channels.

The role of ion channels is extensive within the central
nervous system, however as non-excitable cells microglia
channels often get overlooked. Here we have examined the
microglia ion channel landscape and the evidence that supports
the involvement in Alzheimer’s disease pathogenesis. While there
is still work to be done as highlighted above, this review indicates
that microglia ion channels play a pivotal role in their physiology
and can contribute to the fight against dementia.
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