28 research outputs found
Aldehyde dehydrogenase 2 in the spotlight: the link between mitochondria and neurodegeneration
Growing body of evidence suggests that mitochondrial dysfunctions and resultant oxidative stress are likely responsible for many neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD). Aldehyde dehydrogenase (ALDH) superfamily plays a crucial role in several biological processes including development and detoxification pathways in the organism. In particular, ALDH2 is crucial in the oxidative metabolism of toxic aldehydes in the brain, such as catecholaminergic metabolites (DOPAL and DOPEGAL) and the principal product of lipid peroxidation process 4-HNE. This review aims to deepen the current knowledge regarding to ALDH2 function and its relation with brain-damaging processes that increase the risk to develop neurodegenerative disorders. We focused on relevant literature of what is currently known at molecular and cellular levels in experimental models of these pathologies. The understanding of ALDH2 contributions could be a potential target in new therapeutic approaches for PD and AD due to its crucial role in mitochondrial normal function maintenance that protects against neurotoxicity.Instituto de Investigaciones Bioquímicas de La Plat
Dancing with glia: The role of astrocytes, microglia and oligodendrocytes and their relation with neurons in neuroinflammation and aging
This review provides an original overview of glial cells functions on the central nervous system and their relationship withneuroinflammation. We decided to correlate astrocytes, microglia and oligodendrocytes functions with neurons interplay, and refer it toTango genre and dance. Furthermore, this revision summarizes studies that support the roles of glial cells in neuroinflammation underdifferent conditions, such as aging and main neurodegenerative diseases in particular, Parkinson?s Disease and Alzheimer?s Disease.Fil: Herrera, Macarena Lorena. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Farmacología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Farmacología Experimental de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Farmacología Experimental de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"; ArgentinaFil: Dolcetti, Franco Juan Cruz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"; ArgentinaFil: Falomir Lockhart, Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"; ArgentinaFil: Champarini, Leandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Farmacología Experimental de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Farmacología Experimental de Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Farmacología; ArgentinaFil: Pennini, Jeronimo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"; ArgentinaFil: Hereñú, Claudia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Farmacología Experimental de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Farmacología Experimental de Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Farmacología; ArgentinaFil: Bellini, Maria Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"; Argentin
Cognitive impairment in Parkinson's disease: the hippocampus role
La enfermedad de Parkinson es una enfermedad neurodegenerativa de las neuronas dopaminérgicas de la vía nigrosestriatal. Es considerada de índole multifactorial debido a la multiplicidad de síntomas que experimentan los pacientes, los cuales pueden agruparse por su afección de las vías motoras y/o de las vías mesolímibicas. Si bien esta patología es conocida por sus déficits motores característicos, los pacientes también presentan una amplia variedadde síntomas no motores, como deterioro del aprendizaje y la memoria, depresión, problemas gastrointestinales, entre otros, que afectan severamente su calidad de vida. Estos síntomas no motores resultan de una disfunción de sistemas interconectados, que incluyen al cuerpo estriado, la neocorteza y el hipocampo y de los diferentes circuitos glutamatérgicos involucrados en la modulación de la plasticidad sináptica. Es por esto que la presente revisión busca profundizar el conocimiento actual en relación al deterioro cognitivo asociado a la patología parkinsoniana para lograr un mejor entendimiento de los cambios neuronales, a nivel molecular, químico y fisiológico, principalmente en el hipocampo. El conocimiento de estos mecanismos no motores participantes en la EP podrían resultar en un potencial enfoque de nuevas estrategias terapéuticas.Parkinson’s disease is a neurodegenerative disorder that results from a progressive dopaminergic neuronal loss. It is considered a multifactorial condition due to the multiplicity of symptoms experienced by patients, which can be grouped by their disturbance in motor pathways and / or mesolímibics pathways. While this condition is known for its characteristic motor deficits, patients also have a wide variety of non-motor symptoms, such as impaired learning and memory, depression, gastrointestinal problems, among others, which severely affect their quality of life. These non-motor symptoms result from dysfunction of interconnected systems, including the striatum, the neocortex and the hippocampus and the different glutamatergic circuits involved in synaptic plasticity modulation. This review seeks to deepen the current knowledge regarding to cognitive impairment associated with parkinsonian pathology for a better understanding of the neural changes at molecular, chemical and physiological level, mainly in the hippocampus. Knowledge of these mechanisms involved in non-motor PD could result in potential new therapeutic strategies.Facultad de Ciencias MédicasInstituto de Investigaciones Bioquímicas de La Plat
Dancing with Glia: The Role of Astrocytes, Microglia and Oligodendrocytes and their Relation with Neurons in Neuroinflammation and Aging
This review provides an original overview of glial cells functions on the central nervous system and their relationship with neuroinflammation. We decided to correlate astrocytes, microglia and oligodendrocytes functions with neurons interplay, and refer it to Tango genre and dance. Furthermore, this revision summarizes studies that support the roles of glial cells in neuroinflammation under different conditions, such as aging and main neurodegenerative diseases in particular, Parkinson’s Disease and Alzheimer’s Disease.Instituto de Investigaciones Bioquímicas de La Plat
Implication of Oxidative Stress, Aging, and Inflammatory Processes in Neurodegenerative Diseases: Growth Factors as Therapeutic Approach
Oxidative stress (OS) is defined as the imbalance between the production of reactive oxygen species (ROS) and the antioxidant defense system. Living organisms produce ROS from molecular oxygen as a consequence of normal cellular metabolism. In order to prevent damage, cells have an antioxidant defense system constituted by an enzymatic component (including catalases, superoxide dismutases, etc.) and nonenzymatic antioxidants component (glutathione, α-tocopherol, ascorbic acid, etc.). When the levels of ROS exceed cell capacity, it can cause damage in cellular components such as carbohydrates, nucleic acids, lipids, and proteins, thus altering their function. Whenever this imbalance occurs within the central nervous system, it can lead to the development of the neurodegenerative disorders. Neurodegenerative diseases are characterized by the loss of neuronal cells and, in most cases, by the aggregates of proteins that form intracytoplasmic and intranuclear inclusions in neurons and glial cells. Data on the literature show that there are two possible mechanisms involved in most of neurodegenerative diseases: (1) mutations and/or aggregation of characteristic proteins of each disease such as α-synuclein in Parkinson’s disease (PD) or beta-amyloid peptide in Alzheimer’s disease (AD) and (2) dysfunction of mitochondrial energy metabolism in neurons. In this section, we will focus on this last one.Instituto de Investigaciones Bioquímicas de La Plat
Early Cognitive Impairment Behind Nigrostriatal Circuit Neurotoxicity: Are Astrocytes Involved?
Cognitive dysfunction is one of the most severe nonmotor symptoms of nigrostriatal impairment. This occurs as a result of profound functional and morphological changes of different neuronal circuits, including modifications in the plasticity and architecture of hippocampal synapses. Such alterations can be implicated in the genesis and progression of dementia associated with neurodegenerative diseases including Parkinson-like symptoms. There are few studies regarding cognitive changes in nigrostriatal animal models. The aim of this study was to characterize the onset of memory deficit after induction of neurotoxicity with 6-hydroxydopamine (6-OHDA) and its correlation with hippocampal dysfunction. For this, we bilaterally microinjected 6-OHDA in dorsolateral Caudate-Putamen unit (CPu) and then, animals were tested weekly for working memory, spatial short-term memory, and motor performance. We evaluated tyrosine hydroxylase (TH) as a dopamine marker, aldehyde dehydrogenase 2 (ALDH2), a mitochondria detoxification enzyme and astrocyte glial fibrillar acid protein (GFAP) an immunoreactivity marker involved in different areas: CPu, substantia nigra, prefrontal cortex, and hippocampus. We observed a specific prefrontal cortex and nigrostriatal pathway TH reduction while ALDH2 showed a decrease-positive area in all the studied regions. Moreover, GFAP showed a specific CPu decrease and hippocampus increase of positively stained area on the third week after toxicity. We also evaluated the threshold to induce long-term potentiation in hippocampal excitability. Our findings showed that reduced hippocampal synaptic transmission was accompanied by deficits in memory processes, without affecting motor performance on the third-week post 6-OHDA administration. Our results suggest that 3 weeks after neurotoxic administration, astrocytes and ALDH2 mitochondrial enzyme modifications participate in altering the properties that negatively affect hippocampal function and consequently cognitive behavior.Facultad de Ciencias MédicasInstituto de Investigaciones Bioquímicas de La Plat
IGF-1 Gene Therapy Modifies Inflammatory Environment and Gene Expression in the Caudate-Putamen of Aged Female Rat Brain
Brain aging is characterized by chronic neuroinflammation caused by activation of glial cells, mainly microglia, leading to alterations in homeostasis of the central nervous system. Microglial cells are constantly surveying their environment to detect and respond to diverse signals. During aging, microglia undergo a process of senescence, characterized by loss of ramifications, spheroid formation, and fragmented processes, among other abnormalities. Therefore, the study of microglia senescence is of great relevance to understand age‐related declines in cognitive and motor function.We have targeted the deleterious effects of aging by implementing gene therapy with IGF-1, employing recombinant adenoviral vectors (RAds) as a delivery system. In this study, we performed intracerebroventricular (ICV) IGF-1 gene therapy on aged female rats and evaluated its effect on Caudate-Putamen unit (CPu) gene expression and inflammatory state. IGF-1 gene therapy modified senescent microglia of the CPu towards an anti-inflammatory state increasing the proportion of Iba1+Arg1+ cells. Moreover, IGF-1 gene therapy was able to regulate the pro-inflammatory environment of CPu in female aged rats by down-regulating the expression of genes typically over-expressed during aging. Our results demonstrate that, ICV IGF-1 gene therapy, is capable to modulate microglia cells and CPu gene expression, leading to an improvement in motor function.Instituto de Investigaciones Bioquímicas de La Plat
Aldehyde dehydrogenase 2 in the spotlight: The link between mitochondria and neurodegeneration
Growing body of evidence suggests that mitochondrial dysfunctions and resultant oxidative stress are likely responsible for many neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD). Aldehyde dehydrogenase (ALDH) superfamily plays a crucial role in several biological processes including development and detoxification pathways in the organism. In particular, ALDH2 is crucial in the oxidative metabolism of toxic aldehydes in the brain, such as catecholaminergic metabolites (DOPAL and DOPEGAL) and the principal product of lipid peroxidation process 4-HNE. This review aims to deepen the current knowledge regarding to ALDH2 function and its relation with brain-damaging processes that increase the risk to develop neurodegenerative disorders. We focused on relevant literature of what is currently known at molecular and cellular levels in experimental models of these pathologies. The understanding of ALDH2 contributions could be a potential target in new therapeutic approaches for PD and AD due to its crucial role in mitochondrial normal function maintenance that protects against neurotoxicity.Fil: Deza Ponzio, Romina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Farmacología Experimental de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Farmacología Experimental de Córdoba; ArgentinaFil: Herrera, Macarena Lorena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"; ArgentinaFil: Bellini, Maria Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"; ArgentinaFil: Virgolini, Miriam Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Farmacología Experimental de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Farmacología Experimental de Córdoba; ArgentinaFil: Hereñú, Claudia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Farmacología Experimental de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Farmacología Experimental de Córdoba; Argentin
Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study
Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research
Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK.
BACKGROUND: A safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and efficacy of the ChAdOx1 nCoV-19 vaccine in a pooled interim analysis of four trials. METHODS: This analysis includes data from four ongoing blinded, randomised, controlled trials done across the UK, Brazil, and South Africa. Participants aged 18 years and older were randomly assigned (1:1) to ChAdOx1 nCoV-19 vaccine or control (meningococcal group A, C, W, and Y conjugate vaccine or saline). Participants in the ChAdOx1 nCoV-19 group received two doses containing 5 × 1010 viral particles (standard dose; SD/SD cohort); a subset in the UK trial received a half dose as their first dose (low dose) and a standard dose as their second dose (LD/SD cohort). The primary efficacy analysis included symptomatic COVID-19 in seronegative participants with a nucleic acid amplification test-positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to treatment received, with data cutoff on Nov 4, 2020. Vaccine efficacy was calculated as 1 - relative risk derived from a robust Poisson regression model adjusted for age. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov, NCT04324606, NCT04400838, and NCT04444674. FINDINGS: Between April 23 and Nov 4, 2020, 23 848 participants were enrolled and 11 636 participants (7548 in the UK, 4088 in Brazil) were included in the interim primary efficacy analysis. In participants who received two standard doses, vaccine efficacy was 62·1% (95% CI 41·0-75·7; 27 [0·6%] of 4440 in the ChAdOx1 nCoV-19 group vs71 [1·6%] of 4455 in the control group) and in participants who received a low dose followed by a standard dose, efficacy was 90·0% (67·4-97·0; three [0·2%] of 1367 vs 30 [2·2%] of 1374; pinteraction=0·010). Overall vaccine efficacy across both groups was 70·4% (95·8% CI 54·8-80·6; 30 [0·5%] of 5807 vs 101 [1·7%] of 5829). From 21 days after the first dose, there were ten cases hospitalised for COVID-19, all in the control arm; two were classified as severe COVID-19, including one death. There were 74 341 person-months of safety follow-up (median 3·4 months, IQR 1·3-4·8): 175 severe adverse events occurred in 168 participants, 84 events in the ChAdOx1 nCoV-19 group and 91 in the control group. Three events were classified as possibly related to a vaccine: one in the ChAdOx1 nCoV-19 group, one in the control group, and one in a participant who remains masked to group allocation. INTERPRETATION: ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials. FUNDING: UK Research and Innovation, National Institutes for Health Research (NIHR), Coalition for Epidemic Preparedness Innovations, Bill & Melinda Gates Foundation, Lemann Foundation, Rede D'Or, Brava and Telles Foundation, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and AstraZeneca